1
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Karunakaran S, Clee SM. Genetics of metabolic syndrome: potential clues from wild-derived inbred mouse strains. Physiol Genomics 2018; 50:35-51. [DOI: 10.1152/physiolgenomics.00059.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a complex constellation of metabolic abnormalities including obesity, abnormal glucose metabolism, dyslipidemia, and elevated blood pressure that together substantially increase risk for cardiovascular disease and Type 2 diabetes. Both genetic and environmental factors contribute to the development of MetS, but this process is still far from understood. Human studies have revealed only part of the underlying basis. Studies in mice offer many strengths that can complement human studies to help elucidate the etiology and pathophysiology of MetS. Here we review the ways mice can contribute to MetS research. In particular, we focus on the information that can be obtained from studies of the inbred strains, with specific focus on the phenotypes of the wild-derived inbred strains. These are newly derived inbred strains that were created from wild-caught mice. They contain substantial genetic variation that is not present in the classical inbred strains, have phenotypes of relevance for MetS, and various mouse strain resources have been created to facilitate the mining of this new genetic variation. Thus studies using wild-derived inbred strains hold great promise for increasing our understanding of MetS.
Collapse
Affiliation(s)
- Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M. Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Two-part zero-inflated negative binomial regression model for quantitative trait loci mapping with count trait. J Theor Biol 2015; 372:74-80. [PMID: 25728790 DOI: 10.1016/j.jtbi.2015.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/06/2015] [Accepted: 02/16/2015] [Indexed: 11/24/2022]
Abstract
Poisson regression models provide a standard framework for quantitative trait locus (QTL) mapping of count traits. In practice, however, count traits are often over-dispersed relative to the Poisson distribution. In these situations, the zero-inflated Poisson (ZIP), zero-inflated generalized Poisson (ZIGP) and zero-inflated negative binomial (ZINB) regression may be useful for QTL mapping of count traits. Added genetic variables to the negative binomial part equation, may also affect extra zero data. In this study, to overcome these challenges, I apply two-part ZINB model. The EM algorithm with Newton-Raphson method in the M-step uses for estimating parameters. An application of the two-part ZINB model for QTL mapping is considered to detect associations between the formation of gallstone and the genotype of markers.
Collapse
|
4
|
A pronounced evolutionary shift of the pseudoautosomal region boundary in house mice. Mamm Genome 2012; 23:454-66. [PMID: 22763584 DOI: 10.1007/s00335-012-9403-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
The pseudoautosomal region (PAR) is essential for the accurate pairing and segregation of the X and Y chromosomes during meiosis. Despite its functional significance, the PAR shows substantial evolutionary divergence in structure and sequence between mammalian species. An instructive example of PAR evolution is the house mouse Mus musculus domesticus (represented by the C57BL/6J strain), which has the smallest PAR among those that have been mapped. In C57BL/6J, the PAR boundary is located just ~700 kb from the distal end of the X chromosome, whereas the boundary is found at a more proximal position in Mus spretus, a species that diverged from house mice 2-4 million years ago. In this study we used a combination of genetic and physical mapping to document a pronounced shift in the PAR boundary in a second house mouse subspecies, Mus musculus castaneus (represented by the CAST/EiJ strain), ~430 kb proximal of the M. m. domesticus boundary. We demonstrate molecular evolutionary consequences of this shift, including a marked lineage-specific increase in sequence divergence within Mid1, a gene that resides entirely within the M. m. castaneus PAR but straddles the boundary in other subspecies. Our results extend observations of structural divergence in the PAR to closely related subspecies, pointing to major evolutionary changes in this functionally important genomic region over a short time period.
Collapse
|
5
|
Abstract
Despite advances in genetic mapping of quantitative traits and in phylogenetic comparative approaches, these two perspectives are rarely combined. The joint consideration of multiple crosses among related taxa (whether species or strains) not only allows more precise mapping of the genetic loci (called quantitative trait loci, QTL) that contribute to important quantitative traits, but also offers the opportunity to identify the origin of a QTL allele on the phylogenetic tree that relates the taxa. We describe a formal method for combining multiple crosses to infer the location of a QTL on a tree. We further discuss experimental design issues for such endeavors, such as how many crosses are required and which sets of crosses are best. Finally, we explore the method's performance in computer simulations, and we illustrate its use through application to a set of four mouse intercrosses among five inbred strains, with data on HDL cholesterol.
