1
|
Bandyopadhyay G, Jehrio MG, Baker C, Bhattacharya S, Misra RS, Huyck HL, Chu C, Myers JR, Ashton J, Polter S, Cochran M, Bushnell T, Dutra J, Katzman PJ, Deutsch GH, Mariani TJ, Pryhuber GS. Bulk RNA sequencing of human pediatric lung cell populations reveals unique transcriptomic signature associated with postnatal pulmonary development. Am J Physiol Lung Cell Mol Physiol 2024; 326:L604-L617. [PMID: 38442187 PMCID: PMC11381037 DOI: 10.1152/ajplung.00385.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.
Collapse
Affiliation(s)
- Gautam Bandyopadhyay
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew G Jehrio
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Cameron Baker
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Soumyaroop Bhattacharya
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Ravi S Misra
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Heidie L Huyck
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - ChinYi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Jason R Myers
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - John Ashton
- UR Genomics Research Center, University of Rochester Medical Center, Rochester, New York, United States
| | - Steven Polter
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew Cochran
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Timothy Bushnell
- UR Flow Cytometry Core Facility, University of Rochester Medical Center, Rochester, New York, United States
| | - Jennifer Dutra
- UR Clinical & Translational Science Institute Informatics, University of Rochester Medical Center, Rochester, New York, United States
| | - Philip J Katzman
- Department of Pathology, University of Rochester Medical Center, Rochester, New York, United States
| | - Gail H Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, Washington, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Program in Pediatric Molecular and Personalized Medicine, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
2
|
Kaur S, Roberts DD. Emerging functions of thrombospondin-1 in immunity. Semin Cell Dev Biol 2024; 155:22-31. [PMID: 37258315 PMCID: PMC10684827 DOI: 10.1016/j.semcdb.2023.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Thrombospondin-1 is a secreted matricellular glycoprotein that modulates cell behavior by interacting with components of the extracellular matrix and with several cell surface receptors. Its presence in the extracellular matrix is induced by injuries that cause thrombospondin-1 release from platelets and conditions including hyperglycemia, ischemia, and aging that stimulate its expression by many cell types. Conversely, rapid receptor-mediated clearance of thrombospondin-1 from the extracellular space limits its sustained presence in the extracellular space and maintains sub-nanomolar physiological concentrations in blood plasma. Roles for thrombospondin-1 signaling, mediated by specific cellular receptors or by activation of latent TGFβ, have been defined in T and B lymphocytes, natural killer cells, macrophages, neutrophils, and dendritic cells. In addition to regulating physiological nitric oxide signaling and responses of cells to stress, studies in mice lacking thrombospondin-1 or its receptors have revealed important roles for thrombospondin-1 in regulating immune responses in infectious and autoimmune diseases and antitumor immunity.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Montero E, Isenberg JS. The TSP1-CD47-SIRPα interactome: an immune triangle for the checkpoint era. Cancer Immunol Immunother 2023; 72:2879-2888. [PMID: 37217603 PMCID: PMC10412679 DOI: 10.1007/s00262-023-03465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
The use of treatments, such as programmed death protein 1 (PD1) or cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) antibodies, that loosen the natural checks upon immune cell activity to enhance cancer killing have shifted clinical practice and outcomes for the better. Accordingly, the number of antibodies and engineered proteins that interact with the ligand-receptor components of immune checkpoints continue to increase along with their use. It is tempting to view these molecular pathways simply from an immune inhibitory perspective. But this should be resisted. Checkpoint molecules can have other cardinal functions relevant to the development and use of blocking moieties. Cell receptor CD47 is an example of this. CD47 is found on the surface of all human cells. Within the checkpoint paradigm, non-immune cell CD47 signals through immune cell surface signal regulatory protein alpha (SIRPα) to limit the activity of the latter, the so-called trans signal. Even so, CD47 interacts with other cell surface and soluble molecules to regulate biogas and redox signaling, mitochondria and metabolism, self-renewal factors and multipotency, and blood flow. Further, the pedigree of checkpoint CD47 is more intricate than supposed. High-affinity interaction with soluble thrombospondin-1 (TSP1) and low-affinity interaction with same-cell SIRPα, the so-called cis signal, and non-SIRPα ectodomains on the cell membrane suggests that multiple immune checkpoints converge at and through CD47. Appreciation of this may provide latitude for pathway-specific targeting and intelligent therapeutic effect.
