1
|
Geffen T, Hardikar S, Smallwood J, Kaliuzhna M, Carruzzo F, Böge K, Zierhut MM, Gutwinski S, Katthagen T, Kaiser S, Schlagenhauf F. Striatal Functional Hypoconnectivity in Patients With Schizophrenia Suffering From Negative Symptoms, Longitudinal Findings. Schizophr Bull 2024; 50:1337-1348. [PMID: 38687874 PMCID: PMC11548920 DOI: 10.1093/schbul/sbae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
BACKGROUND Negative symptoms in schizophrenia (SZ), such as apathy and diminished expression, have limited treatments and significantly impact daily life. Our study focuses on the functional division of the striatum: limbic-motivation and reward, associative-cognition, and sensorimotor-sensory and motor processing, aiming to identify potential biomarkers for negative symptoms. STUDY DESIGN This longitudinal, 2-center resting-state-fMRI (rsfMRI) study examines striatal seeds-to-whole-brain functional connectivity. We examined connectivity aberrations in patients with schizophrenia (PwSZ), focusing on stable group differences across 2-time points using intra-class-correlation and associated these with negative symptoms and measures of cognition. Additionally, in PwSZ, we used negative symptoms to predict striatal connectivity aberrations at the baseline and used the striatal aberration to predict symptoms 9 months later. STUDY RESULTS A total of 143 participants (77 PwSZ, 66 controls) from 2 centers (Berlin/Geneva) participated. We found sensorimotor-striatum and associative-striatum hypoconnectivity. We identified 4 stable hypoconnectivity findings over 3 months, revealing striatal-fronto-parietal-cerebellar hypoconnectivity in PwSZ. From those findings, we found hypoconnectivity in the bilateral associative striatum with the bilateral paracingulate-gyrus and the anterior cingulate cortex in PwSZ. Additionally, hypoconnectivity between the associative striatum and the superior frontal gyrus was associated with lower cognition scores in PwSZ, and weaker sensorimotor striatum connectivity with the superior parietal lobule correlated negatively with diminished expression and could predict symptom severity 9 months later. CONCLUSIONS Importantly, patterns of weaker sensorimotor striatum and superior parietal lobule connectivity fulfilled the biomarker criteria: clinical significance, reflecting underlying pathophysiology, and stability across time and centers.
Collapse
Affiliation(s)
- Tal Geffen
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, NeuroCure Clinical Research Center (NCRC), Campus Mitte, Berlin, Germany
| | - Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Laboratory, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Fabien Carruzzo
- Clinical and Experimental Psychopathology Laboratory, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - Kerem Böge
- Department of Psychiatry and Neuroscience, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site, Berlin, Germany
| | - Marco Matthäus Zierhut
- Department of Psychiatry and Neuroscience, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- German Center for Mental Health (DZPG), Partner Site, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, Berlin, Germany
| | - Stefan Gutwinski
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, NeuroCure Clinical Research Center (NCRC), Campus Mitte, Berlin, Germany
| | - Teresa Katthagen
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, NeuroCure Clinical Research Center (NCRC), Campus Mitte, Berlin, Germany
| | - Stephan Kaiser
- Adult Psychiatry Division, Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Florian Schlagenhauf
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, NeuroCure Clinical Research Center (NCRC), Campus Mitte, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
| |
Collapse
|
2
|
Hu W, Ran X, Wu Z, Zhu H, Kou Y, Zhang S, Yang G, Li W, Yang Y, Lv L, Zhang Y. Short-term antipsychotic treatment reduces functional connectivity of the striatum in first-episode drug-naïve early-onset schizophrenia. Schizophr Res 2024; 270:281-288. [PMID: 38944974 DOI: 10.1016/j.schres.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND The striatum is thought to play a critical role in the pathophysiology and antipsychotic treatment of schizophrenia. Previous studies have revealed abnormal functional connectivity (FC) of the striatum in early-onset schizophrenia (EOS) patients. However, no prior studies have examined post-treatment changes of striatal FC in EOS patients. METHODS We recruited 49 first-episode drug-naïve EOS patients to have resting-state functional magnetic resonance imaging scans at baseline and after 8 weeks of treatment with antipsychotics, along with baseline scanning of 34 healthy controls (HCs) for comparison purposes. We examined the FC values between each seed in striatal subregion and the rest of the brain. The Positive and Negative Syndrome Scale (PANSS) was applied to measure psychiatric symptoms in patients. RESULTS Compared with HCs at baseline, EOS patients exhibited weaker FC of striatal subregions with several brain regions of the salience network and default mode network. Meanwhile, FC between the dorsal caudal putamen (DCP) and left supplementary motor area, as well as between the DCP and right postcentral gyrus, was negatively correlated with PANSS negative scores. Furthermore, after 8 weeks of treatment, EOS patients showed decreased FC between subregions of the putamen and the triangular part of inferior frontal gyrus, middle frontal gyrus, supramarginal gyrus and inferior parietal lobule. CONCLUSIONS Decreased striatal FC is evident, even in the early stages of schizophrenia, and enhance our understanding of the neurodevelopmental abnormalities in schizophrenia. The findings also demonstrate that reduced striatal FC occurs after antipsychotic therapy, indicating that antipsychotic effects need to be accounted for when considering striatal FC abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Wenyan Hu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoyang Wu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Hanyu Zhu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yanna Kou
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Sen Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Ge Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| | - Yan Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China; International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China; Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China.
