1
|
Vijayanand M, Issac PK, Velayutham M, Shaik MR, Hussain SA, Guru A. Exploring the neuroprotective potential of KC14 peptide from Cyprinus carpio against oxidative stress-induced neurodegeneration by regulating antioxidant mechanism. Mol Biol Rep 2024; 51:990. [PMID: 39287730 DOI: 10.1007/s11033-024-09905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Oxidative stress, a condition characterized by excessive production of reactive oxygen species (ROS), can cause significant damage to cellular macromolecules, leading to neurodegeneration. This underscores the need for effective antioxidant therapies that can mitigate oxidative stress and its associated neurodegenerative effects. KC14 peptide derived from liver-expressed antimicrobial peptide-2 A (LEAP 2 A) from Cyprinus carpio L. has been identified as a potential therapeutic agent. This study focuses on the antioxidant and neuroprotective properties of the KC14 peptide is to evaluate its effectiveness against oxidative stress and neurodegeneration. METHODS The antioxidant capabilities of KC14 were initially assessed through in silico docking studies, which predicted its potential to interact with oxidative stress-related targets. Subsequently, the peptide was tested at concentrations ranging from 5 to 45 µM in both in vitro and in vivo experiments. In vivo studies involved treating H2O2-induced zebrafish larvae with KC14 peptide to analyze its effects on oxidative stress and neuroprotection. RESULTS KC14 peptide showed a protective effect against the developmental malformations caused by H2O2 stress, restored antioxidant enzyme activity, reduced neuronal damage, and lowered lipid peroxidation and nitric oxide levels in H2O2-induced larvae. It enhanced acetylcholinesterase activity and significantly reduced intracellular ROS levels (p < 0.05) dose-dependently. Gene expression studies showed up-regulation of antioxidant genes with KC14 treatment under H2O2 stress. CONCLUSIONS This study highlights the potent antioxidant activity of KC14 and its ability to confer neuroprotection against oxidative stress can provide a novel therapeutic agent for combating neurodegenerative diseases induced by oxidative stress.
Collapse
Affiliation(s)
- Madhumitha Vijayanand
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India.
| | - Manikandan Velayutham
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602 105, Tamil Nadu, India
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, P.O. Box 2454, Riyadh 11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Effect of six oximes on acutely anticholinesterase inhibitor-induced oxidative stress in rat plasma and brain. Arch Toxicol 2017; 92:745-757. [DOI: 10.1007/s00204-017-2101-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
|
3
|
Jaiswal SK, Siddiqi NJ, Sharma B. Studies on the ameliorative effect of curcumin on carbofuran induced perturbations in the activity of lactate dehydrogenase in wistar rats. Saudi J Biol Sci 2016; 25:1585-1592. [PMID: 30591774 PMCID: PMC6303160 DOI: 10.1016/j.sjbs.2016.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/23/2016] [Accepted: 03/05/2016] [Indexed: 11/17/2022] Open
Abstract
Carbofuran is known to inhibit neurotransmission system of insects. The present study was undertaken to evaluate the possible ameliorative effect of curcumin on carbofuran induced alterations in energy metabolism in brain and liver of rats. The results demonstrate that carbofuran caused a significant inhibition of lactate dehydrogenase (LDH) activity in rat liver but an increase in LDH activity in the brain. Increased LDH activity was also observed in the serum indicating organ damage in treated animals. Carbofuran caused an increase in level of pyruvic acid in rat liver but a decrease in the brain. A decrease in the level of soluble protein was also observed in the tissues studied. Pretreatment of animals with curcumin resulted in significant amelioration of the altered indices. These results indicate that carbofuran at sub lethal concentrations may adversely alter energy metabolism in brain and liver of non-target mammalian systems. Pretreatment of animals with curcumin may exhibit a potential to mitigate the carbofuran induced toxicity.