Collapse
Affiliation(s)
- Enrique Montero
- Department of Diabetes Immunology, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA
| | - Jeffrey S Isenberg
- Department of Diabetes Complications and Metabolism, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
- Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
4
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|
5
|
Kaur S, Isenberg JS, Roberts DD. CD47 (Cluster of Differentiation 47). ATLAS OF GENETICS AND CYTOGENETICS IN ONCOLOGY AND HAEMATOLOGY 2021; 25:83-102. [PMID: 34707698 PMCID: PMC8547767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
CD47, also known as integrin-associated protein, is a constitutively and ubiquitously expressed transmembrane receptor. CD47 is conserved across amniotes including mammals, reptiles, and birds. Expression is increased in many cancers and, in non-malignant cells, by stress and with aging. The up-regulation of CD47 expression is generally epigenetic, whereas gene amplification occurs with low frequency in some cancers. CD47 is a high affinity signaling receptor for the secreted protein thrombospondin-1 (THBS1) and the counter-receptor for signal regulatory protein-α (SIRPA, SIRPα) and SIRPγ (SIRPG). CD47 interaction with SIRPα serves as a marker of self to innate immune cells and thereby protects cancer cells from phagocytic clearance. Consequently, higher CD47 correlates with a poor prognosis in some cancers, and therapeutic blockade can suppress tumor growth by enhancing innate antitumor immunity. CD47 expressed on cytotoxic T cells, dendritic cells, and NK cells mediates inhibitory THBS1 signaling that further limits antitumor immunity. CD47 laterally associates with several integrins and thereby regulates cell adhesion and migration. CD47 has additional lateral binding partners in specific cell types, and ligation of CD47 in some cases modulates their function. THBS1-CD47 signaling in non-malignant cells inhibits nitric oxide/cGMP, calcium, and VEGF signaling, mitochondrial homeostasis, stem cell maintenance, protective autophagy, and DNA damage response, and promotes NADPH oxidase activity. CD47 signaling is a physiological regulator of platelet activation, angiogenesis and blood flow. THBS1/CD47 signaling is frequently dysregulated in chronic diseases.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| | | | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
6
|
Ramchandani D, Mittal V. Thrombospondin in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:133-147. [PMID: 32845506 DOI: 10.1007/978-3-030-48457-6_8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombospondins (TSPs) are multifaceted proteins that contribute to physiologic as well as pathologic conditions. Due to their multiple receptor-binding domains, TSPs display both oncogenic and tumor-suppressive qualities and are thus essential components of the extracellular matrix. Known for their antiangiogenic capacity, TSPs are an important component of the tumor microenvironment. The N- and C-terminal domains of TSP are, respectively, involved in cell adhesion and spreading, an important feature of wound healing as well as cancer cell migration. Previously known for the activation of TGF-β to promote tumor growth and inflammation, TSP-1 has recently been found to be transcriptionally induced by TGF-β, implying the presence of a possible feedback loop. TSP-1 is an endogenous inhibitor of T cells and also mediates its immunosuppressive effects via induction of Tregs. Given the diverse roles of TSPs in the tumor microenvironment, many therapeutic strategies have utilized TSP-mimetic peptides or antibody blockade as anti-metastatic approaches. This chapter discusses the diverse structural domains, functional implications, and anti-metastatic therapies in the context of the role of TSP in the tumor microenvironment.