| |
Collapse
|
3
|
Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH. Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol 2024; 38:515-525. [PMID: 38853592 DOI: 10.1177/02698811241257877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND A better understanding of the mechanisms underlying cognitive impairment in schizophrenia is imperative, as it causes poor functional outcomes and a lack of effective treatments. AIMS This study aimed to investigate the relationships of two proposed main pathophysiology of schizophrenia, altered prefrontal-striatal connectivity and the dopamine system, with cognitive impairment and their interactions. METHODS Thirty-three patients with schizophrenia and 27 healthy controls (HCs) who are right-handed and matched for age and sex were recruited. We evaluated their cognition, functional connectivity (FC) between the dorsolateral prefrontal cortex (DLPFC)/middle frontal gyrus (MiFG) and striatum, and the availability of striatal dopamine transporter (DAT) using a cognitive battery investigating attention, memory, and executive function, resting-state functional magnetic resonance imaging with group independent component analysis and single-photon emission computed tomography with 99mTc-TRODAT. RESULTS Patients with schizophrenia exhibited poorer cognitive performance, reduced FC between DLPFC/MiFG and the caudate nucleus (CN) or putamen, decreased DAT availability in the left CN, and decreased right-left DAT asymmetry in the CN compared to HCs. In patients with schizophrenia, altered imaging markers are associated with cognitive impairments, especially the relationship between DLPFC/MiFG-putamen FC and attention and between DAT asymmetry in the CN and executive function. CONCLUSIONS This study is the first to demonstrate how prefrontal-striatal hypoconnectivity and altered striatal DAT markers are associated with different domains of cognitive impairment in schizophrenia. More research is needed to evaluate their complex relationships and potential therapeutic implications.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bang-Hung Yang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mu-N Liu
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ying-Jay Liou
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuan-Hwa Chou
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
- The Human Brain Research Center, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Chen J, Wei Y, Xue K, Han S, Li W, Zhou B, Cheng J. Abnormal effective connectivity of reward network in first-episode schizophrenia with auditory verbal hallucinations. J Psychiatr Res 2024; 171:207-214. [PMID: 38309210 DOI: 10.1016/j.jpsychires.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Auditory verbal hallucinations (AVHs) in schizophrenia is proved to be associated with dysfunction of mesolimbic-cortical circuits, especially during abnormal salient and internal verbal resource monitoring processing procedures. However, the information flow among areas involved in coordinated interaction implicated the pathophysiology of AVHs remains unclear. METHODS We used spectral dynamic causal modeling (DCM) to quantify connections among eight critical hubs of reward network in 86 first-episode drug-naïve schizophrenia patients with AVHs (AVH), 93 patients without AVHs (NAVH), and 88 matched normal controls (NC) using resting-state functional magnetic resonance imaging. Group-level connection coefficients, between-group differences and correlation analysis between image measures and symptoms were performed. RESULT DCM revealed weaker effective connectivity (EC) from right ventral striatum (RVS) to ventral tegmental area (VTA) in AVH compared to NAVH. AVH showed stronger EC from left anterior insula (AI) to RVS, stronger EC from RVS to anterior cingulate cortex (ACC), and stronger EC from VTA to posterior cingulate cortex (PCC) compared to NC. The correlation analysis results were mostly visible in the negative correlation between EC from right AI to ACC and positive sub-score, P1 sub-score, and P3 sub-score of PNASS in group-level. CONCLUSION These findings suggest that neural causal interactions between the reward network associated with AVHs are disrupted, expanding the evidence for potential neurobiological mechanisms of AVHs. Particularly, dopamine-dependent salience attribution and top-down monitoring impairments and compensatory effects of enhanced excitatory afferents to ACC, which may provide evidence for a therapeutic target based on direct in vivo of AVHs in schizophrenia.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Wenbin Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Zhu T, Wang Z, Wu W, Ling Y, Wang Z, Zhou C, Fang X, Huang C, Xie C, Chen J, Zhang X. Altered brain functional networks in schizophrenia with persistent negative symptoms: an activation likelihood estimation meta-analysis. Front Hum Neurosci 2023; 17:1204632. [PMID: 37954938 PMCID: PMC10637389 DOI: 10.3389/fnhum.2023.1204632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Objective To investigate brain structural and functional characteristics of three brain functional networks including default mode network (DMN), central executive network (CEN), and salience network (SN) in persistent negative symptoms (PNS) patients. Methods We performed an activation likelihood estimation (ALE) meta-analysis of functional connectivity (FC) studies and voxel-based morphometry (VBM) studies to detect specific structural and functional alterations of brain networks between PNS patients and healthy controls. Results Seventeen VBM studies and twenty FC studies were included. In the DMN, PNS patients showed decreased gray matter in the bilateral medial frontal gyrus and left anterior cingulate gyrus and a significant reduction of FC in the right precuneus. Also, PNS patients had a decrease of gray matter in the left inferior parietal lobules and medial frontal gyrus, and a significant reduction of FC in the bilateral superior frontal gyrus in the CEN. In comparison with healthy controls, PNS patients exhibited reduced gray matter in the bilateral insula, anterior cingulate gyrus, left precentral gyrus and right claustrum and lower FC in these brain areas in the SN, including the left insula, claustrum, inferior frontal gyrus and extra-nuclear. Conclusion This meta-analysis reveals brain structural and functional imaging alterations in the three networks and the interaction among these networks in PNS patients, which provides neuroscientific evidence for more personalized treatment.Systematic Review RegistrationThe PROSPERO (https://www.crd.york.ac.uk/PROSPERO/, registration number: CRD42022335962).
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zengxiu Wang
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuru Ling
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Psychiatry, The Third People’s Hospital of Huai’an, Huaian, Jiangsu, China
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine Southeast University, Nanjing, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
6
|
Oldehinkel M, Tiego J, Sabaroedin K, Chopra S, Francey SM, O'Donoghue B, Cropley V, Nelson B, Graham J, Baldwin L, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Bellgrove MA, Fornito A. Gradients of striatal function in antipsychotic-free first-episode psychosis and schizotypy. Transl Psychiatry 2023; 13:128. [PMID: 37072388 PMCID: PMC10113219 DOI: 10.1038/s41398-023-02417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/20/2023] Open
Abstract
Both psychotic illness and subclinical psychosis-like experiences (PLEs) have been associated with cortico-striatal dysfunction. This work has largely relied on a discrete parcellation of the striatum into distinct functional areas, but recent evidence suggests that the striatum comprises multiple overlapping and smoothly varying gradients (i.e., modes) of functional organization. Here, we investigated two of these functional connectivity modes, previously associated with variations in the topographic patterning of cortico-striatal connectivity (first-order gradient), and dopaminergic innervation of the striatum (second-order gradient), and assessed continuities in striatal function from subclinical to clinical domains. We applied connectopic mapping to resting-state fMRI data to obtain the first-order and second-order striatal connectivity modes in two distinct samples: (1) 56 antipsychotic-free patients (26 females) with first-episode psychosis (FEP) and 27 healthy controls (17 females); and (2) a community-based cohort of 377 healthy individuals (213 females) comprehensively assessed for subclinical PLEs and schizotypy. The first-order "cortico-striatal" and second-order "dopaminergic" connectivity gradients were significantly different in FEP patients compared to controls bilaterally. In the independent sample of healthy individuals, variations in the left first-order "cortico-striatal" connectivity gradient were associated with inter-individual differences in a factor capturing general schizotypy and PLE severity. The presumed cortico-striatal connectivity gradient was implicated in both subclinical and clinical cohorts, suggesting that variations in its organization may represent a neurobiological trait marker across the psychosis continuum. Disruption of the presumed dopaminergic gradient was only noticeable in patients, suggesting that neurotransmitter dysfunction may be more apparent to clinical illness.
