1
|
Han Y, Cheng S, He J, Han S, Zhang L, Zhang M, Yang Y, Guo J. Safety assessment of ezetimibe: real-world adverse event analysis from the FAERS database. Expert Opin Drug Saf 2024:1-11. [PMID: 39708090 DOI: 10.1080/14740338.2024.2446411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Ezetimibe is known for its lipid-lowering safety and tolerability, but its real-world adverse effects have not been fully evaluated. In this study, adverse events associated with ezetimibe were investigated using the FAERS database for the period 2004 to 2023. RESEARCH DESIGN AND METHODS Adverse events data for ezetimibe, spanning from the first quarter of 2004 to the fourth quarter of 2023, were standardized and analyzed using signal quantification methods like Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (EBGM). RESULTS Among 11,550 adverse drug events reports with ezetimibe as the primary suspect drug, 211 preferred terms (PTs) were identified across 24 different system organ classes (SOCs).Notably, in addition to the adverse reactions already specified in the instruction manual, unstable angina (n = 120, ROR 30.53(25.47-36.58), PRR 30.41(25.49-36.28), IC 4.9(4.64), EBGM 29.85(25.66)), crush syndrome(n = 19,ROR 298.83(182.95-488.09), PRR 298.65(182.96-487.49), IC 7.97(7.29),EBGM 251.12(166.57)), and autoscopy (n = 7, ROR 28.81(13.64-60.85), PRR 28.80(13.68-60.65), IC 4.82(3.81), EBGM 28.30(15.14))were new adverse reactions that emerged as strong signals. CONCLUSIONS Ezetimibe is effective in lowering blood lipids, but there is a risk of adverse reactions such as unstable angina, rhabdomyolysis and autoscopy, which require careful monitoring by physicians.
Collapse
Affiliation(s)
- Yuchen Han
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Siyuan Cheng
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jinzheng He
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojie Han
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lishuai Zhang
- Department of Cardiology, Guangzhou Red Cross Hospital, Guangzhou, China
| | - Mingzheng Zhang
- Department of metabolism, Digest and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Yang Yang
- Department of Rheumatology and Immunology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Zhang J, Song X, Li Z, Xu H, Shu H, Li J, Zhang Y. Association of apolipoprotein levels with all-cause and cardiovascular mortality. Eur J Prev Cardiol 2024; 31:1183-1194. [PMID: 38417834 DOI: 10.1093/eurjpc/zwae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
AIMS Research has shown that apolipoproteins (Apos) are potential indicators of heart health and death. We investigated the associations of Apo levels with all-cause and cardiovascular mortality. METHODS AND RESULTS We systematically searched the Cochrane Library, PubMed, and Web of Science for English language studies up to 28 November 2022. We used Stata 17.0 to summarize the estimated effects with 95% confidence intervals (CIs). We also conducted subgroup analyses according to study location, year of publication, individual age, follow-up years, and sample size. Moreover, we performed a sensitivity analysis to evaluate bias in our study. This study included 23 studies with 152 854 individuals in total. The level of ApoA was negatively related to cardiovascular mortality [odds ratio (OR) = 0.69, 95% CI = 0.52-0.93]. An increased ratio of ApoB/A1 was a risk factor for cardiovascular mortality (OR = 2.13, 95% CI = 1.48-3.07) and all-cause mortality (OR = 2.05, 95% CI = 1.52-2.77). The level of ApoB was positively related to cardiovascular mortality (OR = 1.12, 95% CI = 0.85-1.47), but the difference was not statistically significant. However, the associations between ApoB or ApoA1 and all-cause mortality were not obvious. Our subgroup analyses showed that the location, year of publication, individual age, and follow-up years of the studies affected the heterogeneity of our study to varying degrees. The sensitivity analysis showed that our results were almost robust, apart from excluding the article by Nomikos (OR = 0.77, 95% CI = 0.65-0.92) and Zeng (OR = 0.77, 95% CI = 0.65-0.91), when investigating the relationship between ApoA1 and all-cause mortality. CONCLUSION In this study, we found that Apo levels were linked to cardiovascular and all-cause mortality. Our study strengthens the evidence on the association between the level of Apos and cardiac health and may provide ideas for regulating the level of Apos to promote public health.