Collapse
|
6
|
Atshaves B, Martin G, Hostetler H, McIntosh A, Kier A, Schroeder F. Liver fatty acid-binding protein and obesity. J Nutr Biochem 2010; 21:1015-32. [PMID: 20537520 PMCID: PMC2939181 DOI: 10.1016/j.jnutbio.2010.01.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 12/17/2022]
Abstract
While low levels of unesterified long chain fatty acids (LCFAs) are normal metabolic intermediates of dietary and endogenous fat, LCFAs are also potent regulators of key receptors/enzymes and at high levels become toxic detergents within the cell. Elevated levels of LCFAs are associated with diabetes, obesity and metabolic syndrome. Consequently, mammals evolved fatty acid-binding proteins (FABPs) that bind/sequester these potentially toxic free fatty acids in the cytosol and present them for rapid removal in oxidative (mitochondria, peroxisomes) or storage (endoplasmic reticulum, lipid droplets) organelles. Mammals have a large (15-member) family of FABPs with multiple members occurring within a single cell type. The first described FABP, liver-FABP (L-FABP or FABP1), is expressed in very high levels (2-5% of cytosolic protein) in liver as well as in intestine and kidney. Since L-FABP facilitates uptake and metabolism of LCFAs in vitro and in cultured cells, it was expected that abnormal function or loss of L-FABP would reduce hepatic LCFA uptake/oxidation and thereby increase LCFAs available for oxidation in muscle and/or storage in adipose. This prediction was confirmed in vitro with isolated liver slices and cultured primary hepatocytes from L-FABP gene-ablated mice. Despite unaltered food consumption when fed a control diet ad libitum, the L-FABP null mice exhibited age- and sex-dependent weight gain and increased fat tissue mass. The obese phenotype was exacerbated in L-FABP null mice pair fed a high-fat diet. Taken together with other findings, these data suggest that L-FABP could have an important role in preventing age- or diet-induced obesity.
Collapse
Affiliation(s)
- B.P. Atshaves
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - G.G. Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - H.A. Hostetler
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.L. McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| | - A.B. Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467
| | - F. Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX 77843-4466
| |
Collapse
|
7
|
Xie Y, Blanc V, Kerr TA, Kennedy S, Luo J, Newberry EP, Davidson NO. Decreased expression of cholesterol 7alpha-hydroxylase and altered bile acid metabolism in Apobec-1-/- mice lead to increased gallstone susceptibility. J Biol Chem 2009; 284:16860-16871. [PMID: 19386592 PMCID: PMC2719322 DOI: 10.1074/jbc.m109.010173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Quantitative trait mapping in mice identified a susceptibility locus for gallstones (Lith6) spanning the Apobec-1 locus, the structural gene encoding the RNA-specific cytidine deaminase responsible for production of apolipoprotein B48 in mammalian small intestine and rodent liver. This observation prompted us to compare dietary gallstone susceptibility in Apobec-1(-/-) mice and congenic C57BL/6 wild type controls. When fed a lithogenic diet (LD) for 2 weeks, 90% Apobec-1(-/-) mice developed solid gallstones in comparison with 16% wild type controls. LD-fed Apobec-1(-/-) mice demonstrated increased biliary cholesterol secretion as well as increased cholesterol saturation and bile acid hydrophobicity indices. These changes occurred despite a relative decrease in cholesterol absorption in LD-fed Apobec-1(-/-) mice. Among the possible mechanisms to account for this phenotype, expression of Cyp7a1 mRNA and protein were significantly decreased in chow-fed Apobec-1(-/-) mice, decreasing further in LD-fed animals. Cyp7a1 transcription in hepatocyte nuclei, however, was unchanged in Apobec-1(-/-) mice, excluding transcriptional repression as a potential mechanism for decreased Cyp7a1 expression. We demonstrated that APOBEC-1 binds to AU-rich regions of the 3'-untranslated region of the Cyp7a1 transcript, containing the UUUN(A/U)U consensus motif, using both UV cross-linking to recombinant APOBEC-1 and in vivo RNA co-immunoprecipitation. In vivo Apobec-1-dependent modulation of Cyp7a1 expression was further confirmed following adenovirus-Apobec-1 administration to chow-fed Apobec-1(-/-) mice, which rescued Cyp7a1 gene expression. Taken together, the findings suggest that the AU-rich RNA binding-protein Apobec-1 mediates post-transcriptional regulation of murine Cyp7a1 expression and influences susceptibility to diet-induced gallstone formation.