Collapse
Affiliation(s)
- Divya Ramchandani
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Russell RT, McDaniel JK, Cao W, Shroyer M, Wagener BM, Zheng XL, Pittet JF. Low Plasma ADAMTS13 Activity Is Associated with Coagulopathy, Endothelial Cell Damage and Mortality after Severe Paediatric Trauma. Thromb Haemost 2018; 118:676-687. [PMID: 29618154 DOI: 10.1055/s-0038-1636528] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Decrease of plasma activity of ADAMTS13, a metalloenzyme that cleaves von Willebrand factor (VWF) and prevents adhesion and aggregation of platelets, has been reported early after onset of systemic inflammation resulting from infections and after severe trauma. Here, we determined whether trauma-induced systemic (sterile) inflammation would be associated with a reduction of plasma ADAMTS13 activity in paediatric patients and its association with disease severity and outcome. Paediatric patients (n = 106) with severe trauma at a level 1 paediatric trauma centre between 2014 and 2016 were prospectively enrolled. Blood samples were collected upon arrival and at 24 hours and analysed for plasma levels of ADAMTS13 activity, VWF antigen, collagen binding activity, human neutrophil peptides (HNP) 1-3, coagulation abnormalities, endothelial glycocalyx damage and clinical outcome. Plasma samples were also collected for similar measurements from 52 healthy paediatric controls who underwent elective minor surgery. The median age of patients was 9 years with 81% sustaining blunt trauma. The median injury severity score was 22 and the mortality rate was 11%. Plasma levels of ADAMTS13 activity were significantly lower and plasma levels of VWF antigen and HNP 1-3 proteins were significantly higher for paediatric trauma patients on admission and at 24 hours when compared with controls. Finally, the lowest plasma ADAMTS13 activity was found in patients who died from their injuries. We conclude that relative plasma deficiency of ADAMTS13 activity may be associated with more severe traumatic injury, significant endothelial glycocalyx damage, coagulation abnormalities and mortality after severe trauma in paediatric patients.
Collapse
Affiliation(s)
- Robert T Russell
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jenny K McDaniel
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Wenjing Cao
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Michelle Shroyer
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - X Long Zheng
- Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jean-François Pittet
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
8
|
Fallon EA, Biron-Girard BM, Chung CS, Lomas-Neira J, Heffernan DS, Monaghan SF, Ayala A. A novel role for coinhibitory receptors/checkpoint proteins in the immunopathology of sepsis. J Leukoc Biol 2018; 103:10.1002/JLB.2MIR0917-377R. [PMID: 29393983 PMCID: PMC6314914 DOI: 10.1002/jlb.2mir0917-377r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
Abstract
Coinhibitory molecules, such as PD-1, CTLA-4, 2B4, and BTLA, are an important new family of mediators in the pathophysiology of severe bacterial and/or fungal infection, as well as the combined insults of shock and sepsis. Further, the expression of these molecules may serve as indicators of the immune status of the septic individual. Using PD-1:PD-L as an example, we discuss in this review how such checkpoint molecules may affect the host response to infection by mediating the balance between effective immune defense and immune-mediated tissue injury. Additionally, we explore how the up-regulation of PD-1 and/or PD-L1 expression on not only adaptive immune cells (e.g., T cells), but also on innate immune cells (e.g., macrophages, monocytes, and neutrophils), as well as nonimmune cells during sepsis and/or shock contributes to functional alterations often with detrimental sequelae.
