1
|
Pedro-Botet J, Climent E, Benaiges D. Familial Hypercholesterolemia: Do HDL Play a Role? Biomedicines 2021; 9:biomedicines9070810. [PMID: 34356876 PMCID: PMC8301335 DOI: 10.3390/biomedicines9070810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) in heterozygous familial hypercholesterolemia (HeFH), the most frequent monogenic disorder of human metabolism, is largely driven by low-density lipoprotein (LDL) cholesterol concentrations. Since the CVD rate differs considerably in this population, beyond the lifetime LDL cholesterol vascular accumulation, other classical risk factors are involved in the high cardiovascular risk of HeFH. Among other lipoprotein disturbances, alterations in the phenotype and functionality of high-density lipoproteins (HDL) have been described in HeFH patients, contributing to the presence and severity of CVD. In fact, HDL are the first defensive barrier against the burden of high LDL cholesterol levels owing to their contribution to reverse cholesterol transport as well as their antioxidant and anti-inflammatory properties, among others. In this context, the present narrative review aimed to focus on quantitative and qualitative abnormalities in HDL particles in HeFH, encompassing metabolic, genetic and epigenetic aspects.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-932483902; Fax: +34-932483254
| | - Elisenda Climent
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
2
|
Escolà-Gil JC, Rotllan N, Julve J, Blanco-Vaca F. Reverse Cholesterol Transport Dysfunction Is a Feature of Familial Hypercholesterolemia. Curr Atheroscler Rep 2021; 23:29. [PMID: 33914189 DOI: 10.1007/s11883-021-00928-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/21/2023]
Abstract
PURPOSE OF REVIEW We seek to establish whether high-density lipoprotein HDL metabolism and reverse cholesterol transport (RCT) impairment is an intrinsic feature of familial hypercholesterolemia (FH). RECENT FINDINGS RCT from macrophages (m-RCT), a vascular cell type of major influence on atherosclerosis, is impaired in FH due to defective low-density lipoprotein receptor (LDLR) function via both the HDL- and LDL-mediated pathways. Potential mechanisms include impaired HDL metabolism, which is linked to increased LDL levels, as well as the increased transport of cellular unesterified cholesterol to LDL, which presents a defective catabolism. RCT dysfunction is consistently associated with mutation-positive FH linked to decreased HDL levels as well as impaired HDL remodeling and LDLR function. It remains to be explored whether these alterations are also present in less well-characterized forms of FH, such as cases with no identified mutations, and whether they are fully corrected by current standard treatments.
Collapse
Affiliation(s)
- Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain. .,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Noemí Rotllan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisco Blanco-Vaca
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Madrid, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| |
Collapse
|
3
|
Adorni MP, Ronda N, Bernini F, Zimetti F. High Density Lipoprotein Cholesterol Efflux Capacity and Atherosclerosis in Cardiovascular Disease: Pathophysiological Aspects and Pharmacological Perspectives. Cells 2021; 10:cells10030574. [PMID: 33807918 PMCID: PMC8002038 DOI: 10.3390/cells10030574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Over the years, the relationship between high-density lipoprotein (HDL) and atherosclerosis, initially highlighted by the Framingham study, has been revealed to be extremely complex, due to the multiple HDL functions involved in atheroprotection. Among them, HDL cholesterol efflux capacity (CEC), the ability of HDL to promote cell cholesterol efflux from cells, has emerged as a better predictor of cardiovascular (CV) risk compared to merely plasma HDL-cholesterol (HDL-C) levels. HDL CEC is impaired in many genetic and pathological conditions associated to high CV risk such as dyslipidemia, chronic kidney disease, diabetes, inflammatory and autoimmune diseases, endocrine disorders, etc. The present review describes the current knowledge on HDL CEC modifications in these conditions, focusing on the most recent human studies and on genetic and pathophysiologic aspects. In addition, the most relevant strategies possibly modulating HDL CEC, including lifestyle modifications, as well as nutraceutical and pharmacological interventions, will be discussed. The objective of this review is to help understanding whether, from the current evidence, HDL CEC may be considered as a valid biomarker of CV risk and a potential pharmacological target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Pia Adorni
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy;
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
- Correspondence:
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (N.R.); (F.Z.)
