1
|
Fijałkiewicz A, Batko K, Gruszka A. Learned Irrelevance, Perseveration, and Cognitive Aging: A Cross-Sectional Study of Cognitively Unimpaired Older Adults. Brain Sci 2023; 13:brainsci13030473. [PMID: 36979283 PMCID: PMC10046615 DOI: 10.3390/brainsci13030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
The effect of natural aging on physiologic mechanisms that regulate attentional set-shifting represents an area of high interest in the study of cognitive function. In visual discrimination learning, reward contingency changes in categorization tasks impact individual performance, which is constrained by attention-shifting costs. Perseveration (PE) and learned irrelevance (LI) are viewed as two different mechanisms that shape responses to stimuli, which are predicated on the shift in stimulus form. To date, only studies examining patients with Parkinson’s disease have provided some insight into the relationship between individual age and performance in PE and LI tasks. We enrolled 60 healthy individuals (mean [SD] age, 63.0 [12.6]) without a history of dementia, a cerebrovascular incident, or a neurodegenerative disease. No association was observed between crystallized intelligence or verbal fluency scores and reaction time in both PE (r = 0.074, p = 0.603; r = −0.124, p = 0.346) and LI (r = −0.076, p = 0.562; r = −0.081, p = 0.536) task conditions, respectively. In contrast, a statistically significant linear relationship was observed between age and reaction time (RT) for PE (r = 0.259, p = 0.046) but not for LI (r = 0.226, p = 0.083). No significant linear relationship was observed for changing RTs in PE and LI (r = 0.209, p = 0.110). The present study is the first report that provides a descriptive overview of age-related differences in PE and LI in a sample of cognitively unimpaired middle- to older-aged adults.
Collapse
Affiliation(s)
- Aleksandra Fijałkiewicz
- Doctoral School in the Social Sciences, Jagiellonian University, 30-010 Cracow, Poland
- Institute of Psychology, Jagiellonian University, 30-060 Cracow, Poland
- Correspondence: ; Tel.: +48-12-663-39-95
| | - Krzysztof Batko
- Department of Research and Design, Medicine Economy Law Society (MELS) Foundation, 30-040 Cracow, Poland
| | | |
Collapse
|
2
|
Zainal NH, Camprodon JA, Greenberg JL, Hurtado AM, Curtiss JE, Berger-Gutierrez RM, Gillan CM, Wilhelm S. Goal-Directed Learning Deficits in Patients with OCD: A Bayesian Analysis. COGNITIVE THERAPY AND RESEARCH 2023. [DOI: 10.1007/s10608-022-10348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
3
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
4
|
Thomas KS, Birch RE, Jones CRG, Vanderwert RE. Neural Correlates of Executive Functioning in Anorexia Nervosa and Obsessive-Compulsive Disorder. Front Hum Neurosci 2022; 16:841633. [PMID: 35693540 PMCID: PMC9179647 DOI: 10.3389/fnhum.2022.841633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are commonly reported to co-occur and present with overlapping symptomatology. Executive functioning difficulties have been implicated in both mental health conditions. However, studies directly comparing these functions in AN and OCD are extremely limited. This review provides a synthesis of behavioral and neuroimaging research examining executive functioning in AN and OCD to bridge this gap in knowledge. We outline the similarities and differences in behavioral and neuroimaging findings between AN and OCD, focusing on set shifting, working memory, response inhibition, and response monitoring. This review aims to facilitate understanding of transdiagnostic correlates of executive functioning and highlights important considerations for future research. We also discuss the importance of examining both behavioral and neural markers when studying transdiagnostic correlates of executive functions.
Collapse
Affiliation(s)
- Kai S. Thomas
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Catherine R. G. Jones
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ross E. Vanderwert
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
5
|
Germann J, Mameli M, Elias GJB, Loh A, Taha A, Gouveia FV, Boutet A, Lozano AM. Deep Brain Stimulation of the Habenula: Systematic Review of the Literature and Clinical Trial Registries. Front Psychiatry 2021; 12:730931. [PMID: 34484011 PMCID: PMC8415908 DOI: 10.3389/fpsyt.2021.730931] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
The habenula is a small bilateral epithalamic structure that plays a key role in the regulation of the main monoaminergic systems. It is implicated in many aspects of behavior such as reward processing, motivational behavior, behavioral adaptation, and sensory integration. A role of the habenula has been indicated in the pathophysiology of a number of neuropsychiatric disorders such as depression, addiction, obsessive-compulsive disorder, and bipolar disorder. Neuromodulation of the habenula using deep brain stimulation (DBS) as potential treatment has been proposed and a first successful case of habenula DBS was reported a decade ago. To provide an overview of the current state of habenula DBS in human subjects for the treatment of neuropsychiatric disorders we conducted a systematic review of both the published literature using PUBMED and current and past registered clinical trials using ClinicalTrials.gov as well as the International Clinical Trials Registry Platform. Using PRISMA guidelines five articles and five registered clinical trials were identified. The published articles detailed the results of habenula DBS for the treatment of schizophrenia, depression, obsessive-compulsive disorder, and bipolar disorder. Four are single case studies; one reports findings in two patients and positive clinical outcome is described in five of the six patients. Of the five registered clinical trials identified, four investigate habenula DBS for the treatment of depression and one for obsessive-compulsive disorder. One trial is listed as terminated, one is recruiting, two are not yet recruiting and the status of the fifth is unknown. The planned enrollment varies between 2 to 13 subjects and four of the five are open label trials. While the published studies suggest a potential role of habenula DBS for a number of indications, future trials and studies are necessary. The outcomes of the ongoing clinical trials will provide further valuable insights. Establishing habenula DBS, however, will depend on successful randomized clinical trials to confirm application and clinical benefit of this promising intervention.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, Lausanne, Switzerland
- INSERM, UMR-S 839, Paris, France
| | - Gavin J. B. Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Alaa Taha
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Andres M. Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|