Collapse
Affiliation(s)
- Marianne Oldehinkel
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Kristina Sabaroedin
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Shona M Francey
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Vanessa Cropley
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Barnaby Nelson
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Lara Baldwin
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | | | - Kelly Allott
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Mario Alvarez-Jimenez
- Orygen Youth Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
| | - Susy Harrigan
- Department of Social Work, Monash University, Melbourne, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Stephen J Wood
- Orygen Youth Health, Parkville, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Patrick McGorry
- Orygen Youth Health, Parkville, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Mark A Bellgrove
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
7
|
Connectivity alterations of mesostriatal pathways in first episode psychosis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:15. [PMID: 36918579 PMCID: PMC10014938 DOI: 10.1038/s41537-023-00339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023]
Abstract
BACKGROUND AND HYPOTHESIS Pathogenic understanding of the psychotic disorders converges on regulation of dopaminergic signaling in mesostriatocortical pathways. Functional connectivity of the mesostriatal pathways may inform us of the neuronal networks involved. STUDY DESIGN This longitudinal study of first episode psychosis (FEP) (49 patients, 43 controls) employed seed-based functional connectivity analyses of fMRI data collected during a naturalistic movie stimulus. STUDY RESULTS We identified hypoconnectivity of the dorsal striatum with the midbrain, associated with antipsychotic medication dose in FEP, in comparison with the healthy control group. The midbrain regions that showed hypoconnectivity with the dorsal striatum also showed hypoconnectivity with cerebellar regions suggested to be involved in regulation of the mesostriatocortical dopaminergic pathways. None of the baseline hypoconnectivity detected was seen at follow-up. CONCLUSIONS These findings extend earlier resting state findings on mesostriatal connectivity in psychotic disorders and highlight the potential for cerebellar regulation of the mesostriatocortical pathways as a target of treatment trials.
Collapse
|
8
|
Sabaroedin K, Tiego J, Fornito A. Circuit-Based Approaches to Understanding Corticostriatothalamic Dysfunction Across the Psychosis Continuum. Biol Psychiatry 2023; 93:113-124. [PMID: 36253195 DOI: 10.1016/j.biopsych.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms. A particular challenge is that CST circuits have undergone considerable evolutionary modification across mammals, complicating comparisons across species. Here, we consider preclinical models of CST dysfunction in psychosis and evaluate the degree to which they are supported by evidence from human resting-state functional magnetic resonance imaging studies conducted across the psychosis continuum, ranging from subclinical schizotypy to established schizophrenia. In partial support of some preclinical models, human studies indicate that dorsal CST and hippocampal-striatal functional dysconnectivity are apparent across the psychosis spectrum and may represent a vulnerability marker for psychosis. In contrast, midbrain dysfunction may emerge when symptoms warrant clinical assistance and may thus be a trigger for illness onset. The major difference between clinical and preclinical findings is the strong involvement of the dorsal CST in the former, consistent with an increasing prominence of this circuitry in the primate brain. We close by underscoring the need for high-resolution characterization of phenotypic heterogeneity in psychosis to develop a refined understanding of how the dysfunction of specific circuit elements gives rise to distinct symptom profiles.
Collapse
Affiliation(s)
- Kristina Sabaroedin
- Departments of Radiology and Paediatrics, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
| | - Jeggan Tiego
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Deep rTMS of the insula and prefrontal cortex in smokers with schizophrenia: Proof-of-concept study. SCHIZOPHRENIA 2022; 8:6. [PMID: 35217662 PMCID: PMC8881463 DOI: 10.1038/s41537-022-00224-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
Patients with schizophrenia have a high prevalence of cigarette smoking and respond poorly to conventional treatments, highlighting the need for new therapies. We conducted a mechanistic, proof-of-concept study using bilateral deep repetitive transcranial magnetic stimulation (dTMS) of insular and prefrontal cortices at high frequency, using the specialized H4 coil. Feasibility of dTMS was tested for disruption of tobacco self-administration, insula target engagement, and insula circuit modulation, all of which were a priori outcomes of interest. Twenty patients completed the study, consisting of weekday dTMS sessions (randomization to active dTMS or sham; double-blind; 10 patients per group), a laboratory tobacco self-administration paradigm (pre/post assessments), and multimodal imaging (three MRI total sessions). Results showed that participants assigned to active dTMS were slower to initiate smoking their first cigarette compared with sham, consistent with smoking disruption. The imaging analyses did not reveal significant Time × Group interactions, but effects were in the anticipated directions. In arterial spin labeling analyses testing for target engagement, an overall decrease in insula blood flow, measured during a post-treatment MRI versus baseline, was numerically more pronounced in the active dTMS group than sham. In fMRI analyses, resting-state connectivity between the insula and default mode network showed a numerically greater change from baseline in the active dTMS group than sham, consistent with a functional change to insula circuits. Exploratory analyses further suggested a therapeutic effect of dTMS on symptoms of psychosis. These initial observations pave the way for future confirmatory studies of dTMS in smoking patients with schizophrenia.
Collapse
|
10
|
Nelson EA, Kraguljac NV, Maximo JO, Armstrong W, Lahti AC. Dorsal striatial hypoconnectivity predicts antipsychotic medication treatment response in first-episode psychosis and unmedicated patients with schizophrenia. Brain Behav 2022; 12:e2625. [PMID: 36237115 PMCID: PMC9660417 DOI: 10.1002/brb3.2625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/28/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The dorsal striatum, comprised of the caudate and putamen, is implicated in the pathophysiology of psychosis spectrum disorders. Given the high concentration of dopamine receptors in the striatum, striatal dopamine imbalance is a likely cause in cortico-striatal dysconnectivity. There is great interest in understanding the relationship between striatal abnormalities in psychosis and antipsychotic treatment response, but few studies have considered differential involvement of the caudate and putamen. This study's goals were twofold. First, identify patterns of dorsal striatal dysconnectivity for the caudate and putamen separately in patients with a psychosis spectrum disorder; second, determine if these dysconnectivity patterns were predictive of treatment response. METHODS Using resting state functional connectivity, we evaluated dorsal striatal connectivity using separate bilateral caudate and putamen seed regions in two cohorts of subjects: a cohort of 71 medication-naïve first episode psychosis patients and a cohort of 42 unmedicated patients with schizophrenia (along with matched controls). Patient and control connectivity maps were contrasted for each cohort. After receiving 6 weeks of risperidone treatment, patients' clinical response was calculated. We used regression analyses to determine the relationship between baseline dysconnectivity and treatment response. RESULTS This dysconnectivity was also predictive of treatment response in both cohorts. DISCUSSION These findings suggest that the caudate may be more of a driving factor than the putamen in early cortico-striatal dysconnectivity.