| |
Collapse
|
4
|
The Impact of Lipoprotein Apheresis on Oxidative Stress Biomarkers and High-Density Lipoprotein Subfractions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9709542. [PMID: 32832012 PMCID: PMC7428943 DOI: 10.1155/2020/9709542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
Lipoprotein apheresis (LA) treatment results in a substantial reduction of low-density lipoprotein- (LDL-) cholesterol and lipoprotein(a) concentrations, which consequently decreases the rate of cardiovascular events. The additional benefit of LA may be associated with its impact on the composition and quality of high-density lipoprotein (HDL) particles, inflammation, and oxidative stress condition. To verify the effects of LA procedure, the current study is aimed at analyzing the effect of a single apheresis procedure with direct hemadsorption (DALI) and cascade filtration (MONET) on oxidative stress markers and HDL-related parameters. The study included eleven patients with familial hypercholesterolemia and hyperlipoproteinemia(a) treated with regular LA (DALI or MONET). We investigated the pre- and postapheresis concentration of the lipid-related oxidative stress markers 8-isoPGF2, oxLDL, TBARS, and PON-1. We also tracked potential changes in the main HDL apolipoproteins (ApoA-I, ApoA-II) and cholesterol contained in HDL subfractions. A single session of LA with DALI or MONET techniques resulted in a similar reduction of lipid-related oxidative stress markers. Concentrations of 8-isoPGF2 and TBARS were reduced by ~60% and ~30%, respectively. LA resulted in a 67% decrease in oxLDL levels along with a ~19% reduction in the oxLDL/ApoB ratio. Concentrations of HDL cholesterol, ApoA-I, ApoA-II, and PON-1 activity were also reduced by LA sessions, with more noticeable effects seen in the MONET technique. The quantitative proportions between HDL2 and HDL3 cholesterol did not change significantly by both methods. In conclusion, LA treatment with MONET or DALI system has a small nonselective effect on lowering HDL particles without any changes in the protein composition of these particles. Significant reduction in the level of oxidative stress parameters and less oxidation of LDL particles may provide an additional benefit of LA therapy.
Collapse
|
5
|
Riggs KA, Rohatgi A. HDL and Reverse Cholesterol Transport Biomarkers. Methodist Debakey Cardiovasc J 2019; 15:39-46. [PMID: 31049148 DOI: 10.14797/mdcj-15-1-39] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
High-density lipoprotein (HDL) is a protein-lipid nanoparticle that has predominately been characterized by its cholesterol concentration (HDL-C). Recent studies have challenged the presumed inverse association between HDL-C and cardiovascular events, suggesting a more U-shaped association. This has opened new opportunities to evaluate more novel measures of HDL metabolism, such as HDL particle number (HDL-P) and one of HDL's key functions, cholesterol efflux. Both HDL-P and cholesterol efflux are inversely associated with incident cardiovascular events and may perhaps be better targets for intervention. This review includes recent research on the emerging U-shaped association between HDL-C and cardiovascular events, recent observational studies related to HDL-P, and the effects of established and novel interventions on cholesterol efflux.