Collapse
Affiliation(s)
- Jiarong Zhang
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xinru Song
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, 169 Hushan Road, Nanjing 211166, China
| | - Zhi Li
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Haibo Xu
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Haotian Shu
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jun Li
- Department of General Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, 169 Hushan Road, Nanjing 211166, China
| | - Yan Zhang
- School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
3
|
Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022; 10:biomedicines10071578. [PMID: 35884883 PMCID: PMC9313276 DOI: 10.3390/biomedicines10071578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.
Collapse
|
4
|
Perampalam P, Hassan HM, Lilly GE, Passos DT, Torchia J, Kiser PK, Bozovic A, Kulasingam V, Dick FA. Disrupting the DREAM transcriptional repressor complex induces apolipoprotein overexpression and systemic amyloidosis in mice. J Clin Invest 2021; 131:140903. [PMID: 33444292 DOI: 10.1172/jci140903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
DREAM (Dp, Rb-like, E2F, and MuvB) is a transcriptional repressor complex that regulates cell proliferation, and its loss causes neonatal lethality in mice. To investigate DREAM function in adult mice, we used an assembly-defective p107 protein and conditional deletion of its redundant family member p130. In the absence of DREAM assembly, mice displayed shortened survival characterized by systemic amyloidosis but no evidence of excessive cellular proliferation. Amyloid deposits were found in the heart, liver, spleen, and kidneys but not the brain or bone marrow. Using laser-capture microdissection followed by mass spectrometry, we identified apolipoproteins as the most abundant components of amyloids. Intriguingly, apoA-IV was the most detected amyloidogenic protein in amyloid deposits, suggesting apoA-IV amyloidosis (AApoAIV). AApoAIV is a recently described form, whereby WT apoA-IV has been shown to predominate in amyloid plaques. We determined by ChIP that DREAM directly regulated Apoa4 and that the histone variant H2AZ was reduced from the Apoa4 gene body in DREAM's absence, leading to overexpression. Collectively, we describe a mechanism by which epigenetic misregulation causes apolipoprotein overexpression and amyloidosis, potentially explaining the origins of nongenetic amyloid subtypes.
Collapse
Affiliation(s)
- Pirunthan Perampalam
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Haider M Hassan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Grace E Lilly
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Joseph Torchia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Biochemistry, Western University, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Patti K Kiser
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Andrea Bozovic
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.,Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
5
|
Suppression of Mouse AApoAII Amyloidosis Progression by Daily Supplementation with Oxidative Stress Inhibitors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1263274. [PMID: 31281565 PMCID: PMC6589291 DOI: 10.1155/2019/1263274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
Amyloidosis is a group of diseases characterized by protein misfolding and aggregation to form amyloid fibrils and subsequent deposition within various tissues. Previous studies have indicated that amyloidosis is often associated with oxidative stress. However, it is not clear whether oxidative stress is involved in the progression of amyloidosis. We administered the oxidative stress inhibitors tempol and apocynin via drinking water to the R1.P1-Apoa2c mouse strain induced to develop mouse apolipoprotein A-II (AApoAII) amyloidosis and found that treatment with oxidative stress inhibitors led to reduction in AApoAII amyloidosis progression compared to an untreated group after 12 weeks, especially in the skin, stomach, and liver. There was no effect on ApoA-II plasma levels or expression of Apoa2 mRNA. Detection of the lipid peroxidation markers 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) revealed that the antioxidative effects of the treatments were most obvious in the skin, stomach, and liver, which contained higher levels of basal oxidative stress. Moreover, the unfolded protein response was reduced in the liver and was associated with a decrease in oxidative stress and amyloid deposition. These results suggest that antioxidants can suppress the progression of AApoAII amyloid deposition in the improved microenvironment of tissues and that the effect may be related to the levels of oxidative stress in local tissues. This finding provides insights for antioxidative stress treatment strategies for amyloidosis.