Collapse
Affiliation(s)
- Sunil Kumar Jaiswal
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India
| |
Collapse
|
4
|
Meade ML, Hoffmann A, Makley MK, Snider TH, Schlager JJ, Gearhart JM. Quantitative proteomic analysis of the brainstem following lethal sarin exposure. Brain Res 2015; 1611:101-13. [PMID: 25842371 DOI: 10.1016/j.brainres.2015.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
The brainstem represents a major tissue area affected by sarin organophosphate poisoning due to its function in respiratory and cardiovascular control. While the acute toxic effects of sarin on brainstem-related responses are relatively unknown, other brain areas e.g., cortex or cerebellum, have been studied more extensively. The study objective was to analyze the guinea pig brainstem toxicology response following sarin (2×LD50) exposure by proteome pathway analysis to gain insight into the complex regulatory mechanisms that lead to impairment of respiratory and cardiovascular control. Guinea pig exposure to sarin resulted in the typical acute behavior/physiology outcomes with death between 15 and 25min. In addition, brain and blood acetylcholinesterase activity was significantly reduced in the presence of sarin to 95%, and 89%, respectively, of control values. Isobaric-tagged (iTRAQ) liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 198 total proteins of which 23% were upregulated, and 18% were downregulated following sarin exposure. Direct gene ontology (GO) analysis revealed a sarin-specific broad-spectrum proteomic profile including glutamate-mediated excitotoxicity, calcium overload, energy depletion responses, and compensatory carbohydrate metabolism, increases in ROS defense, DNA damage and chromatin remodeling, HSP response, targeted protein degradation (ubiquitination) and cell death response. With regards to the sarin-dependent effect on respiration, our study supports the potential interference of sarin with CO2/H(+) sensitive chemoreceptor neurons of the brainstem retrotrapezoid nucleus (RTN) that send excitatory glutamergic projections to the respiratory centers. In conclusion, this study gives insight into the brainstem broad-spectrum proteome following acute sarin exposure and the gained information will assist in the development of novel countermeasures.
Collapse
Affiliation(s)
- Mitchell L Meade
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Andrea Hoffmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Meghan K Makley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Thomas H Snider
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA.
| | - John J Schlager
- Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Jeffery M Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; BoonShoft School of Medicine, Wright State University, 3640 Col. Glenn Highway, Dayton, OH 45433, USA.
| |
Collapse
|
5
|
Jaiswal SK, Siddiqi NJ, Sharma B. Carbofuran Induced Oxidative Stress Mediated Alterations in Na+-K+-ATPase Activity in Rat Brain: Amelioration by Vitamin E. J Biochem Mol Toxicol 2014; 28:320-7. [DOI: 10.1002/jbt.21568] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Nikhat Jamal Siddiqi
- Department of Biochemistry; College of Science; King Saud University; Riyadh 11495 Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry; University of Allahabad; Allahabad 211002 India
| |
Collapse
|
6
|
Gupta RC. Brain regional heterogeneity and toxicological mechanisms of organophosphates and carbamates. Toxicol Mech Methods 2012; 14:103-43. [PMID: 20021140 DOI: 10.1080/15376520490429175] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The brain is a well-organized, yet highly complex, organ in the mammalian system. Most investigators use the whole brain, instead of a selected brain region(s), for biochemical analytes as toxicological endpoints. As a result, the obtained data is often of limited value, since their significance is compromised due to a reduced effect, and the investigators often arrive at an erroneous conclusion(s). By now, a plethora of knowledge reveals the brain regional variability for various biochemical/neurochemical determinants. This review describes the importance of brain regional heterogeneity in relation to cholinergic and noncholinergic determinants with particular reference to organophosphate (OP) and carbamate pesticides and OP nerve agents.
Collapse
Affiliation(s)
- Ramesh C Gupta
- Murray State University, Breathitt Veterinary Center, Toxicology Department, Hopkinsville, Kentucky, USA
| |
Collapse
|
7
|
Kazi AI, Oommen A. The effect of acute severe monocrotophos poisoning on inhibition, expression and activity of acetylcholinesterase in different rat brain regions. Neurotoxicology 2012; 33:1284-90. [DOI: 10.1016/j.neuro.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/26/2022]
|
8
|
Sauerbeck A, Pandya J, Singh I, Bittman K, Readnower R, Bing G, Sullivan P. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system. J Neurosci Methods 2011; 198:36-43. [PMID: 21402103 DOI: 10.1016/j.jneumeth.2011.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 03/04/2011] [Accepted: 03/04/2011] [Indexed: 12/20/2022]
Abstract
The analysis of mitochondrial bioenergetic function typically has required 50-100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p<0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p<0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions.