Collapse
Affiliation(s)
- Eric A Nelson
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nina V Kraguljac
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jose O Maximo
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William Armstrong
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
11
|
Karcher NR, Merchant J, Pine J, Kilciksiz CM. Cognitive Dysfunction as a Risk Factor for Psychosis. Curr Top Behav Neurosci 2022; 63:173-203. [PMID: 35989398 DOI: 10.1007/7854_2022_387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The current chapter summarizes recent evidence for cognition as a risk factor for the development of psychosis, including the range of cognitive impairments that exist across the spectrum of psychosis risk symptoms. The chapter examines several possible theories linking cognitive deficits with the development of psychotic symptoms, including evidence that cognitive deficits may be an intermediate risk factor linking genetic and/or neural metrics to psychosis spectrum symptoms. Although there is not strong evidence for unique cognitive markers associated specifically with psychosis compared to other forms of psychopathology, psychotic disorders are generally associated with the greatest severity of cognitive deficits. Cognitive deficits precede the development of psychotic symptoms and may be detectable as early as childhood. Across the psychosis spectrum, both the presence and severity of psychotic symptoms are associated with mild to moderate impairments across cognitive domains, perhaps most consistently for language, cognitive control, and working memory domains. Research generally indicates the size of these cognitive impairments worsens as psychosis symptom severity increases. The chapter points out areas of unclarity and unanswered questions in each of these areas, including regarding the mechanisms contributing to the association between cognition and psychosis, the timing of deficits, and whether any cognitive systems can be identified that function as specific predictors of psychosis risk symptoms.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Jaisal Merchant
- Department of Brain and Psychological Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Jacob Pine
- Department of Brain and Psychological Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Can Misel Kilciksiz
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Zhu T, Wang Z, Zhou C, Fang X, Huang C, Xie C, Ge H, Yan Z, Zhang X, Chen J. Meta-analysis of structural and functional brain abnormalities in schizophrenia with persistent negative symptoms using activation likelihood estimation. Front Psychiatry 2022; 13:957685. [PMID: 36238945 PMCID: PMC9552970 DOI: 10.3389/fpsyt.2022.957685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Persistent negative symptoms (PNS) include both primary and secondary negative symptoms that persist after adequate treatment, and represent an unmet therapeutic need. Published magnetic resonance imaging (MRI) evidence of structural and resting-state functional brain abnormalities in schizophrenia with PNS has been inconsistent. Thus, the purpose of this meta-analysis is to identify abnormalities in structural and functional brain regions in patients with PNS compared to healthy controls. METHODS We systematically searched PubMed, Web of Science, and Embase for structural and functional imaging studies based on five research methods, including voxel-based morphometry (VBM), diffusion tensor imaging (DTI), functional connectivity (FC), the amplitude of low-frequency fluctuation or fractional amplitude of low-frequency fluctuation (ALFF/fALFF), and regional homogeneity (ReHo). Afterward, we conducted a coordinate-based meta-analysis by using the activation likelihood estimation algorithm. RESULTS Twenty-five structural MRI studies and thirty-two functional MRI studies were included in the meta-analyses. Our analysis revealed the presence of structural alterations in patients with PNS in some brain regions including the bilateral insula, medial frontal gyrus, anterior cingulate gyrus, left amygdala, superior temporal gyrus, inferior frontal gyrus, cingulate gyrus and middle temporal gyrus, as well as functional differences in some brain regions including the bilateral precuneus, thalamus, left lentiform nucleus, posterior cingulate gyrus, medial frontal gyrus, and superior frontal gyrus. CONCLUSION Our study suggests that structural brain abnormalities are consistently located in the prefrontal, temporal, limbic and subcortical regions, and functional alterations are concentrated in the thalamo-cortical circuits and the default mode network (DMN). This study provides new insights for targeted treatment and intervention to delay further progression of negative symptoms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022338669].
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zixu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chao Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chengbing Huang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Third People's Hospital of Huai'an, Huaian, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine Southeast University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiu Chen
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wang LL, Sun X, Chiu CD, Leung PWL, Chan RCK, So SHW. Altered cortico-striatal functional connectivity in people with high levels of schizotypy: A longitudinal resting-state study. Asian J Psychiatr 2021; 58:102621. [PMID: 33676189 DOI: 10.1016/j.ajp.2021.102621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF THE RESEARCH Cortico-striatal functional connectivity has been implicated in the neuropathology of schizophrenia. However, the longitudinal relationship between the cortico-striatal connectivity and schizotypy remains unknown. We examined the resting-state fMRI connectivity in 27 individuals with a high level of schizotypy and 20 individuals with a low level of schizotypy at baseline and 18 months later. Correlations between changes in cortico-striatal connectivity and changes in schizotypy scores over time were examined. PRINCIPAL RESULTS We found both increased and decreased cortico-striatal connectivity in individuals with a high level of schizotypy at baseline. Over time, these individuals showed improvement in both the negative and positive schizotypal domains. Changes in striatal-insula connectivity were positively correlated with changes in positive schizotypy from baseline to follow-up. MAJOR CONCLUSIONS Our results suggested impaired cortico-striatal connectivity in individuals with a high level of schizotypy. The dysconnectivity mainly involves the dorsal striatum. The connectivity between the dorsal striatum and the insula may be a putative marker for temporal changes in positive schizotypy.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, The University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqi Sun
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chui-De Chiu
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Patrick W L Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, The University of Chinese Academy of Sciences, Beijing, China.