Collapse
|
6
|
Vicente JM, Teixeira CJ, Santos-Silva JC, de Souza DN, Tobar N, Furtuoso FS, Adabo IG, Sodré FS, Murata G, Bordin S, Anhê GF. The absence of lactation after pregnancy induces long-term lipid accumulation in maternal liver of mice. Life Sci 2019; 217:261-270. [PMID: 30562489 DOI: 10.1016/j.lfs.2018.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/17/2023]
|
7
|
Reglodi D, Jungling A, Longuespée R, Kriegsmann J, Casadonte R, Kriegsmann M, Juhasz T, Bardosi S, Tamas A, Fulop BD, Kovacs K, Nagy Z, Sparks J, Miseta A, Mazzucchelli G, Hashimoto H, Bardosi A. Accelerated pre-senile systemic amyloidosis in PACAP knockout mice - a protective role of PACAP in age-related degenerative processes. J Pathol 2018; 245:478-490. [PMID: 29774542 PMCID: PMC6055756 DOI: 10.1002/path.5100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/10/2018] [Accepted: 05/12/2018] [Indexed: 12/14/2022]
Abstract
Dysregulation of neuropeptides may play an important role in aging‐induced impairments. Among them, pituitary adenylate cyclase‐activating polypeptide (PACAP) is a potent cytoprotective peptide that provides an endogenous control against a variety of tissue‐damaging stimuli. We hypothesized that the progressive decline of PACAP throughout life and the well‐known general cytoprotective effects of PACAP lead to age‐related pathophysiological changes in PACAP deficiency, supported by the increased vulnerability to various stressors of animals partially or totally lacking PACAP. Using young and aging CD1 PACAP knockout (KO) and wild type (WT) mice, we demonstrated pre‐senile amyloidosis in young PACAP KO animals and showed that senile amyloidosis appeared accelerated, more generalized, more severe, and affected more individuals. Histopathology showed age‐related systemic amyloidosis with mainly kidney, spleen, liver, skin, thyroid, intestinal, tracheal, and esophageal involvement. Mass spectrometry‐based proteomic analysis, reconfirmed with immunohistochemistry, revealed that apolipoprotein‐AIV was the main amyloid protein in the deposits together with several accompanying proteins. Although the local amyloidogenic protein expression was disturbed in KO animals, no difference was found in laboratory lipid parameters, suggesting a complex pathway leading to increased age‐related degeneration with amyloid deposits in the absence of PACAP. In spite of no marked inflammatory histological changes or blood test parameters, we detected a disturbed cytokine profile that possibly creates a pro‐inflammatory milieu favoring amyloid deposition. In summary, here we describe accelerated systemic senile amyloidosis in PACAP gene‐deficient mice, which might indicate an early aging phenomenon in this mouse strain. Thus, PACAP KO mice could serve as a model of accelerated aging with human relevance. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dora Reglodi
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Adel Jungling
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Rémi Longuespée
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Joerg Kriegsmann
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany.,Proteopath GmbH, Trier, Germany
| | | | - Mark Kriegsmann
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Hungary
| | - Sebastian Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| | - Andrea Tamas
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Balazs Daniel Fulop
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pécs, Hungary
| | - Zsuzsanna Nagy
- Second Department of Internal Medicine, University of Pecs Medical School, Pécs, Hungary
| | - Jason Sparks
- Department of Anatomy, MTA-PTE PACAP Research Group, University of Pecs Medical School, Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine and Szentagothai Research Centre, University of Pecs Medical School, Pécs, Hungary
| | - Gabriel Mazzucchelli
- Laboratory of Mass Spectrometry (LSM) - MolSys, Department of Chemistry, University of Liège, Belgium
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | - Attila Bardosi
- Center for Histology, Cytology and Molecular Diagnostics, Trier, Germany
| |
Collapse
|
8
|