Collapse
Affiliation(s)
- Andrew Sauerbeck
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Heterogeneity of nervous system mitochondria: Location, location, location! Exp Neurol 2009; 218:293-307. [DOI: 10.1016/j.expneurol.2009.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/30/2009] [Accepted: 05/08/2009] [Indexed: 01/03/2023]
|
10
|
Hajek P, Bajgar J, Slizova D, Krs O, Kuca K, Capek L, Fusek J. Different inhibition of acetylcholinesterase in selected parts of the rat brain following intoxication with VX and Russian VX. Drug Chem Toxicol 2009; 32:1-8. [DOI: 10.1080/01480540802391062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Goad RT, Goad JT, Atieh BH, Gupta RC. Carbofuran-Induced Endocrine Disruption in Adult Male Rats. Toxicol Mech Methods 2008; 14:233-9. [DOI: 10.1080/15376520490434476] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Bajgar J, Fusek J, Kassa J, Jun D, Kuca K, Hajek P. An attempt to assess functionally minimal acetylcholinesterase activity necessary for survival of rats intoxicated with nerve agents. Chem Biol Interact 2008; 175:281-5. [PMID: 18579126 DOI: 10.1016/j.cbi.2008.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) is an important enzyme for cholinergic nerve transmission. The action of toxic organophosphates such as nerve agents is based on AChE inhibition. The death following acute nerve agent poisoning is due to central or peripheral respiratory/cardiac failure. Therefore, the changes in AChE activity following nerve agents acting predominantly on the central (sarin, soman) or peripheral (VX) level were studied. It is known that AChE activity in different structures exists in relative excess. Female Wistar rats intoxicated with sarin, soman, and VX in different doses (0.5-2.0 x LD(50)) were divided into groups of survived and died animals. AChE activities in diaphragm, brain parts (pontomedullar area, frontal cortex, basal ganglia, in some cases other parts of the brain) were determined and the rest of activity (in %) was correlated with survival/death of animals. More precise elucidation of action of nerve agents and the assessment of minimal AChE activity in different organs compatible with the survival of organism poisoned with nerve agents were the aims of this study.
Collapse
Affiliation(s)
- Jiri Bajgar
- Department of Toxicology, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic.
| | | | | | | | | | | |
Collapse
|
13
|
Rai DK, Sharma B. Carbofuran-Induced Oxidative Stress in Mammalian Brain. Mol Biotechnol 2007; 37:66-71. [PMID: 17914167 DOI: 10.1007/s12033-007-0046-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
Chronic exposure to carbofuran, a carbamate pesticide, via oral administration has been reported to generate reactive oxygen species (ROS) in rat brain. However, information regarding the effect of short-term intraperitoneal (i.p.) carbofuran intoxication on oxidative stress is lacking. In the present study, the effect of carbofuran on oxidative indices in brain of Wistar rats has been determined by exposing the animals to three subacute concentrations (0.2, 0.4 and 0.8 mg/kg body weight) equivalent to 10, 20, and 40%, respectively, of its LD50 (i.p.) for 24 h. Rat liver has been used as a positive control. The results demonstrated that carbofuran treatment at the 3 concentrations tested caused significant increase in lipid peroxidation (LPO) by 12.50, 34.38, and 59.38%, respectively. The increased oxidative stress at same pesticide concentrations significantly induced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase in rat brain; the impact on catalase being more marked only at high-pesticide doses (0.4 and 0.8 mg/kg body weight). Carbofuran also caused reduction in protein content of rat tissues tested. Rat brain was more severely affected by carbofuran than liver. The results clearly demonstrated that i.p. administration of carbofuran accelerated oxidative stress in rat brain in a dose-dependent manner.