Collapse
Affiliation(s)
- Eleanor A. Fallon
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Bethany M. Biron-Girard
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Joanne Lomas-Neira
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Daithi S. Heffernan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Sean F. Monaghan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Brown University, Providence, R.I., USA
| |
Collapse
|
9
|
Huang T, Sun L, Yuan X, Qiu H. Thrombospondin-1 is a multifaceted player in tumor progression. Oncotarget 2017; 8:84546-84558. [PMID: 29137447 PMCID: PMC5663619 DOI: 10.18632/oncotarget.19165] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/28/2017] [Indexed: 01/21/2023] Open
Abstract
Thrombospondins are a family of extracellular matrix (ECM) proteins. Thrombospondin-1 (TSP1) was the first member to be identified and is a main player in tumor microenvironment. The diverse functions of TSP1 depend on the interactions between its structural domains and multiple cell surface molecules. TSP1 acts as an angiogenesis inhibitor by stimulating endothelial cell apoptosis, inhibiting endothelial cell migration and proliferation, and regulating vascular endothelial growth factor bioavailability and activity. In addition to angiogenesis modulation, TSP1 also affects tumor cell adhesion, invasion, migration, proliferation, apoptosis and tumor immunity. This review discusses the multifaceted and sometimes opposite effects of TSP1 on tumor progression depending on the molecular and cellular composition of the microenvironment. Clinical implications of TSP1-related compounds are also discussed.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| |
Collapse
|
10
|
Smith RE, Reyes NJ, Khandelwal P, Schlereth SL, Lee HS, Masli S, Saban DR. Secondary allergic T cell responses are regulated by dendritic cell-derived thrombospondin-1 in the setting of allergic eye disease. J Leukoc Biol 2016; 100:371-80. [PMID: 26856994 PMCID: PMC4945354 DOI: 10.1189/jlb.3a0815-357rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 11/24/2022] Open
Abstract
Allergic eye disease, as in most forms of atopy, ranges in severity among individuals from immediate hypersensitivity to a severe and debilitating chronic disease. Dendritic cells play a key role in stimulating pathogenic T cells in allergen re-exposure, or secondary responses. However, molecular cues by dendritic cells underpinning allergic T cell response levels and the impact that this control has on consequent severity of allergic disease are poorly understood. Here, we show that a deficiency in thrombospondin-1, a matricellular protein known to affect immune function, has subsequent effects on downstream T cell responses during allergy, as revealed in an established mouse model of allergic eye disease. More specifically, we demonstrate that a thrombospondin-1 deficiency specific to dendritic cells leads to heightened secondary T cell responses and consequent clinical disease. Interestingly, whereas thrombospondin-1-deficient dendritic cells augmented activity of allergen-primed T cells, this increase was not recapitulated with naïve T cells in vitro. The role of dendritic cell-derived thrombospondin-1 in regulating secondary allergic T cell responses was confirmed in vivo, as local transfer of thrombospondin-1-sufficient dendritic cells to the ocular mucosa of thrombospondin-1 null hosts prevented the development of augmented secondary T cell responses and heightened allergic eye disease clinical responses. Finally, we demonstrate that topical instillation of thrombospondin-1-derived peptide reduces T cell activity and clinical progression of allergic eye disease. Taken together, this study reveals an important modulatory role of dendritic cell-derived thrombospondin-1 on secondary allergic T cell responses and suggests the possible dysregulation of dendritic cell-derived thrombospondin-1 expression as a factor in allergic eye disease severity.