Yang M, Liu Y, Dai J, Li L, Ding X, Xu Z, Mori M, Miyahara H, Sawashita J, Higuchi K. Apolipoprotein A-II induces acute-phase response associated AA amyloidosis in mice through conformational changes of plasma lipoprotein structure. Sci Rep 2018; 8:5620. [PMID: 29618729 PMCID: PMC5884826 DOI: 10.1038/s41598-018-23755-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/16/2018] [Indexed: 12/25/2022] Open
Abstract
During acute-phase response (APR), there is a dramatic increase in serum amyloid A (SAA) in plasma high density lipoproteins (HDL). Elevated SAA leads to reactive AA amyloidosis in animals and humans. Herein, we employed apolipoprotein A-II (ApoA-II) deficient (Apoa2 -/- ) and transgenic (Apoa2Tg) mice to investigate the potential roles of ApoA-II in lipoprotein particle formation and progression of AA amyloidosis during APR. AA amyloid deposition was suppressed in Apoa2 -/- mice compared with wild type (WT) mice. During APR, Apoa2 -/- mice exhibited significant suppression of serum SAA levels and hepatic Saa1 and Saa2 mRNA levels. Pathological investigation showed Apoa2 -/- mice had less tissue damage and less inflammatory cell infiltration during APR. Total lipoproteins were markedly decreased in Apoa2 -/- mice, while the ratio of HDL to low density lipoprotein (LDL) was also decreased. Both WT and Apoa2 -/- mice showed increases in LDL and very large HDL during APR. SAA was distributed more widely in lipoprotein particles ranging from chylomicrons to very small HDL in Apoa2 -/- mice. Our observations uncovered the critical roles of ApoA-II in inflammation, serum lipoprotein stability and AA amyloidosis morbidity, and prompt consideration of therapies for AA and other amyloidoses, whose precursor proteins are associated with circulating HDL particles.
Collapse
Affiliation(s)
- Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan. .,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Institute of Pediatric Research, Children's Hospital of Hebei Province, Shijiazhuang, 050031, China
| | - Jian Dai
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 290-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Biological Science for Intractable Neurological Disease, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, 290-8621, Japan.,Department of Biological Science for Intractable Neurological Disease, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, 390-8621, Japan
| |
Collapse
|
9
|
Yang M, Liu Y, Li L, Miyahara H, Ding X, Dai J, Sawashita J, Mori M, Higuchi K. Apolipoprotein A-II accelerates reactive AA amyloidosis. Amyloid 2017; 24:147-148. [PMID: 28434311 DOI: 10.1080/13506129.2017.1295949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mu Yang
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Yingye Liu
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Lin Li
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Hiroki Miyahara
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Xin Ding
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Jian Dai
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan
| | - Jinko Sawashita
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan.,b Department of Biological Sciences for Intractable Neurological Diseases , Shinshu University , Matsumoto , Japan , and
| | - Masayuki Mori
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan.,c Department of Advanced Medicine for Health Promotion , IBS-ICCER, Shinshu University , Matsumoto , Japan
| | - Keiichi Higuchi
- a Department of Aging Biology , Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine , Matsumoto , Japan.,b Department of Biological Sciences for Intractable Neurological Diseases , Shinshu University , Matsumoto , Japan , and
| |
Collapse
|
10
|
Li L, Sawashita J, Ding X, Yang M, Xu Z, Miyahara H, Mori M, Higuchi K. Caloric restriction reduces the systemic progression of mouse AApoAII amyloidosis. PLoS One 2017; 12:e0172402. [PMID: 28225824 PMCID: PMC5321440 DOI: 10.1371/journal.pone.0172402] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