Collapse
Affiliation(s)
- Kayla A Riggs
- THE UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER, DALLAS, TEXAS
| | - Anand Rohatgi
- THE UNIVERSITY OF TEXAS SOUTHWESTERN MEDICAL CENTER, DALLAS, TEXAS
| |
Collapse
|
6
|
Huang J, Wang Y, Ying C, Liu L, Lou Z. Effects of mulberry leaf on experimental hyperlipidemia rats induced by high-fat diet. Exp Ther Med 2018; 16:547-556. [PMID: 30116313 PMCID: PMC6090255 DOI: 10.3892/etm.2018.6254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Mulberry leaf (ML) is a Traditional Chinese Medicine used to treat hyperlipidemia in clinical settings. The aim of the present study was to identify the potential effect and possible target of ML in anti-hypercholesterolemia. Male Sprague-Dawley rats were fed with a high-fat diet and treated with ML for 5 weeks. Blood lipid levels, total cholesterol (TC) and total bile acid (TBA) in the liver and feces were measured to assess the effects of ML on hypercholesterolemia. Harris's hematoxylin staining and oil red O staining was applied to observe the pathological change and lipid accumulation in the liver. Immunohistochemical assay was performed to observe the location of expressions of scavenger receptor class B type I and low-density lipoprotein (LDL) receptor (-R), and western blotting was applied to determine the protein expression of ATP-binding cassette transporter G5/G8 (ABCG5/8), nuclear transcription factor peroxisome proliferator-activated receptor-α (PPARα), farnesoid-X receptor (FXR) and cholesterol 7α-hydroxylase 1 (CYP7A1). The results demonstrated that ML treatment reduced serum TC and LDL-cholesterol levels, and liver TC and TBA contents; increased serum HDL-C levels, and fecal TC and TBA contents; and alleviated hepatocyte lipid degeneration. In addition, ML treatment inhibited liver LDL-R, PPARα and FXR protein expression, promoted protein expression of CYP7A1, and maintained the ratio of ABCG5/ABCG8. The findings of the present study provide a positive role of ML on cholesterol clearance via promoting cholesterol and TBA execration via FXR- and CYP7A1-mediated pathways; RCT regulation may be a potential mechanism of ML on anti-hypercholesterolemia.
Collapse
Affiliation(s)
- Jianbo Huang
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yangpeng Wang
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Chao Ying
- Institute of Materia Medica, College of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Liu
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Zhaohuan Lou
- Institute of Materia Medica, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
7
|
Wang JW, Zhang YN, Sze SK, van de Weg SM, Vernooij F, Schoneveld AH, Tan SH, Versteeg HH, Timmers L, Lam CSP, de Kleijn DPV. Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles. Int J Mol Sci 2017; 19:ijms19010094. [PMID: 29286309 PMCID: PMC5796044 DOI: 10.3390/ijms19010094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 01/05/2023] Open
Abstract
Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood.
Collapse
Affiliation(s)
- Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
- Cardiovascular Research Institute, National University Heart Centre Singapore, 117599 Singapore, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593 Singapore, Singapore.
| | - Ya-Nan Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
- Cardiovascular Research Institute, National University Heart Centre Singapore, 117599 Singapore, Singapore.
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore, Singapore.
| | - Sander M van de Weg
- Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Flora Vernooij
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
| | - Arjan H Schoneveld
- Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Sock-Hwee Tan
- Department of Medicine, National University of Singapore, 117599 Singapore, Singapore.
| | - Henri H Versteeg
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands.
| | - Leo Timmers
- Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
| | - Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore.
- Department of Cardiology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
- Cardiovascular Research Institute, National University Heart Centre Singapore, 117599 Singapore, Singapore.
- Experimental Cardiology Laboratory, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
- Department of Vascular Surgery, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
- Netherlands Heart Institute, 3511 EP Utrecht, The Netherlands.
| |
Collapse
|
8
|
Xu EG, Mager EM, Grosell M, Hazard ES, Hardiman G, Schlenk D. Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil. Sci Rep 2017; 7:44546. [PMID: 28295044 PMCID: PMC5353654 DOI: 10.1038/srep44546] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.
Collapse
Affiliation(s)
- Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Edward M Mager
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Miami, FL 33149, USA
| | - E Starr Hazard
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.,Computational Biology Resource Center, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Gary Hardiman
- Center for Genomic Medicine, Medical University of South Carolina, Charleston, SC 29403, USA.,Departments of Medicine &Public Health Sciences, Medical University of South Carolina, Charleston, SC 29403, USA.,Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Low HDL-cholesterol (HDL-C) levels are predictive of incident atherosclerotic cardiovascular disease events. However, the use of medication to raise HDL-C levels has not consistently shown clinical benefit. As a result, studies have shifted toward HDL function, specifically cholesterol efflux, which has been inversely associated with prevalent subclinical atherosclerosis as well as subsequent atherosclerotic cardiovascular disease events. The purpose of this review is to summarize the effects of current medications and interventions on cholesterol efflux capacity. RECENT FINDINGS Medications for cardiovascular health, including statins, fibrates, niacin, and novel therapeutics, are reviewed for their effect on cholesterol efflux. Differences in population studied and assay used are addressed appropriately. Lifestyle interventions, including diet and exercise, are also included in the review. SUMMARY The modification of cholesterol efflux capacity (CEC) by current medications and interventions has been investigated in both large randomized control trials and smaller observational cohorts. This review serves to compile the results of these studies and evaluate CEC modulation by commonly used medications. Altering CEC could be a novel therapeutic approach to improving cardiovascular risk profiles.