| | - Suzanne H W So
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
14
|
Meller T, Ettinger U, Grant P, Nenadić I. The association of striatal volume and positive schizotypy in healthy subjects: intelligence as a moderating factor. Psychol Med 2020; 50:2355-2363. [PMID: 31530329 DOI: 10.1017/s0033291719002459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Schizotypy, a putative schizophrenia endophenotype, has been associated with brain-structural variations partly overlapping with those in psychotic disorders. Variations in precuneus structure have been repeatedly reported, whereas the involvement of fronto-striatal networks - as in schizophrenia - is less clear. While shared genetic architecture is thought to increase vulnerability to environmental insults, beneficial factors like general intelligence might buffer their effect. METHODS To further investigate the role of fronto-striatal networks in schizotypy, we examined the relationship of voxel- and surface-based brain morphometry and a measure of schizotypal traits (Schizotypal Personality Questionnaire, with subscores Cognitive-Perceptual, Interpersonal, Disorganised) in 115 healthy participants [54 female, mean age (s.d.) = 27.57(8.02)]. We tested intelligence (MWT-B) as a potential moderator. RESULTS We found a positive association of SPQ Cognitive-Perceptual with putamen volume (p = 0.040, FWE peak level-corrected), moderated by intelligence: with increasing IQ, the correlation of SPQ Cognitive-Perceptual and striatal volume decreased (p = 0.022). SPQ Disorganised was positively correlated with precentral volume (p = 0.013, FWE peak level-corrected). In an exploratory analysis (p < 0.001, uncorrected), SPQ total score was positively associated with gyrification in the precuneus and postcentral gyrus, and SPQ Disorganised was negatively associated with gyrification in the inferior frontal gyrus. CONCLUSIONS Our findings support the role of fronto-striatal networks for schizotypal features in healthy individuals, and suggest that these are influenced by buffering factors like intelligence. We conclude that protective factors, like general cognitive capacity, might attenuate the psychosis risk associated with schizotypy. These results endorse the idea of a continuous nature of schizotypy, mirroring similar findings in schizophrenia.
Collapse
Affiliation(s)
- Tina Meller
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Igor Nenadić
- Cognitive Neuropsychiatry lab, Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital - UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| |
Collapse
|
15
|
Liu X, Eickhoff SB, Hoffstaedter F, Genon S, Caspers S, Reetz K, Dogan I, Eickhoff CR, Chen J, Caspers J, Reuter N, Mathys C, Aleman A, Jardri R, Riedl V, Sommer IE, Patil KR. Joint Multi-modal Parcellation of the Human Striatum: Functions and Clinical Relevance. Neurosci Bull 2020; 36:1123-1136. [PMID: 32700142 DOI: 10.1007/s12264-020-00543-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/10/2020] [Indexed: 12/20/2022] Open
Abstract
The human striatum is essential for both low- and high-level functions and has been implicated in the pathophysiology of various prevalent disorders, including Parkinson's disease (PD) and schizophrenia (SCZ). It is known to consist of structurally and functionally divergent subdivisions. However, previous parcellations are based on a single neuroimaging modality, leaving the extent of the multi-modal organization of the striatum unknown. Here, we investigated the organization of the striatum across three modalities-resting-state functional connectivity, probabilistic diffusion tractography, and structural covariance-to provide a holistic convergent view of its structure and function. We found convergent clusters in the dorsal, dorsolateral, rostral, ventral, and caudal striatum. Functional characterization revealed the anterior striatum to be mainly associated with cognitive and emotional functions, while the caudal striatum was related to action execution. Interestingly, significant structural atrophy in the rostral and ventral striatum was common to both PD and SCZ, but atrophy in the dorsolateral striatum was specifically attributable to PD. Our study revealed a cross-modal convergent organization of the striatum, representing a fundamental topographical model that can be useful for investigating structural and functional variability in aging and in clinical conditions.
Collapse
Affiliation(s)
- Xiaojin Liu
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kathrin Reetz
- Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Imis Dogan
- Jülich Aachen Research Alliance-BRAIN (JARA) Institute of Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany.,Department of Neurology, Rheinisch Westfällische Technische Hochschule (RWTH) Aachen University, 52074, Aachen, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Ji Chen
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52428, Jülich, Germany.,Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Niels Reuter
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Mathys
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Düsseldorf, 40225, Düsseldorf, Germany.,Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Renaud Jardri
- SCALab (CNRS UMR9193) & CHU de Lille, Hôpital Fontan, Pôle de Psychiatrie (CURE), Université de Lille, 59037, Lille, France
| | - Valentin Riedl
- Departments of Neuroradiology, Nuclear Medicine and Neuroimaging Center, Technische Universität München, 80333, Munich, Germany
| | - Iris E Sommer
- Institute of Radiology and Neuroradiology, Evangelisches Krankenhaus, University of Oldenburg, 26129, Oldenburg, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7, Brain and Behaviour), Research Centre Jülich, Jülich, Germany. .,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
16
|
Oh S, Kim M, Kim T, Lee TY, Kwon JS. Resting-state functional connectivity of the striatum predicts improvement in negative symptoms and general functioning in patients with first-episode psychosis: A 1-year naturalistic follow-up study. Aust N Z J Psychiatry 2020; 54:509-518. [PMID: 31702384 DOI: 10.1177/0004867419885452] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The persistent disease burden of psychotic disorders often comes from negative symptoms; however, prognostic biomarkers for negative symptoms have not been fully understood. This study investigated whether the altered functional connectivity of the striatum predicts improvement in negative symptoms and functioning after 1 year of usual treatment in patients with first-episode psychosis. METHODS Resting-state functional magnetic imaging was obtained from 40 first-episode psychosis patients and 40 age- and sex-matched healthy control subjects. Whole-brain functional connectivity maps were generated with subdivisions of the striatum as seed regions and compared between first-episode psychosis patients and healthy controls. In 22 patients with first-episode psychosis, follow-up assessments of negative symptom severity and general functional status were conducted after 1 year of usual treatment. Multiple regression analyses were performed to examine factors predictive of symptomatic or functional improvements over the 1-year period. RESULTS First-episode psychosis patients showed greater functional connectivity between the left dorsal caudate and left primary motor cortex, as well as between the left ventral rostral putamen and right temporal occipital fusiform cortex, than healthy controls. Lower functional connectivity between the right dorsal rostral putamen and anterior cingulate cortex was observed in the first-episode psychosis patients than in healthy controls. In multiple regression analyses, lower functional connectivity of the left dorsal caudate-left primary motor cortex/right dorsal rostral putamen-anterior cingulate cortex predicted improvement in negative symptoms. In addition, lower right dorsal rostral putamen-anterior cingulate cortex functional connectivity predicted improvement in general functioning. CONCLUSION These results suggest that altered striatal functional connectivity can be a potent neurobiological marker in the prognosis prediction of first-episode psychosis. Furthermore, altered striatal functional connectivity may provide a potential target in developing treatments for negative symptoms.