In mouse senile amyloidosis, apolipoprotein (Apo) A-II is deposited extracellularly in many organs in the form of amyloid fibrils (AApoAII). Reduction of caloric intake, known as caloric restriction (CR), slows the progress of senescence and age-related disorders in mice. In this study, we intravenously injected 1 μg of isolated AApoAII fibrils into R1.P1-Apoa2c mice to induce experimental amyloidosis and investigated the effects of CR for the next 16 weeks. In the CR group, AApoAII amyloid deposits in the liver, tongue, small intestine and skin were significantly reduced compared to those of the ad libitum feeding group. CR treatment led to obvious reduction in body weight, improvement in glucose metabolism and reduction in the plasma concentration of ApoA-II. Our molecular biological analyses of the liver suggested that CR treatment might improve the symptoms of inflammation, the unfolded protein response induced by amyloid deposits and oxidative stress. Furthermore, we suggest that CR treatment might improve mitochondrial functions via the sirtuin 1-peroxisome proliferator-activated receptor γ coactivator 1α (SIRT1-PGC-1α) pathway. We suggest that CR is a promising approach for treating the onset and/or progression of amyloidosis, especially for systemic amyloidosis such as senile AApoAII amyloidosis. Our analysis of CR treatment for amyloidosis should provide useful information for determining the cause of amyloidosis and developing effective preventive treatments.
Collapse
Affiliation(s)
- Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- * E-mail:
| | - Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, Matsumoto, Japan
- Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| |
Collapse
|
11
|
Blair HC, Kalyvioti E, Papachristou NI, Tourkova IL, Syggelos SA, Deligianni D, Orkoula MG, Kontoyannis CG, Karavia EA, Kypreos KE, Papachristou DJ. Apolipoprotein A-1 regulates osteoblast and lipoblast precursor cells in mice. J Transl Med 2016; 96:763-72. [PMID: 27088511 DOI: 10.1038/labinvest.2016.51] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/11/2016] [Accepted: 03/18/2016] [Indexed: 01/18/2023] Open
Abstract
Imbalances in lipid metabolism affect bone homeostasis, altering bone mass and quality. A link between bone mass and high-density lipoprotein (HDL) has been proposed. Indeed, it has been recently shown that absence of the HDL receptor scavenger receptor class B type I (SR-B1) causes dense bone mediated by increased adrenocorticotropic hormone (ACTH). In the present study we aimed at further expanding the current knowledge as regards the fascinating bone-HDL connection studying bone turnover in apoA-1-deficient mice. Interestingly, we found that bone mass was greatly reduced in the apoA-1-deficient mice compared with their wild-type counterparts. More specifically, static and dynamic histomorphometry showed that the reduced bone mass in apoA-1(-/-) mice reflect decreased bone formation. Biochemical composition and biomechanical properties of ApoA-1(-/-) femora were significantly impaired. Mesenchymal stem cell (MSC) differentiation from the apoA-1(-/-) mice showed reduced osteoblasts, and increased adipocytes, relative to wild type, in identical differentiation conditions. This suggests a shift in MSC subtypes toward adipocyte precursors, a result that is in line with our finding of increased bone marrow adiposity in apoA-1(-/-) mouse femora. Notably, osteoclast differentiation in vitro and osteoclast surface in vivo were unaffected in the knock-out mice. In whole bone marrow, PPARγ was greatly increased, consistent with increased adipocytes and committed precursors. Further, in the apoA-1(-/-) mice marrow, CXCL12 and ANXA2 levels were significantly decreased, whereas CXCR4 were increased, consistent with reduced signaling in a pathway that supports MSC homing and osteoblast generation. In keeping, in the apoA-1(-/-) animals the osteoblast-related factors Runx2, osterix, and Col1a1 were also decreased. The apoA-1(-/-) phenotype also included augmented CEPBa levels, suggesting complex changes in growth and differentiation that deserve further investigation. We conclude that the apoA-1 deficiency generates changes in the bone cell precursor population that increase adipoblast, and decrease osteoblast production resulting in reduced bone mass and impaired bone quality in mice.