Collapse
Affiliation(s)
- Nicholas Brownell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
10
|
Hussein H, Saheb S, Couturier M, Atassi M, Orsoni A, Carrié A, Therond P, Chantepie S, Robillard P, Bruckert E, Chapman MJ, Kontush A. Small, dense high-density lipoprotein 3 particles exhibit defective antioxidative and anti-inflammatory function in familial hypercholesterolemia: Partial correction by low-density lipoprotein apheresis. J Clin Lipidol 2015; 10:124-33. [PMID: 26892129 DOI: 10.1016/j.jacl.2015.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/01/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) features elevated oxidative stress and accelerated atherosclerosis driven by elevated levels of atherogenic lipoproteins relative to subnormal levels of atheroprotective high-density lipoprotein (HDL). Small, dense HDL3 potently protects low-density lipoprotein (LDL) against proinflammatory oxidative damage. OBJECTIVE To determine whether antioxidative and/or anti-inflammatory activities of HDL are defective in FH and whether such defects are corrected by LDL apheresis. METHODS Antioxidative and antiinflammatory activities of HDL were evaluated as protection of reference LDL from oxidative stress and capacity to prevent accumulation of proinflammatory oxidised lipids, respectively. Lipid surface rigidity of HDL was assessed using a fluorescent probe. HDL components were measured by analytical approaches. Systemic oxidative stress was characterized as plasma 8-isoprostanes. RESULTS Pre-LDL-apheresis, FH patients (n = 10) exhibited elevated systemic oxidative stress (3.3-fold, P < 0.001) vs. sex- and age-matched normolipidemic controls (n = 10). Both antioxidative and antiinflammatory activity of HDL3 were impaired (up to -91%, P < 0.01) in FH. Sphingomyelin and saturated fatty acid contents were elevated in FH HDL3, resulting in enhanced lipid surface rigidity. The surface lipid content (phospholipids, free cholesterol) was reduced in FH (up to -15%, P < 0.001), whereas content of core lipids (cholesteryl esters, triglycerides) was elevated (up to +17%, P < 0.001). Molar apolipoprotein A-I content of HDL3 was subnormal in FH. A single LDL-apheresis session partially corrected (by up to 76%) deficient HDL antiatherogenic activities, attenuated systemic oxidative stress and partially normalised both the lipid composition and surface rigidity of HDL particles. CONCLUSIONS FH features elevated oxidative stress and deficient antioxidative and anti-inflammatory activities of small, dense HDL3; such functional deficiency is intimately linked to anomalies in lipid and protein composition, which may impair the capacity of HDL to acquire and inactivate oxidized lipids.
Collapse
Affiliation(s)
- Hala Hussein
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Samir Saheb
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - Martine Couturier
- National Institute for Health and Medical Research (INSERM), Paris, France; Hôpital Bicetre, Bicetre, France
| | | | - Alexina Orsoni
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Alain Carrié
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | | | - Sandrine Chantepie
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Paul Robillard
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Eric Bruckert
- AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | - M John Chapman
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France
| | - Anatol Kontush
- Université Pierre et Marie Curie-Paris 6, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpétrière, Paris, France; National Institute for Health and Medical Research (INSERM), Paris, France.