Collapse
Affiliation(s)
- Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Taekwan Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
17
|
Weiss F, Zamoscik V, Schmidt SN, Halli P, Kirsch P, Gerchen MF. Just a very expensive breathing training? Risk of respiratory artefacts in functional connectivity-based real-time fMRI neurofeedback. Neuroimage 2020; 210:116580. [DOI: 10.1016/j.neuroimage.2020.116580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022] Open
|
18
|
Xiang B, Yang J, Zhang J, Yu M, Huang C, He W, Lei W, Chen J, Liu K. The role of genes affected by human evolution marker GNA13 in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109764. [PMID: 31676466 DOI: 10.1016/j.pnpbp.2019.109764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 11/20/2022]
Abstract
Numerous variants associated with increased risk for SCZ have undergone positive selection and were associated with human brain development, but which brain regions and developmental stages were influenced by the positive selection for SCZ risk alleles are unclear. We analyzed SCZ using summary statistics from a genome-wide association study (GWAS) from the Psychiatric Genomics Consortium (PGC). Machine-learning scores were used to investigate two natural-selection scenarios: complete selection (loci where a selected allele has reached fixation) and incomplete selection (loci where a selected allele has not yet reached fixation). Based on the p value of single nucleotide polymorphisms (SNPs) with selection scores in the top 5%, we formed five subgroups: p < 0.0001, 0.001, 0.01, 0.05, or 0.1. We found that 48 and 29 genes (p < 0.0001) in complete and incomplete selection, respectively, were enrichedfor the transcriptionalco-expressionprofilein theprenatal dorsolateral prefrontal cortex (DFC), inferior parietal cortex (IPC), and ventrolateral prefrontal cortex (VFC). Core genes (GNA13, TBC1D19, and ZMYM4) involved in regulating early brain development were identified in these three brain regions. RNA sequencing for primary cortical neurons that were transfected Gna13 overexpressed lentivirus demonstrated that 135 gene expression levels changed in the Gna13 overexpressed groups compared with the controls. Gene-set analysis identified important associations among common variants of these 13 genes, which were associated with neurodevelopment and putamen volume [p = 0.031; family-wise error correction (FWEC)], SCZ (p = 0.022; FWEC). The study indicate that certain SCZ risk alleles were likely to undergo positive selection during human evolution due to their involvement in the development of prenatal DFC, IPC and VFC, and suggest that SCZ is related to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Bo Xiang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Juanjuan Yang
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, Suzhou, Jiangsu Province, China
| | - Jin Zhang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Minglan Yu
- Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chaohua Huang
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wenying He
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Wei Lei
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jing Chen
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Kezhi Liu
- Department of Psychiatry, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China.
| |
Collapse
|
19
|
Distinct striatum pathways connected to salience network predict symptoms improvement and resilient functioning in schizophrenia following risperidone monotherapy. Schizophr Res 2020; 215:89-96. [PMID: 31759811 DOI: 10.1016/j.schres.2019.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022]
Abstract
Abnormal interactions between the striatum and salience network (SN) are considered as etiological and treatment-sensitive marker in schizophrenia. However, whether alterations in the intrinsic dynamics as reflected by resting-state functional connectivity (RSFC) between the striatum and salience network may predict treatment response to the widely used antipsychotic treatment strategies (risperidone, monotherapy) has not been examined systematically. To this end, treatment-naive first-episode schizophrenia patients (n = 41) underwent task-free resting-state fMRI assessment before (baseline) and after 8 weeks of risperidone monotherapy (n = 38). Intrinsic connectivity between striatal sub-regions and core salience processing nodes were examined and compared to carefully matched healthy controls (HC) to determine disorder-specific and treatment-predictive neural markers. Findings demonstrate hypo-connectivity of both ventral and dorsal striatal-SN pathways in patients at baseline. Importantly, specifically the dorsal striatal pathway at baseline could predict negative symptoms improvement in patients; while ventral striatal pathways could predict positive symptoms improvement. Together, results indicate that distinct striatal-SN pathways represent specific treatment-success markers for the effects of risperidone, suggesting that alterations in dorsal versus ventral striatal network markers may represent brain-based markers for specific symptomatologic improvements following risperidone mono-therapy.
Collapse
|
20
|
Toward integrated understanding of salience in psychosis. Neurobiol Dis 2019; 131:104414. [DOI: 10.1016/j.nbd.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
|
21
|
Karcher NR, Rogers BP, Woodward ND. Functional Connectivity of the Striatum in Schizophrenia and Psychotic Bipolar Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:956-965. [PMID: 31399394 DOI: 10.1016/j.bpsc.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/09/2019] [Accepted: 05/29/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND The striatum is abnormal in schizophrenia and possibly represents a common neurobiological mechanism underlying psychotic disorders. Resting-state functional magnetic resonance imaging studies have not reached a consensus regarding striatal dysconnectivity in schizophrenia, although these studies generally find impaired frontoparietal and salience network connectivity. The goal of the current study was to clarify the pattern of corticostriatal connectivity, including whether corticostriatal dysconnectivity is transdiagnostic and extends into psychotic bipolar disorder. METHODS We examined corticostriatal functional connectivity in 60 healthy subjects and 117 individuals with psychosis, including 77 with a schizophrenia spectrum illness and 40 with psychotic bipolar disorder. We conducted a cortical seed-based region-of-interest analysis with follow-up voxelwise analysis for any significant results. Further, a striatum seed-based analysis was conducted to examine group differences in connectivity between the striatum and the whole cortex. RESULTS Cortical region-of-interest analysis indicated that overall connectivity of the salience network with the striatum was reduced in psychotic disorders, which follow-up voxelwise analysis localized to the left putamen. Striatum seed-based analyses showed reduced ventral rostral putamen connectivity with the salience network portion of the medial prefrontal cortex in both schizophrenia and psychotic bipolar disorder. CONCLUSIONS The current study found evidence of transdiagnostic corticostriatal dysconnectivity in both schizophrenia and psychotic bipolar disorder, including reduced salience network connectivity, as well as reduced connectivity between the putamen and the medial prefrontal cortex. Overall, the current study points to the relative importance of salience network hypoconnectivity in psychotic disorders.