Collapse
Affiliation(s)
- Yan Xie
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Valerie Blanc
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Thomas A Kerr
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Susan Kennedy
- From the Departments of Medicine, St. Louis, Missouri 63110
| | - Jianyang Luo
- From the Departments of Medicine, St. Louis, Missouri 63110
| | | | - Nicholas O Davidson
- From the Departments of Medicine, St. Louis, Missouri 63110; Pharmacology and Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|
8
|
Xie Y, Newberry EP, Kennedy SM, Luo J, Davidson NO. Increased susceptibility to diet-induced gallstones in liver fatty acid binding protein knockout mice. J Lipid Res 2009; 50:977-87. [PMID: 19136665 DOI: 10.1194/jlr.m800645-jlr200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative trait mapping identified a locus colocalizing with L-Fabp, encoding liver fatty acid binding protein, as a positional candidate for murine gallstone susceptibility. When fed a lithogenic diet (LD) for 2 weeks, L-Fabp(-/-) mice became hypercholesterolemic with increased hepatic VLDL cholesterol secretion. Seventy-five percent of L-Fabp(-/-) mice developed solid gallstones compared with 6% of wild-type mice with an increased gallstone score (3.29 versus 0.62, respectively; P < 0.01). Hepatic free cholesterol content, biliary cholesterol secretion, and the cholesterol saturation index of hepatic bile were increased in LD-fed L-Fabp(-/-) mice. Chow-fed L-Fabp(-/-) mice demonstrated increased fecal bile acid (BA) excretion accompanied by decreased ileal Asbt expression. By contrast, there was an increased BA pool and decreased fecal BA excretion in LD-fed L-Fabp(-/-) mice, associated with increased proximal intestinal Asbt mRNA expression, suggesting that intestinal BA absorption was enhanced in LD-fed L-Fabp(-/-) mice. The increase in biliary BA secretion and enterohepatic pool size in LD-fed L-Fabp(-/-) mice was accompanied by downregulation of Cyp7a1 mRNA and increased intestinal mRNA abundance of Fgf-15, Fxr, and Fabp6. These findings suggest that changes in hepatic cholesterol metabolism and biliary lipid secretion as well as changes in enterohepatic BA metabolism increase gallstone susceptibility in LD fed L-Fabp(-/-) mice.
Collapse
Affiliation(s)
- Yan Xie
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
9
|
Zero-inflated generalized Poisson regression mixture model for mapping quantitative trait loci underlying count trait with many zeros. J Theor Biol 2008; 256:276-85. [PMID: 18977361 DOI: 10.1016/j.jtbi.2008.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/18/2008] [Accepted: 10/01/2008] [Indexed: 11/21/2022]
Abstract
Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of them assume that the count phenotype follows a Poisson distribution with appropriate techniques being applied to handle data dispersion. When a count trait has a genetic basis, "naturally occurring" zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait are modelled through the zero-inflated generalized Poisson regression mixture model, which can handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach using the EM algorithm with the Newton-Raphson algorithm embedded in the M-step, and provide a genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method is evaluated through extensive simulation studies. Extensions to composite and multiple interval mapping are discussed. The utility of the developed approach is illustrated through a mouse F(2) intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.