| |
Collapse
|
11
|
Connolly KD, Willis GR, Datta DBN, Ellins EA, Ladell K, Price DA, Guschina IA, Rees DA, James PE. Lipoprotein-apheresis reduces circulating microparticles in individuals with familial hypercholesterolemia. J Lipid Res 2014; 55:2064-72. [PMID: 25121984 PMCID: PMC4173999 DOI: 10.1194/jlr.m049726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Lipoprotein-apheresis (apheresis) removes LDL-cholesterol in patients with severe dyslipidemia. However, reduction is transient, indicating that the long-term cardiovascular benefits of apheresis may not solely be due to LDL removal. Microparticles (MPs) are submicron vesicles released from the plasma membrane of cells. MPs, particularly platelet-derived MPs, are increasingly being linked to the pathogenesis of many diseases. We aimed to characterize the effect of apheresis on MP size, concentration, cellular origin, and fatty acid concentration in individuals with familial hypercholesterolemia (FH). Plasma and MP samples were collected from 12 individuals with FH undergoing routine apheresis. Tunable resistive pulse sensing (np200) and nanoparticle tracking analysis measured a fall in MP concentration (33 and 15%, respectively; P < 0.05) pre- to post-apheresis. Flow cytometry showed MPs were predominantly annexin V positive and of platelet (CD41) origin both pre- (88.9%) and post-apheresis (88.4%). Fatty acid composition of MPs differed from that of plasma, though apheresis affected a similar profile of fatty acids in both compartments, as measured by GC-flame ionization detection. MP concentration was also shown to positively correlate with thrombin generation potential. In conclusion, we show apheresis nonselectively removes annexin V-positive platelet-derived MPs in individuals with FH. These MPs are potent inducers of coagulation and are elevated in CVD; this reduction in pathological MPs could relate to the long-term benefits of apheresis.
Collapse
Affiliation(s)
- Katherine D Connolly
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Gareth R Willis
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Dev B N Datta
- Lipid Unit, Llandough Hospital, Cardiff CF64 2XX, United Kingdom
| | - Elizabeth A Ellins
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom Institute of Life Sciences, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - David A Price
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Irina A Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - D Aled Rees
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| | - Philip E James
- Institute of Molecular and Experimental Medicine School of Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom
| |
Collapse
|
12
|
Julius U, Fischer S, Schatz U, Hohenstein B, Bornstein SR. Lipoprotein apheresis: an update. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.68] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Clinical and Biological Relevance of Statin-Mediated Changes in HDL Metabolism. Curr Atheroscler Rep 2013; 16:379. [DOI: 10.1007/s11883-013-0379-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
The extended abnormalities in lipoprotein metabolism in familial hypercholesterolemia: Developing a new framework for future therapies. Int J Cardiol 2013; 168:1811-8. [DOI: 10.1016/j.ijcard.2013.06.069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/06/2013] [Accepted: 06/30/2013] [Indexed: 02/04/2023]
|
15
|
Chan DC, Hoang A, Barrett PHR, Wong ATY, Nestel PJ, Sviridov D, Watts GF. Apolipoprotein B-100 and apoA-II kinetics as determinants of cellular cholesterol efflux. J Clin Endocrinol Metab 2012; 97:E1658-66. [PMID: 22745238 DOI: 10.1210/jc.2012-1522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Cellular cholesterol efflux is a key step in reverse cholesterol transport and may depend on the metabolism of apolipoprotein (apo) B-100, apoA-I, and apoA-II. OBJECTIVE We examined the associations between cholesterol efflux and plasma concentrations and kinetics of very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and low-density lipoprotein (LDL)-apoB-100, high-density lipoprotein (HDL)-apoA-I, and HDL-apoA-II in men. DESIGN, SUBJECTS, AND METHODS: Thirty men were recruited from the community with a wide range of body mass index. The capacity of plasma and HDL to efflux cholesterol was measured ex vivo. Apolipoprotein kinetics were measured using stable isotope techniques and multicompartmental modeling. RESULTS Cholesterol efflux to whole plasma was correlated with plasma levels of cholesterol, triglyceride, apoB-100, insulin, cholesteryl ester transfer protein, and lecithin-cholesterol acyltransferase, body mass index and waist circumference (P < 0.05 in all). Cholesterol efflux was inversely correlated with the fractional catabolic rate (FCR) of VLDL (r = -0.728), IDL (r = -0.662), and LDL-apoB-100 (r = -0.479) but positively correlated with the FCR (r = 0.438) and production rate (r = 0.468) of HDL-apoA-II. In multiple regression analysis, the concentration and FCR of VLDL-apoB-100 (β-coefficient = 0.708 and -0.518, respectively) and IDL-apoB-100 (β-coefficient = 0.354 and -0.447, respectively) were independent predictors of cholesterol efflux. The association of cholesterol efflux with apoB-100 metabolism was diminished after removal of apoB-100-containing lipoproteins from plasma prior to efflux. All associations, except for cholesteryl ester transfer protein, were lost when cholesterol efflux to isolated HDL was tested. CONCLUSIONS The plasma concentration and kinetics of apoB-100-containing lipoproteins are significant predictors of the capacity of whole plasma to effect cellular cholesterol efflux.