Collapse
Affiliation(s)
- Devendra K Rai
- Department of Biochemistry, University of Allahabad, Allahabad, UP 211002, India
| | | |
Collapse
|
14
|
Gupta RC, Dekundy A. Donepezil- or rivastigmine-induced acetylcholinesterase inactivation is not modulated by neramexane in rat brain. Drug Dev Res 2007. [DOI: 10.1002/ddr.20186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Neuronal oxidative injury and dendritic damage induced by carbofuran: protection by memantine. Toxicol Appl Pharmacol 2006; 219:97-105. [PMID: 17188316 DOI: 10.1016/j.taap.2006.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/23/2006] [Accepted: 10/27/2006] [Indexed: 11/25/2022]
Abstract
Carbamate insecticides mediate their neurotoxicity by acetylcholinesterase (AChE) inactivation. Male Sprague-Dawley rats acutely intoxicated with the carbamate insecticide carbofuran (1.5 mg/kg, sc) developed hypercholinergic signs within 5-7 min of exposure, with maximal severity characterized by seizures within 30-60 min, lasting for about 2 h. At the time of peak severity, compared with controls, AChE was maximally inhibited (by 82-90%), radical oxygen species (ROS) markers (F(2)-isoprostanes, F(2)-IsoPs; and F(4)-neuroprostanes, F(4)-NeuroPs) were elevated 2- to 3-fold, and the radical nitrogen species (RNS) marker citrulline was elevated 4- to 8-fold in discrete brain regions (cortex, amygdala, and hippocampus). In addition, levels of high-energy phosphates (HEPs) were significantly reduced (ATP, by 43-56%; and phosphocreatine, by 37-48%). Values of total adenine nucleotides and total creatine compounds declined markedly (by 41-56% and 35-45%, respectively), while energy charge potential remained unchanged. Quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant decreases in dendritic lengths (by 64%) and spine density (by 60%). Pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist memantine (18 mg/kg, sc), in combination with atropine sulfate (16 mg/kg, sc), significantly attenuated carbofuran-induced changes in AChE activity and levels of F(2)-IsoPs and F(4)-NeuroPs, declines in HEPs, as well as the alterations in morphology of hippocampal neurons. MEM and ATS pretreatment also protected rats from carbofuran-induced hypercholinergic behavioral activity, including seizures. These findings support the involvement of ROS and RNS in seizure-induced neuronal injury and suggest that memantine by preventing carbofuran-induced neuronal hyperactivity blocks pathways associated with oxidative damage in neurons.
Collapse
|
16
|
Bajgar J, Hajek P, Slizova D, Krs O, Fusek J, Kuca K, Jun D, Bartosova L, Blaha V. Changes of acetylcholinesterase activity in different rat brain areas following intoxication with nerve agents: biochemical and histochemical study. Chem Biol Interact 2006; 165:14-21. [PMID: 17145052 DOI: 10.1016/j.cbi.2006.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 10/10/2006] [Accepted: 10/11/2006] [Indexed: 10/24/2022]
Abstract
Acetylcholinesterase activity in defined brain regions was determined using biochemical and histochemical methods 30 min after treating rats with sarin, soman or VX (0.5 x LD(50)). Enzyme inhibition was high in the pontomedullar area and frontal cortex, but was low in the basal ganglia. Histochemical and biochemical results correlated well. Determination of the activity in defined brain structures was a more sensitive parameter than determination in whole brain homogenate where the activity was a "mean" of the activities in different structures. The pontomedullar area controls respiration, so that the special sensitivity of acetylcholinesterase to inhibition by nerve agents in this area is important for understanding the mechanism of death caused by nerve agents. Thus, acetylcholinesterase activity is the main parameter investigated in studies searching for target sites following nerve agent poisoning.