Collapse
|
10
|
Schafmayer C, Völzke H, Buch S, Egberts J, Spille A, von Eberstein H, Franke A, Seeger M, Hinz S, Elsharawy A, Rosskopf D, Brosch M, Krawczak M, Foelsch UR, Schafmayer A, Lammert F, Schreiber S, Faendrich F, Hampe J, Tepel J. Investigation of the Lith6 candidate genes APOBEC1 and PPARG in human gallstone disease. Liver Int 2007; 27:910-9. [PMID: 17696929 DOI: 10.1111/j.1478-3231.2007.01536.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Genetic susceptibility contributes to the aetiology of gallbladder diseases as shown by multiple epidemiological studies. A major gallstone susceptibility locus (Lith6) was identified in 2003 by quantitative trait locus mapping in mice. Two attractive positional and functional candidate genes in apolipoprotein B mRNA-editing protein (APOBEC1) and peroxisome proliferator-activated receptor gamma (PPARG) are located in this interval. AIMS To investigate APOBEC1 and PPARG as candidate genes for common symptomatic gallstone disease in humans. PATIENTS AND METHODS Eight hundred and ten patients who underwent cholecystectomy for symptomatic gallstone disease (median age of onset 50) were compared with 718 sex-matched control individuals. An independent additional sample included 368 gallstone patients and 368 controls. Control individuals were sonographically free of gallstones. Haplotype tagging and all known coding single nucleotide polymorphisms were genotyped for PPARG (N=32) and APOBEC1 (N=11). RESULTS The investigated high-risk patient sample provides a power of greater than 80% for the detection of odds ratios down to 1.45. No evidence of association of the two genes in the single-point tagging markers, coding variants and in the sliding window haplotype analysis was detected (all nominal single point P-values >0.04). A logistic regression analysis including age, sex and BMI as covariates was also negative (nominal P-values > or =0.08). CONCLUSIONS In the investigated German samples, no evidence of association of APOBEC1 and PPARG with gallstone susceptibility was detected. Systematic fine mapping of the complete Lith6 region is required to identify the causative genetic variants for gallstone in mice and humans.
Collapse
Affiliation(s)
- Clemens Schafmayer
- Department of General Surgery and Thoracic Surgery, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Davis RC, Jin A, Rosales M, Yu S, Xia X, Ranola K, Schadt EE, Lusis AJ. A genome-wide set of congenic mouse strains derived from CAST/Ei on a C57BL/6 background. Genomics 2007; 90:306-13. [PMID: 17600671 DOI: 10.1016/j.ygeno.2007.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/16/2007] [Accepted: 05/21/2007] [Indexed: 01/09/2023]
Abstract
We previously reported the construction of two sets of heterozygous congenic strains spanning the mouse genome. For both sets, C57BL/6J was employed as the background strain while DNA from either DBA/2 or CAST/Ei was introgressed to form the congenic region. We have subsequently bred most of these strains to produce homozygous breeding stocks. Here, we report the characterization of the strain set based on CAST/Ei. CAST/Ei is the most genetically distant strain within the Mus mus species and many trait variations relevant to common diseases have been identified in CAST/Ei mice. Despite breeding difficulties for some congenic regions, presumably due to incompatible allelic variations between CAST/Ei and C57BL/6, the resulting congenic strains cover about 80% of the autosomal chromosomes and will be useful as a resource for the further analysis of quantitative trait loci between the strains.
Collapse
Affiliation(s)
- Richard C Davis
- Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, Los Angeles, CA 90095-1679, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Gallstone disease is one of the most prevalent gastrointestinal diseases with a substantial burden to health care systems that is supposed to increase in ageing populations at risk. Aetiology and pathogenesis of cholesterol gallstones still are not well defined, and strategies for prevention and efficient nonsurgical therapies are missing. This review summarizes current concepts on the pathogenesis of cholesterol gallstones with focus on the uptake and secretion of biliary lipids and special emphasis on recent studies into the genetic background.