Collapse
Affiliation(s)
- Nicole R Karcher
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
22
|
Waltmann M, O'Daly O, Egerton A, McMullen K, Kumari V, Barker GJ, Williams SCR, Modinos G. Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy. Neuroimage Clin 2018; 21:101603. [PMID: 30503214 PMCID: PMC6413302 DOI: 10.1016/j.nicl.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/13/2023]
Abstract
Disrupted striatal functional connectivity is proposed to play a critical role in the development of psychotic symptoms. Previous resting-state functional magnetic resonance imaging (rs-fMRI) studies typically reported disrupted striatal connectivity in patients with psychosis and in individuals at clinical and genetic high risk of the disorder relative to healthy controls. This has not been widely studied in healthy individuals with subclinical psychotic-like experiences (schizotypy). Here we applied the emerging technology of multi-echo rs-fMRI to examine corticostriatal connectivity in this group, which is thought to drastically maximize physiological noise removal and increase BOLD contrast-to-noise ratio. Multi-echo rs-fMRI data (echo times, 12, 28, 44, 60 ms) were acquired from healthy individuals with low (LS, n = 20) and high (HS, n = 19) positive schizotypy as determined with the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE). After preprocessing to ensure optimal contrast and removal of non-BOLD signal components, whole-brain functional connectivity from six striatal seeds was compared between the HS and LS groups. Effects were considered significant at cluster-level p < .05 family-wise error correction. Compared to LS, HS subjects showed lower rs-fMRI connectivity between ventromedial prefrontal regions and ventral striatal regions. Lower connectivity was also observed between the dorsal putamen and the hippocampus, occipital regions, as well as the cerebellum. These results demonstrate that subclinical positive psychotic-like experiences in healthy individuals are associated with striatal hypoconnectivity as detected using multi-echo rs-fMRI. Further application of this approach may aid in characterizing functional connectivity abnormalities across the extended psychosis phenotype.
Collapse
Affiliation(s)
- Maria Waltmann
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Katrina McMullen
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Veena Kumari
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University London, UK; Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Steve C R Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| |
Collapse
|
23
|
Kim JH, Cumming P, Son YD, Kim HK, Joo YH, Kim JH. Altered connectivity between striatal and extrastriatal regions in patients with schizophrenia on maintenance antipsychotics: an [18
F]fallypride PET and functional MRI study. Synapse 2018; 72:e22064. [DOI: 10.1002/syn.22064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Jeong-Hee Kim
- Research Institute for Advanced Industrial Technology; Korea University; Sejong Republic of Korea
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Paul Cumming
- School of Psychology and Counselling and IHBI; Queensland University of Technology, and QIMR Berghofer Institute; Brisbane Queensland Australia
| | - Young-Don Son
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Hang-Keun Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Biomedical Engineering; College of Health Science, Gachon University; Incheon Republic of Korea
| | - Yo-Han Joo
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
| | - Jong-Hoon Kim
- Neuroscience Research Institute; Gachon University; Incheon Republic of Korea
- Department of Psychiatry, Gil Medical Center; Gachon University College of Medicine, Gachon University; Incheon Republic of Korea
| |
Collapse
|
24
|
Chechko N, Cieslik EC, Müller VI, Nickl-Jockschat T, Derntl B, Kogler L, Aleman A, Jardri R, Sommer IE, Gruber O, Eickhoff SB. Differential Resting-State Connectivity Patterns of the Right Anterior and Posterior Dorsolateral Prefrontal Cortices (DLPFC) in Schizophrenia. Front Psychiatry 2018; 9:211. [PMID: 29892234 PMCID: PMC5985714 DOI: 10.3389/fpsyt.2018.00211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/03/2018] [Indexed: 01/24/2023] Open
Abstract
In schizophrenia (SCZ), dysfunction of the dorsolateral prefrontal cortex (DLPFC) has been linked to the deficits in executive functions and attention. It has been suggested that, instead of considering the right DLPFC as a cohesive functional entity, it can be divided into two parts (anterior and posterior) based on its whole-brain connectivity patterns. Given these two subregions' differential association with cognitive processes, we investigated the functional connectivity (FC) profile of both subregions through resting-state data to determine whether they are differentially affected in SCZ. Resting-state magnetic resonance imaging (MRI) scans were obtained from 120 patients and 172 healthy controls (HC) at 6 different MRI sites. The results showed differential FC patterns for the anterior and posterior parts of the right executive control-related DLPFC in SCZ with the parietal, the temporal and the cerebellar regions, along with a convergent reduction of connectivity with the striatum and the occipital cortex. An increased psychopathology level was linked to a higher difference in posterior vs. anterior FC for the left IFG/anterior insula, regions involved in higher-order cognitive processes. In sum, the current analysis demonstrated that even between two neighboring clusters connectivity could be differentially disrupted in SCZ. Lacking the necessary anatomical specificity, such notions may in fact be detrimental to a proper understanding of SCZ pathophysiology.
Collapse
Affiliation(s)
- Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
| | - Edna C. Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Birgit Derntl
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- LEAD Graduate School and Research Network, University of Tübingen, Tübingen, Germany
| | - Lydia Kogler
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA BRAIN, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry and Psychotherapy, Medical School, University of Tübingen, Tübingen, Germany
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Renaud Jardri
- Univ Lille, CNRS UMR 9193, SCALab and CHU Lille, Division of Psychiatry, CURE platform, Fontan Hospital, Lille, France
| | - Iris E. Sommer
- Neuroscience Division, University Medical Centre Utrecht and Rudolf Magnus Institute for Neuroscience, Utrecht, Netherlands
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
25
|
Dong D, Wang Y, Chang X, Luo C, Yao D. Dysfunction of Large-Scale Brain Networks in Schizophrenia: A Meta-analysis of Resting-State Functional Connectivity. Schizophr Bull 2018; 44:168-181. [PMID: 28338943 PMCID: PMC5767956 DOI: 10.1093/schbul/sbx034] [Citation(s) in RCA: 316] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia is a complex mental disorder with disorganized communication among large-scale brain networks, as demonstrated by impaired resting-state functional connectivity (rsFC). Individual rsFC studies, however, vary greatly in their methods and findings. We searched for consistent patterns of network dysfunction in schizophrenia by using a coordinate-based meta-analysis. Fifty-six seed-based voxel-wise rsFC datasets from 52 publications (2115 patients and 2297 healthy controls) were included in this meta-analysis. Then, coordinates of seed regions of interest (ROI) and between-group effects were extracted and coded. Seed ROIs were categorized into seed networks by their location within an a priori template. Multilevel kernel density analysis was used to identify brain networks in which schizophrenia was linked to hyper-connectivity or hypo-connectivity with each a priori network. Our results showed that schizophrenia was characterized by hypo-connectivity within the default network (DN, self-related thought), affective network (AN, emotion processing), ventral attention network (VAN, processing of salience), thalamus network (TN, gating information) and somatosensory network (SS, involved in sensory and auditory perception). Additionally, hypo-connectivity between the VAN and TN, VAN and DN, VAN and frontoparietal network (FN, external goal-directed regulation), FN and TN, and FN and DN were found in schizophrenia. Finally, the only instance of hyper-connectivity in schizophrenia was observed between the AN and VAN. Our meta-analysis motivates an empirical foundation for a disconnected large-scale brain networks model of schizophrenia in which the salience processing network (VAN) plays the core role, and its imbalanced communication with other functional networks may underlie the core difficulty of patients to differentiate self-representation (inner world) and environmental salience processing (outside world).