Collapse
Affiliation(s)
- R E Smith
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - N J Reyes
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA
| | - P Khandelwal
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - S L Schlereth
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - H S Lee
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - S Masli
- Department of Ophthalmology, Boston University Medical Center, Boston, Massachusetts, USA; and
| | - D R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA;
| |
Collapse
|
11
|
Secreted Thrombospondin-1 Regulates Macrophage Interleukin-1β Production and Activation through CD47. Sci Rep 2016; 6:19684. [PMID: 26813769 PMCID: PMC4728557 DOI: 10.1038/srep19684] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Thrombospondin-1 regulates inflammation by engaging several cell surface receptors and by modulating activities of other secreted factors. We have uncovered a novel role of thrombospondin-1 in modulating production and activation of the proinflammatory cytokine IL-1β by human and murine macrophages. Physiological concentrations of thrombospondin-1 limit the induction by lipopolysaccharide of IL-1β mRNA and total protein production by human macrophages. This inhibition can be explained by the ability of thrombospondin-1 to disrupt the interaction between CD47 and CD14, thereby limiting activation of NFκB/AP-1 by lipopolysaccharide. Only the CD47-binding domain of thrombospondin-1 exhibits this activity. In contrast, CD47, CD36, and integrin-binding domains of thrombospondin-1 independently enhance the inflammasome-dependent maturation of IL-1β in human THP-1 monocyte-derived macrophages. Correspondingly, mouse bone marrow-derived macrophages that lack either thrombospondin-1 or CD47 exhibit diminished induction of mature IL-1β in response to lipopolysaccharide. Lack of CD47 also limits lipopolysaccharide induction of IL-1β, NLRP3, and caspase-1 mRNAs. These data demonstrate that thrombospondin-1 exerts CD47-dependent and -independent pro-and anti-inflammatory effects on the IL-1β pathway. Therefore, thrombospondin-1 and its receptor CD47 may be useful targets for limiting the pro-inflammatory effects of lipopolysaccharide and for treating endotoxemia.
Collapse
|
12
|
Fujita T. Feasibility of Angiotensin Inhibition for Obese Trauma Patients. J Am Coll Surg 2015; 221:1094-6. [PMID: 26611802 DOI: 10.1016/j.jamcollsurg.2015.08.424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/25/2015] [Indexed: 11/29/2022]
|
13
|
Winfield RD. Angiotensin Inhibition Warrants Focused Investigation: In Reply to Fujita. J Am Coll Surg 2015; 221:1096-8. [PMID: 26611803 DOI: 10.1016/j.jamcollsurg.2015.08.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 11/26/2022]
|
14
|
Angiotensin Inhibition Is Associated with Preservation of T-Cell and Monocyte Function and Decreases Multiple Organ Failure in Obese Trauma Patients. J Am Coll Surg 2015; 221:486-94.e4. [PMID: 26141470 DOI: 10.1016/j.jamcollsurg.2015.03.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Obese patients are more prone to post-injury multiple organ failure (MOF). Obesity pathophysiology includes an adipose-tissue-derived, renin-angiotensin-aldosterone system affecting inflammatory responses via leukocyte angiotensin receptors. We hypothesized that obese patients receiving pre-injury angiotensin-converting enzyme inhibitor (ACE) or angiotensin receptor blocker (ARB) therapy would have decreased MOF and differences in immune cell frequencies. STUDY DESIGN We analyzed the Inflammation and the Host Response to Injury trauma-related database. Patients receiving pre-injury ACE or ARB were stratified as obese (BMI >30 kg/m(2)) or nonobese (BMI <30 kg/m(2)). Groups were age, sex, and Injury Severity Score matched against patients not receiving this therapy. Primary end points were Marshall Multiple Organ Dysfunction Score, Denver-2 Postinjury MOF Score, leukocyte markers on T cells, and monocytes measured by flow cytometry. RESULTS We evaluated 1,932 patients. One hundred and ten were receiving pre-injury ACE/ARB; 94 patients had data available to calculate BMI. Obese patients receiving ACE/ARB showed maximum Marshall (5.83 ± 2.87) and Denver-2 (2.45 ± 2.32) scores similar to nonobese patients receiving or not receiving ACE/ARB, and obese patients not receiving ACE/ARB had significantly higher Marshall (6.49 ± 2.57; p = 0.009) and Denver-2 (3.33 ± 2.21; p = 0.006) scores. Leukocyte analysis suggested improved T-cell function and monocyte maturation in obese patients on ACE/ARB. CONCLUSIONS Obese patients receiving preinjury ACE/ARB therapy demonstrate post-injury MOF scores similar to nonobese patients; obese patients not receiving these medications have greater post-injury MOF. Leukocyte analysis demonstrates improved immune regulation. Modulation of the renin-angiotensin-aldosterone system pathway might represent a novel therapeutic target in severely injured obese patients.
Collapse
|