Collapse
Affiliation(s)
- H-U Marschall
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| | | |
Collapse
|
13
|
Lyons MA, Wittenburg H. Cholesterol gallstone susceptibility loci: a mouse map, candidate gene evaluation, and guide to human LITH genes. Gastroenterology 2006; 131:1943-70. [PMID: 17087948 DOI: 10.1053/j.gastro.2006.10.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 08/15/2006] [Indexed: 12/11/2022]
Affiliation(s)
- Malcolm A Lyons
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Perth, Australia.
| | | |
Collapse
|
14
|
Wittenburg H, Lyons MA, Li R, Kurtz U, Wang X, Mössner J, Churchill GA, Carey MC, Paigen B. QTL mapping for genetic determinants of lipoprotein cholesterol levels in combined crosses of inbred mouse strains. J Lipid Res 2006; 47:1780-90. [PMID: 16685081 DOI: 10.1194/jlr.m500544-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To identify additional loci that influence lipoprotein cholesterol levels, we performed quantitative trait locus (QTL) mapping in offspring of PERA/EiJxI/LnJ and PERA/EiJxDBA/2J intercrosses and in a combined data set from both crosses after 8 weeks of consumption of a high fat-diet. Most QTLs identified were concordant with homologous chromosomal regions that were associated with lipoprotein levels in human studies. We detected significant new loci for HDL cholesterol levels on chromosome (Chr) 5 (Hdlq34) and for non-HDL cholesterol levels on Chrs 15 (Nhdlq9) and 16 (Nhdlq10). In addition, the analysis of combined data sets identified a QTL for HDL cholesterol on Chr 17 that was shared between both crosses; lower HDL cholesterol levels were conferred by strain PERA. This QTL colocalized with a shared QTL for cholesterol gallstone formation detected in the same crosses. Haplotype analysis narrowed this QTL, and sequencing of the candidate genes Abcg5 and Abcg8 confirmed shared alleles in strains I/LnJ and DBA/2J that differed from the alleles in strain PERA/EiJ. In conclusion, our analysis furthers the knowledge of genetic determinants of lipoprotein cholesterol levels in inbred mice and substantiates the hypothesis that polymorphisms of Abcg5/Abcg8 contribute to individual variation in both plasma HDL cholesterol levels and susceptibility to cholesterol gallstone formation.
Collapse
|
15
|
|
16
|
Peters LL, Zhang W, Lambert AJ, Brugnara C, Churchill GA, Platt OS. Quantitative trait loci for baseline white blood cell count, platelet count, and mean platelet volume. Mamm Genome 2005; 16:749-63. [PMID: 16261417 DOI: 10.1007/s00335-005-0063-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 06/29/2005] [Indexed: 11/29/2022]
Abstract
A substantial genetic contribution to baseline peripheral blood counts has been established. We performed quantitative trait locus/loci (QTL) analyses to identify chromosome (Chr) regions harboring genes influencing the baseline white blood cell (WBC) count, platelet (Plt) count, and mean platelet volume (MPV) in F(2) intercrosses between NZW/LacJ, SM/J, and C57BLKS/J inbred mice. We identified six significant WBC QTL: Wbcq1 (peak LOD score at 38 cM, Chr 1), Wbcq2 (42 cM, Chr 3), Wbcq3 (0 cM, Chr 15), Wbcq4 (58 cM, Chr 1), Wbcq5 (82 cM, Chr 1), and Wbcq6 (8 cM, Chr 14). Three significant Plt QTL were identified: Pltq1 (24 cM, Chr 2), Pltq2 (36 cM, Chr 7), and Pltq3 (10 cM, Chr 12). Two significant MPV QTL were identified, Mpvq1 (62 cM, Chr 15) and Mpvq2 (44 cM, Chr 8). In total, the WBC QTL accounted for up to 31% of the total variance in baseline WBC count, while the Plt and MPV QTL accounted for up to 30% and 49% of the total variance, respectively. These analyses underscore the genetic complexity underlying these traits in normal populations and provide the basis for future studies to identify novel genes involved in the regulation of mammalian hematopoiesis.