Collapse
Affiliation(s)
- Dick C Chan
- School of Medicine and Pharmacology, University of Western Australia, Royal Perth Hospital, G.P.O. Box X2213, Perth, Western Australia 6847, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Hovland A, Lappegård KT, Mollnes TE. LDL Apheresis and Inflammation - Implications for Atherosclerosis. Scand J Immunol 2012; 76:229-36. [DOI: 10.1111/j.1365-3083.2012.02734.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Cholesterol efflux mediators in homozygous familial hypercholesterolemia patients on low-density lipoprotein apheresis. J Clin Lipidol 2012; 7:109-16. [PMID: 23415429 DOI: 10.1016/j.jacl.2012.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (FH) is a rare disorder that may affect 1 person per million. Early initiation of aggressive cholesterol-lowering therapy is essential to prevent premature coronary heart disease. Selective removal of low-density lipoprotein (LDL) by LDL apheresis is a reliable method of treatment. METHODS AND RESULTS Cholesterol efflux mediators of homozygous FH patients on weekly LDL apheresis were compared with those of age- and sex-matched heterozygous FH patients receiving oral medication only and with healthy control subjects. The data show that (1) compared with healthy controls, homozygous FH patients have significantly lower plasma levels of high-density lipoprotein cholesterol and apoA-I and significantly lower cholesterol-acceptor capacity of serum to promote cholesterol efflux from cholesterol-loaded THP-1 cells, combined with significantly lower peripheral blood mononuclear cell gene expression levels of ATP-binding cassette (ABC) transporter G1 and borderline-significantly lower levels of ABCA1 and scavenger receptor class B type I (SR-BI); and (2) compared with pre-LDL apheresis (a day before treatment), postapheresis (15 days later; on the day after the weekly treatment) levels of HDL cholesterol and apoA-I were significantly reduced, with no significant effect on cholesterol-acceptor capacity of serum or on peripheral blood mononuclear cell gene expression levels of the cellular transporters, except for a borderline-significant reduction in ABCA1 mRNA levels. CONCLUSIONS The data showing decreased levels of cholesterol efflux mediators in plasma and cells may suggest that the overall cholesterol efflux capacity is impaired in homozygous FH patients. However, LDL apheresis may maintain cholesterol efflux capacity, despite a lowering levels of high-density lipoprotein cholesterol and apoA-I.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia is characterized by a major elevation in circulating LDL-cholesterol levels, cholesterol deposition within the arterial wall and an increased risk of premature coronary artery disease. The reverse cholesterol transport (RCT) is now considered as a key process that protects against development of atherosclerosis. The major antiatherogenic action of HDL particles is intimately linked to their determinant role in RCT pathway. However, the steady-sate of HDL-cholesterol levels does not represent the optimal marker to evaluate the efficiency of the RCT in all circumstances. RECENT FINDINGS By using ex-vivo systems for the evaluation of the efficacy of RCT a strong inverse relationship between HDL efflux capacity from macrophages and atherosclerosis progression has been demonstrated. Low HDL-C phenotype observed in familial hypercholesterolemia patients is associated with defective capacities of HDL particles to mediate major steps of the centripetal movement of cholesterol from peripheral cells to feces. However, current available treatment used to reduce LDL-C to therapeutic goals does not correct altered functions of HDL particles in humans. SUMMARY In the context of familial hypercholesterolemia, a growing body of evidence suggests that impaired efficacy of the RCT pathway contributes significantly to the progression of atherosclerosis.
Collapse
Affiliation(s)
- Maryse Guerin
- INSERM UMRS939, Hôpital de la Pitié, Université Pierre et Marie Curie-Paris 6, Paris, France.
| |
Collapse
|