1
|
Ferreira DA, Medeiros ABA, Soares MM, Lima ÉDA, de Oliveira GCSL, Leite MBDS, Machado MV, Villar JAFP, Barbosa LA, Scavone C, Moura MT, Rodrigues-Mascarenhas S. Evaluation of Anti-Inflammatory Activity of the New Cardiotonic Steroid γ-Benzylidene Digoxin 8 (BD-8) in Mice. Cells 2024; 13:1568. [PMID: 39329752 PMCID: PMC11430542 DOI: 10.3390/cells13181568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Cardiotonic steroids are known to bind to Na+/K+-ATPase and regulate several biological processes, including the immune response. The synthetic cardiotonic steroid γ-Benzylidene Digoxin 8 (BD-8) is emerging as a promising immunomodulatory molecule, although it has remained largely unexplored. Therefore, we tested the immunomodulatory potential of BD-8 both in vitro and in vivo. Hence, primary mouse macrophages were incubated with combinations of BD-8 and the pro-inflammatory fungal protein zymosan (ZYM). Nitric oxide (NO) production was determined by Griess reagent and cytokines production was assessed by enzyme-linked immunosorbent assay. Inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), p-nuclear factor kappa B p65 (NF-κB p65), p-extracellular signal-regulated kinase (p-ERK), and p-p38 were evaluated by flow cytometry. Macrophages exposed to BD-8 displayed reduced phagocytic activity, NO levels, and production of the proinflammatory cytokine IL-1β induced by ZYM. Furthermore, BD-8 diminished the expression of iNOS and phosphorylation of NF-κB p65, ERK, and p38. Additionally, BD-8 exhibited anti-inflammatory capacity in vivo in a carrageenan-induced mouse paw edema model. Taken together, these findings demonstrate the anti-inflammatory activity of BD-8 and further reinforce the potential of cardiotonic steroids and their derivatives as immunomodulatory molecules.
Collapse
Affiliation(s)
- Davi Azevedo Ferreira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Anna Beatriz Araujo Medeiros
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mariana Mendonça Soares
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Éssia de Almeida Lima
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Gabriela Carolina Santos Lima de Oliveira
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Mateus Bernardo da Silva Leite
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| | - Matheus Vieira Machado
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - José Augusto Ferreira Perez Villar
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Leandro Augusto Barbosa
- Laboratory of Cellular Biochemistry, Campus Centro-Oeste Dona Lindú, Federal University of São João del-Rei, Divinópolis 35.501-296, MG, Brazil; (M.V.M.); (J.A.F.P.V.); (L.A.B.)
| | - Cristoforo Scavone
- Laboratory of Neuropharmacology Research, Department of Pharmacology, Institute of Biomedical Sciences ICB-1, University of São Paulo, São Paulo 05.508-900, SP, Brazil;
| | - Marcelo Tigre Moura
- Laboratory of Cellular Reprogramming, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil;
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa 58.051-900, PB, Brazil; (D.A.F.); (A.B.A.M.); (M.M.S.); (É.d.A.L.); (G.C.S.L.d.O.); (M.B.d.S.L.)
| |
Collapse
|
2
|
Tellechea A, Bai S, Dangwal S, Theocharidis G, Nagai M, Koerner S, Cheong JE, Bhasin S, Shih TY, Zheng Y, Zhao W, Zhang C, Li X, Kounas K, Panagiotidou S, Theoharides T, Mooney D, Bhasin M, Sun L, Veves A. Topical Application of a Mast Cell Stabilizer Improves Impaired Diabetic Wound Healing. J Invest Dermatol 2019; 140:901-911.e11. [PMID: 31568772 DOI: 10.1016/j.jid.2019.08.449] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/09/2023]
Abstract
Impaired wound healing in the diabetic foot is a major problem often leading to amputation. Mast cells have been shown to regulate wound healing in diabetes. We developed an indole-carboxamide type mast cell stabilizer, MCS-01, which proved to be an effective mast cell degranulation inhibitor in vitro and can be delivered topically for prolonged periods through controlled release by specifically designed alginate bandages. In diabetic mice, both pre- and post-wounding, topical MCS-01 application accelerated wound healing comparable to that achieved with systemic mast cell stabilization. Moreover, MCS-01 altered the macrophage phenotype, promoting classically activated polarization. Bulk transcriptome analysis from wounds treated with MCS-01 or placebo showed that MCS-01 significantly modulated the mRNA and microRNA profile of diabetic wounds, stimulated upregulation of pathways linked to acute inflammation and immune cell migration, and activated the NF-κB complex along with other master regulators of inflammation. Single-cell RNA sequencing analysis of 6,154 cells from wounded and unwounded mouse skin revealed that MCS-01 primarily altered the gene expression of mast cells, monocytes, and keratinocytes. Taken together, these findings offer insights into the process of diabetic wound healing and suggest topical mast cell stabilization as a potentially successful treatment for diabetic foot ulceration.
Collapse
Affiliation(s)
- Ana Tellechea
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sha Bai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Seema Dangwal
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Institute for Translational and Therapeutics Strategies, Hannover Medical School, Hannover, Germany
| | - Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Masa Nagai
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Steffi Koerner
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jae Eun Cheong
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Swati Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - YongJun Zheng
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wanni Zhao
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Cuiping Zhang
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Li
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Smaro Panagiotidou
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Theoharis Theoharides
- Laboratory of Immunopharmacology and Drug, Discovery Department of Immunology Tufts University School of Medicine, Boston, Massachusetts, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Manoj Bhasin
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Lijun Sun
- Center for Drug Discovery and Translational Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|