Collapse
Affiliation(s)
- Luanne L Peters
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Lyons MA, Korstanje R, Li R, Sheehan SM, Walsh KA, Rollins JA, Carey MC, Paigen B, Churchill GA. Single and interacting QTLs for cholesterol gallstones revealed in an intercross between mouse strains NZB and SM. Mamm Genome 2005; 16:152-63. [PMID: 15834632 DOI: 10.1007/s00335-004-2446-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 11/30/2004] [Indexed: 10/25/2022]
Abstract
Quantitative trait locus (QTL) mapping was employed to investigate the genetic determinants of cholesterol gallstone formation in a large intercross between mouse strains SM/J (resistant) and NZB/B1NJ (susceptible). Animals consumed a gallstone-promoting diet for 18 weeks. QTL analyses were performed using gallstone weight and gallstone absence/presence as phenotypes; various models were explored for genome scans. We detected seven single QTLs: three new, significant QTLs were named Lith17 [chromosome (Chr) 5, peak=60 cM, LOD=5.4], Lith18 (Chr 5, 76 cM, LOD=4.3), and Lith19 (Chr 8, 0 cM, LOD=5.3); two confirmed QTLs identified previously and were named Lith20 (Chr 9, 44 cM, LOD=2.7) and Lith21 (Chr 10, 24 cM, LOD=2.9); one new, suggestive QTL (Chr 17) remains unnamed. Upon searching for epistatic interactions that contributed to gallstone susceptibility, the final suggestive QTL on Chr 7 was determined to interact significantly with Lith18 and, therefore, was named Lith22 (65 cM). A second interaction was identified between Lith19 and a locus on Chr 11; this QTL was named Lith23 (13 cM). mRNA expression analyses and amino acid haplotype analyses likely eliminated Slc10a2 as a candidate gene for Lith19. The QTLs identified herein largely contributed to gallstone formation rather than gallstone severity. Cloning the genes underlying these murine QTLs should facilitate prediction and cloning of the orthologous human genes.
Collapse
|
18
|
Wittenburg H, Lyons MA, Li R, Kurtz U, Mössner J, Churchill GA, Carey MC, Paigen B. Association of a lithogenic Abcg5/Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice. Mamm Genome 2005; 16:495-504. [PMID: 16151694 DOI: 10.1007/s00335-005-0006-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 04/12/2005] [Indexed: 10/25/2022]
Abstract
To examine further the genetic determinants of cholesterol gallstone susceptibility in inbred mice, we performed quantitative trait locus (QTL) analysis of an intercross of gallstone-susceptible PERA/EiJ and gallstone-resistant DBA/2J inbred mice. Three hundred twenty-four F2 offspring were phenotyped for cholelithiasis during consumption of a lithogenic diet and genotyped using microsatellite markers. Linkage analysis was performed by interval mapping. In addition, we analyzed the combined datasets from this cross and from an independent cross of strain PERA and gallstone-resistant I/Ln mice. QTL mapping detected one significant new gallstone susceptibility (Lith) locus on Chromosome 13 (Lith15). A second significant QTL on Chr 6 (Lith16) confirmed a previous QTL. Furthermore, suggestive QTLs confirmed Lith loci from previous crosses on Chromosomes 1, 2, 5, 16 and X. QTL analysis of the dataset derived from the combined crosses increased the detection power and narrowed confidence intervals of Lith loci on Chromosomes 2, 6, 13, and 16. Moreover, the analysis of combined datasets revealed a shared QTL between both crosses on Chromosome 17 (Lith9). Significantly higher mRNA expression of Abcg5 and Abcg8 in strain PERA compared with strains I/Ln and DBA/2 further substantiated that the PERA allele of Abcg5/Abcg8 was responsible for lithogenicity underlying Lith9.