Collapse
Affiliation(s)
- Harry C Blair
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Kalyvioti
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Nicholaos I Papachristou
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Irina L Tourkova
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA.,Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Spryros A Syggelos
- Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| | - Despina Deligianni
- Department of Mechanical Engineering and Aeronautics, University of Patras, Patras, Greece
| | | | - Christos G Kontoyannis
- Department of Pharmacy, University of Patras, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Patras, Greece
| | - Dionysios J Papachristou
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, University of Patras School of Medicine, Patras, Greece
| |
Collapse
|
12
|
Black LL, Srivastava R, Schoeb TR, Moore RD, Barnes S, Kabarowski JH. Cholesterol-Independent Suppression of Lymphocyte Activation, Autoimmunity, and Glomerulonephritis by Apolipoprotein A-I in Normocholesterolemic Lupus-Prone Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:4685-98. [PMID: 26466956 DOI: 10.4049/jimmunol.1500806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022]
Abstract
Apolipoprotein (Apo)A-I, the major lipid-binding protein of high-density lipoprotein, can prevent autoimmunity and suppress inflammation in hypercholesterolemic mice by attenuating lymphocyte cholesterol accumulation and removing tissue-oxidized lipids. However, whether ApoA-I mediates immune-suppressive or anti-inflammatory effects under normocholesterolemic conditions and the mechanisms involved remain unresolved. We transferred bone marrow from systemic lupus erythematosus (SLE)-prone Sle123 mice into normal, ApoA-I-knockout (ApoA-I(-/-)) and ApoA-I-transgenic (ApoA-I(tg)) mice. Increased ApoA-I in ApoA-I(tg) mice suppressed CD4(+) T and B cell activation without changing lymphocyte cholesterol levels or reducing major ApoA-I-binding oxidized fatty acids. Unexpectedly, oxidized fatty acid peroxisome proliferator-activated receptor γ ligands 13- and 9-hydroxyoctadecadienoic acid were increased in lymphocytes of autoimmune ApoA-I(tg) mice. ApoA-I reduced Th1 cells independently of changes in CD4(+)Foxp3(+) regulatory T cells or CD11c(+) dendritic cell activation and migration. Follicular helper T cells, germinal center B cells, and autoantibodies were also lower in ApoA-I(tg) mice. Transgenic ApoA-I also improved SLE-mediated glomerulonephritis. However, ApoA-I deficiency did not have the opposite effects on autoimmunity or glomerulonephritis, possibly as the result of compensatory increases in ApoE on high-density lipoprotein. We conclude that, although compensatory mechanisms prevent the proinflammatory effects of ApoA-I deficiency in normocholesterolemic mice, increasing ApoA-I can attenuate lymphocyte activation and autoimmunity in SLE independently of cholesterol transport, possibly through oxidized fatty acid peroxisome proliferator-activated receptor γ ligands, and it can reduce renal inflammation in glomerulonephritis.
Collapse
Affiliation(s)
- Leland L Black
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Roshni Srivastava
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - Ray D Moore
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Janusz H Kabarowski
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
13
|
C-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice. Proc Natl Acad Sci U S A 2015; 112:E836-45. [PMID: 25675489 DOI: 10.1073/pnas.1416363112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. Here, we demonstrate that congenic mouse strains carrying type F apoA-II (APOA2F) protein, which contains four amino acid substitutions in the amyloidogenic regions of APOA2C, were absolutely resistant to amyloidosis, even after induction of amyloidosis by injection of AApoAII. In vitro fibril formation tests showed that N- and C-terminal APOA2F peptides did not polymerize into amyloid fibrils. Moreover, a C-terminal APOA2F peptide was a strong inhibitor of nucleation and extension of amyloid fibrils during polymerization. Importantly, after the induction of amyloidosis, we succeeded in suppressing amyloid deposition in senile amyloidosis-susceptible mice by treatment with the C-terminal APOA2F peptide. We suggest that the C-terminal APOA2F peptide might inhibit further extension of amyloid fibrils by blocking the active ends of nuclei (seeds). We present a previously unidentified model system for investigating inhibitory mechanisms against amyloidosis in vivo and in vitro and believe that this system will be useful for the development of novel therapies.