Collapse
Affiliation(s)
- Jiri Bajgar
- Department of Toxicology, Faculty of Military Health Sciences UO, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gupta RC, Dekundy A. Memantine does not influence AChE inhibition in rat brain by donepezil or rivastigmine but does with DFP and metrifonate in in vivo studies. Drug Dev Res 2005. [DOI: 10.1002/ddr.10422] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Karanth S, Liu J, Olivier K, Pope C. Interactive toxicity of the organophosphorus insecticides chlorpyrifos and methyl parathion in adult rats. Toxicol Appl Pharmacol 2004; 196:183-90. [PMID: 15081265 DOI: 10.1016/j.taap.2003.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 12/10/2003] [Indexed: 10/26/2022]
Abstract
The acute interactive toxicity following exposure to two common organophosphorus (OP) insecticides, chlorpyrifos (CPF) and methyl parathion (MPS), was investigated in adult male rats. Oral LD1 values were estimated by dose-response studies (CPF = 80 mg/kg; MPS = 4 mg/kg, in peanut oil, 1 ml/kg). Rats were treated with both toxicants (0.5 or 1 x LD1) either concurrently or sequentially, with 4-h intervals between dosing. Functional signs of toxicity (1-96 h) and cumulative lethality (96 h) were recorded. Rats treated with CPF (1 x LD1) did not show any signs of toxicity although MPS (1 x LD1) elicited slight to moderate signs (involuntary movements) within 1-2 h. Concurrent exposure (LD1 dosages of both CPF and MPS) caused slight signs of toxicity only apparent between 24 and 48 h after dosing. When rats were treated sequentially with MPS first followed by CPF 4 h later, slight signs of toxicity were noted between 6 and 24 h, whereas reversing the sequence resulted in 100% lethality within 1 h of the second dosage. Following exposure to lower dosages (0.5 x LD1), the CPF first group showed higher signs of cholinergic toxicity compared with MPS first or concurrent groups. Cholinesterase inhibition in plasma, diaphragm, and frontal cortex was generally higher in rats treated sequentially with CPF first than in those treated initially with MPS from 4 to 24 h after dosing. Plasma and liver carboxylesterase inhibition at 4 h was also significantly higher in the CPF first (62-90%) compared with MPS first (22-43%) group, while at 8 and 24 h, there was no significant difference between any of the treatment groups. ChE inhibition assays to evaluate in vitro hepatic detoxification of oxons indicated that carboxylesterase (CE)- and A-esterase-mediated pathways are markedly less important for methyl paraoxon (MPO) than chlorpyrifos oxon (CPO) detoxification. CPF pretreatment blocked hepatic detoxification of methyl paraoxon while MPS pretreatment had minimal effect on hepatic CPO detoxification ex vivo. These findings suggest that the sequence of exposure to two insecticides that elicit toxicity through a common mechanism can markedly influence the cumulative action at the target site (acetylcholinesterase, AChE) and consequent functional toxicity.
Collapse
Affiliation(s)
- Subramanya Karanth
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | |
Collapse
|
19
|
Ivanović Matić S, Dinić S, Mihailović M, Grigorov I, Bogojević D, Poznanović G. Acute-phase protein expression in DMSO-intoxicated rats. Toxicol Lett 2004; 147:153-9. [PMID: 14757319 DOI: 10.1016/j.toxlet.2003.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ability of dimethyl sulfoxide (DMSO) to induce the acute-phase (AP) response was examined. Injection of DMSO to laboratory rats caused a rapid doubling of the plasma corticosterone concentration 2 h after treatment. The elevated corticosterone concentration promoted the synthesis of mRNAs for several AP reactants. At 24 h after DMSO administration the relative serum concentration of cysteine-proteinase inhibitor (CPI) increased about 710%, alpha1-acid glycoprotein (AGP) 630%, alpha1-macroglobulin (MG) 510%, gamma fibrinogen (Fb) 420%, haptoglobin (Hp) 280%, whereas the relative concentration of albumin, a "negative" AP reactant, decreased to 93%. The extent and kinetics of the corticosterone increase and the general increase of AP reactant mRNAs and protein serum concentrations after DMSO administration corresponded to the overall changes observed during the turpentine-induced AP response. On the basis of these findings it was concluded that DMSO was capable of promoting the AP response in rats.
Collapse
Affiliation(s)
- Svetlana Ivanović Matić
- Molecular Biology Laboratory, Institute for Biological Research, 29th November, 11060 Belgrade, Serbia and Montenegro
| | | | | | | | | | | |
Collapse
|
20
|
Ma T, Kramer RE, Baker RC, Fan LW, Ho IK. Effects of chronic dermal exposure to nonlethal doses of methyl parathion on brain regional acetylcholinesterase and muscarinic cholinergic receptors in female rats. J Neurosci Res 2003; 71:138-45. [PMID: 12478623 DOI: 10.1002/jnr.10462] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The in vivo and in vitro effects of methyl parathion, a phosphorothionate insecticide, on cholinergic neurotransmitter systems in the brain of rats were investigated. Three groups of adult female rats received 0, 0.1, or 1.0 mg/kg methyl parathion via dermal exposure for 95 days. Exposure to 0.1 mg/kg methyl parathion produced inhibition of AChE in the caudate-putamen and thalamic nuclei, whereas 1.0 mg/kg resulted in inhibition of AChE in most brain regions. The same doses of methyl parathion had no effect on [(3)H]QNB binding to muscarinic receptors in the brain regions examined. The in vitro study demonstrated that methyl parathion causes preferential inhibition of AChE and [(3)H]QNB binding in specific brain regions. As an inhibitor of AChE, methyl paraoxon was 1,000-fold more potent than was methyl parathion. Similarly, methyl paraoxon showed brain region-specific inhibition of the enzyme. Generally, the brain stem was highly sensitive to organophosphate-induced inhibition of AChE activity and [(3)H]QNB binding. Because central respiratory neurons gather in the brain stem, preferential effects there and in other brain regions may underlie lethal toxicity of methyl parathion and other organophosphates.