Collapse
Affiliation(s)
- Debo Dong
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulin Wang
- Faculty of Psychological and Educational Sciences, Department of Experimental and Applied Psychology, Research Group of Biological Psychology, Vrije Universiteit Brussel, Brussels, Belgium
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Xuebin Chang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
26
|
Hepp DH, Foncke EMJ, Olde Dubbelink KTE, van de Berg WDJ, Berendse HW, Schoonheim MM. Loss of Functional Connectivity in Patients with Parkinson Disease and Visual Hallucinations. Radiology 2017; 285:896-903. [DOI: 10.1148/radiol.2017170438] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dagmar H. Hepp
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - Elisabeth M. J. Foncke
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - Kim T. E. Olde Dubbelink
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - Wilma D. J. van de Berg
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - Henk W. Berendse
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| | - Menno M. Schoonheim
- From the Department of Neurology (D.H.H., E.M.J.F., K.T.E.O.D., H.W.B.) and Department of Anatomy and Neurosciences (D.H.H., W.D.J.v.d.B., M.M.S.), Neuroscience Campus Amsterdam, VU University Medical Center, De Boelelaan 1108, Postbus 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
27
|
Lin P, Wang X, Zhang B, Kirkpatrick B, Öngür D, Levitt JJ, Jovicich J, Yao S, Wang X. Functional dysconnectivity of the limbic loop of frontostriatal circuits in first-episode, treatment-naive schizophrenia. Hum Brain Mapp 2017; 39:747-757. [PMID: 29094787 DOI: 10.1002/hbm.23879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/02/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Frontostriatal circuits dysfunction has been implicated in the etiology and psychopathology of patients with schizophrenia (SZ). However, few studies have investigated SZ-related functional connectivity (FC) alterations in discrete frontostriatal circuits and their relationship with pathopsychology in first-episode schizophrenia (FESZ). The goal of this study was to identify dysfunctions in discrete frontostriatal circuits that are associated with key features of FESZ. To this end, a case-control, cross-sectional study was conducted, wherein resting-state (RS) functional magnetic resonance (fMRI) data were collected from 37 treatment-naïve FESZ patients and 29 healthy control (HC) subjects. Seed-based FC analyses were performed by placing six bilateral pairs of seeds within a priori defined subdivisions of the striatum. We observed significantly decreased FC for the FESZ group relative to the HC group [p < .05, family-wise error (FWE)-corrected] in the limbic loop, but not in the sensorimotor or associative loops, of frontostriatal circuitry. Moreover, bilaterally decreased inferior ventral striatum/nucleus accumbens (VSi)-dorsal anterior cingulate cortex (dACC) FC within the limbic loop correlated inversely with overall FESZ symptom severity and the disorganization factor score of PANSS. These findings provide new insight into the role of frontostriatal limbic loop hypoconnectivity in early-stage schizophrenia pathology and suggest potential novel therapeutic targets.
Collapse
Affiliation(s)
- Pan Lin
- Key Laboratory of Cognitive Science, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaosheng Wang
- Department of Human Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Bei Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Department of Psychology, Experimental Psychology, Ludwig-Maximilians-Universität München, 80802, Munich, Germany
| | - Brian Kirkpatrick
- Department of Psychiatry & Behavioral Sciences, University of Nevada School of Medicine, Reno, Nevada, 89509
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts, 02478
| | - James J Levitt
- Department of Psychiatry, Harvard Medical School and VA Boston Healthcare System, Boston, Massachusetts, 02215
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, Mattarello, 38100, Italy
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
28
|
Qureshi MNI, Oh J, Cho D, Jo HJ, Lee B. Multimodal Discrimination of Schizophrenia Using Hybrid Weighted Feature Concatenation of Brain Functional Connectivity and Anatomical Features with an Extreme Learning Machine. Front Neuroinform 2017; 11:59. [PMID: 28943848 PMCID: PMC5596100 DOI: 10.3389/fninf.2017.00059] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Multimodal features of structural and functional magnetic resonance imaging (MRI) of the human brain can assist in the diagnosis of schizophrenia. We performed a classification study on age, sex, and handedness-matched subjects. The dataset we used is publicly available from the Center for Biomedical Research Excellence (COBRE) and it consists of two groups: patients with schizophrenia and healthy controls. We performed an independent component analysis and calculated global averaged functional connectivity-based features from the resting-state functional MRI data for all the cortical and subcortical anatomical parcellation. Cortical thickness along with standard deviation, surface area, volume, curvature, white matter volume, and intensity measures from the cortical parcellation, as well as volume and intensity from sub-cortical parcellation and overall volume of cortex features were extracted from the structural MRI data. A novel hybrid weighted feature concatenation method was used to acquire maximal 99.29% (P < 0.0001) accuracy which preserves high discriminatory power through the weight of the individual feature type. The classification was performed by an extreme learning machine, and its efficiency was compared to linear and non-linear (radial basis function) support vector machines, linear discriminant analysis, and random forest bagged tree ensemble algorithms. This article reports the predictive accuracy of both unimodal and multimodal features after 10-by-10-fold nested cross-validation. A permutation test followed the classification experiment to assess the statistical significance of the classification results. It was concluded that, from a clinical perspective, this feature concatenation approach may assist the clinicians in schizophrenia diagnosis.
Collapse
Affiliation(s)
- Muhammad Naveed Iqbal Qureshi
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Jooyoung Oh
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Dongrae Cho
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| | - Hang Joon Jo
- Department of Neurologic Surgery, Mayo ClinicRochester, MN, United States
| | - Boreom Lee
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and TechnologyGwangju, South Korea
| |
Collapse
|