Collapse
|
14
|
Sontag TJ, Chellan B, Bhanvadia CV, Getz GS, Reardon CA. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis. J Lipid Res 2014; 56:470-83. [PMID: 25465389 DOI: 10.1194/jlr.d052985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis.
Collapse
Affiliation(s)
| | - Bijoy Chellan
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| | | |
Collapse
|
15
|
Polymorphisms of mouse apolipoprotein A-II alter its physical and functional nature. PLoS One 2014; 9:e88705. [PMID: 24520415 PMCID: PMC3919794 DOI: 10.1371/journal.pone.0088705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
ApoA-II is the second most abundant protein on HDL making up ∼ 20% of the total protein but its functions have still only been partially characterized. Recent methodological improvements have allowed for the recombinant expression and characterization of human apoA-II which shares only 55% sequence homology with murine apoA-II. Here we describe the purification of the two most common polymorphic variants of apoA-II found in inbred mouse strains, differing at 3 amino acid sites. C57BL/6 mice having variant apoA-II(a) have lower plasma HDL levels than FVB/N mice that have variant apoA-II(b). Characterization of the helical structure of these two variants reveals a more alpha-helical structure for the FVB/N apoA-II. These changes do not alter the lipid or HDL binding of the two apoA-II variants, but significantly increase the ability of the FVB/N variant to promote both ABCA1 and ABCG1 mediated cellular cholesterol efflux. These differences may be differentially altering plasma HDL apoA-II levels. In vivo, neither C57 nor FVB apoA-II protein levels are affected by the absence of apoE, while an apoE/apoA-I double deficiency results in a 50% decrease of plasma FVB apoA-II but results in undetectable levels of C57 apoA-II in the plasma. FVB apoA-II is able to form an HDL particle in the absence of apoE or apoA-I.
Collapse
|
16
|
Smith LE, Yang J, Goodman L, Huang X, Huang R, Dressman J, Morris J, Silva RAGD, Davidson WS, Cavigiolio G. High yield expression and purification of recombinant human apolipoprotein A-II in Escherichia coli. J Lipid Res 2012; 53:1708-15. [PMID: 22636422 DOI: 10.1194/jlr.d028043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant expression systems have become powerful tools for understanding the structure and function of proteins, including the apolipoproteins that comprise human HDL. However, human apolipoprotein (apo)A-II has proven difficult to produce by recombinant techniques, likely contributing to our lack of knowledge about its structure, specific biological function, and role in cardiovascular disease. Here we present a novel Escherichia coli-based recombinant expression system that produces highly pure mature human apoA-II at substantial yields. A Mxe GyrA intein containing a chitin binding domain was fused at the C terminus of apoA-II. A 6× histidine-tag was also added at the fusion protein's C terminus. After rapid purification on a chitin column, intein auto-cleavage was induced under reducing conditions, releasing a peptide with only one extra N-terminal Met compared with the sequence of human mature apoA-II. A pass through a nickel chelating column removed any histidine-tagged residual fusion protein, leaving highly pure apoA-II. A variety of electrophoretic, mass spectrometric, and spectrophotometric analyses demonstrated that the recombinant form is comparable in structure to human plasma apoA-II. Similarly, recombinant apoA-II is comparable to the plasma form in its ability to bind and reorganize lipid and promote cholesterol efflux from macrophages via the ATP binding cassette transporter A1. This system is ideal for producing large quantities of recombinant wild-type or mutant apoA-II for structural or functional studies.
Collapse
Affiliation(s)
- Loren E Smith
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45273, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|