Collapse
Affiliation(s)
- Tangeng Ma
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
21
|
Milatovic D, Zivin M, Gupta RC, Dettbarn WD. Alterations in cytochrome c oxidase activity and energy metabolites in response to kainic acid-induced status epilepticus. Brain Res 2001; 912:67-78. [PMID: 11520494 DOI: 10.1016/s0006-8993(01)02657-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO2 and decapitation for the assay of COx activity and by head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN, 200 mg kg(-1), i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg/kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- D Milatovic
- Department of Pharmacology, Vanderbilt University, Medical School, Medical Center South, 2100 Pierce Avenue, Nashville, TN 37212, USA
| | | | | | | |
Collapse
|
22
|
Gupta RC, Milatovic D, Dettbarn WD. Depletion of energy metabolites following acetylcholinesterase inhibitor-induced status epilepticus: protection by antioxidants. Neurotoxicology 2001; 22:271-82. [PMID: 11405258 DOI: 10.1016/s0161-813x(01)00013-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Status epilepticus (SE)-induced neuronal injury may involve excitotoxicity, energy impairment and increased generation of reactive oxygen species (ROS). Potential treatment therefore should consider agents that protect mitochondrial function and ROS scavengers. In the present study, we examined whether the spin trapping agent N-tertbutyl-alpha-phenylnitrone (PBN) and the antioxidant vitamin E (DL-alpha-tocopherol) protect levels of high-energy phosphates during SE. In rats, SE was induced by either of two inhibitors of acetylcholinesterase (AChE), the organophosphate diisopropylphosphorofluoridate (DFP, 1.25 mg/kg, sc)- or the carbamate carbofuran (1.25 mg/kg, sc). Rats were sacrificed 1 h or 3 days after onset of seizures by head-focused microwave (power, 10 kW; duration 1.7 s) and levels of the energy-rich phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) and their metabolites adenosine diphosphate (ADP) and adenosine monophosphate (AMP), and creatine (Cr), respectively, were determined in the cortex, amygdala and hippocampus. Within 1 h of seizure activity, marked declines were seen in ATP (34-60%) and PCr (25-52%). Total adenine nucleotides (TAN = ATP + ADP + AMP) and total creatine compounds (TCC = PCr + Cr) were also reduced (TAN 38-60% and TCC 25-47%). No changes in ATP/AMP ratio were seen. Three days after the onset of seizures, recovery of ATP and PCr was significant in the amygdala and hippocampus, but not in the cortex. Pretreatment of rats with PBN (200 mg/kg, ip, in a single dose), 30 min before DFP or carbofuran administration, prevented induced seizures and partially prevented depletion of high-energy phosphates. Pretreatment with the natural antioxidant vitamin E (100 mg/kg, ip/day for 3 days), partially prevented loss of high energy phosphates without affecting seizures. In controls, citrulline, a product of nitric oxide synthesis, was found to be highest in the amygdala, followed by hippocampus, and lowest in the cortex. DFP- or carbofuran-induced seizures caused elevation of citrulline levels seven- to eight-fold in the cortex and three- to four-fold in the amygdala and hippocampus. These results suggest a close relationship between SE, excitotoxicity and energy metabolism. The involvement of oxidative stress is supported by the findings that DFP and carbofuran trigger an excessive nitric oxide (NO) production in the seizure relevant regions of the brain.
Collapse
Affiliation(s)
- R C Gupta
- Toxicology Department, Breathitt Veterinary Center, Murray State University, Hopkinsville, KY, USA.
| | | | | |
Collapse
|