Collapse
|
19
|
Pletcher MT, McClurg P, Batalov S, Su AI, Barnes SW, Lagler E, Korstanje R, Wang X, Nusskern D, Bogue MA, Mural RJ, Paigen B, Wiltshire T. Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2004; 2:e393. [PMID: 15534693 PMCID: PMC526179 DOI: 10.1371/journal.pbio.0020393] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 09/15/2004] [Indexed: 01/08/2023] Open
Abstract
Rapid expansion of available data, both phenotypic and genotypic, for multiple strains of mice has enabled the development of new methods to interrogate the mouse genome for functional genetic perturbations. In silico mapping provides an expedient way to associate the natural diversity of phenotypic traits with ancestrally inherited polymorphisms for the purpose of dissecting genetic traits. In mouse, the current single nucleotide polymorphism (SNP) data have lacked the density across the genome and coverage of enough strains to properly achieve this goal. To remedy this, 470,407 allele calls were produced for 10,990 evenly spaced SNP loci across 48 inbred mouse strains. Use of the SNP set with statistical models that considered unique patterns within blocks of three SNPs as an inferred haplotype could successfully map known single gene traits and a cloned quantitative trait gene. Application of this method to high-density lipoprotein and gallstone phenotypes reproduced previously characterized quantitative trait loci (QTL). The inferred haplotype data also facilitates the refinement of QTL regions such that candidate genes can be more easily identified and characterized as shown for adenylate cyclase 7.
Collapse
Affiliation(s)
- Mathew T Pletcher
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
- 2The Scripps Research Institute, San DiegoCaliforniaUnited States of America
| | - Philip McClurg
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| | - Serge Batalov
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| | - Andrew I Su
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| | - S. Whitney Barnes
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| | - Erica Lagler
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| | - Ron Korstanje
- 3The Jackson Laboratory, Bar HarborMaineUnited States of America
| | - Xiaosong Wang
- 3The Jackson Laboratory, Bar HarborMaineUnited States of America
| | | | - Molly A Bogue
- 3The Jackson Laboratory, Bar HarborMaineUnited States of America
| | | | - Beverly Paigen
- 3The Jackson Laboratory, Bar HarborMaineUnited States of America
| | - Tim Wiltshire
- 1Genomics Institute of the Novartis Research Foundation, San DiegoCaliforniaUnited States of America
| |
Collapse
|
20
|
Wang DQH, Afdhal NH. Genetic analysis of cholesterol gallstone formation: searching for Lith (gallstone) genes. Curr Gastroenterol Rep 2004; 6:140-50. [PMID: 15191694 DOI: 10.1007/s11894-004-0042-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The genetics of cholesterol cholelithiasis is complex because a number of interacting genes regulate biliary cholesterol homeostasis. Quantitative trait locus (QTL) analysis is a powerful method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes. The subsequent positional cloning of such genes responsible for QTLs may lead to the discovery of pathophysiologic functions of Lith (gallstone) genes. In this review, we present a map of candidate genes for Lith genes that may determine gallstone susceptibility in mice. The physical-chemical, pathophysiologic, and genetic studies of Lith genes in bile, liver, gallbladder, and intestine will be crucial for elucidating the genetic mechanisms of cholesterol gallstone disease in mice and in humans. Because exceptionally close homology exists between mouse and human genomes, the orthologous human LITH genes can often be recognized after mouse genes are identified.
Collapse
Affiliation(s)
- David Q-H Wang
- Liver Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, DA 601, Boston, MA 02215, USA
| | | |
Collapse
|
21
|
Wittenburg H, Lyons MA, Li R, Churchill GA, Carey MC, Paigen B. FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice. Gastroenterology 2003; 125:868-81. [PMID: 12949731 DOI: 10.1016/s0016-5085(03)01053-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Cholesterol gallstone formation is a complex genetic trait. To identify additional cholesterol gallstone susceptibility loci, we performed a quantitative trait locus analysis using an intercross of PERA/Ei and I/LnJ inbred strains of mice. METHODS Mice of both sexes were examined for gallstone weight and evaluated according to a scoring system for the physical chemistry of cholelithiasis during feeding of a lithogenic diet. Intercross offspring were genotyped, and linkage analysis was performed by interval mapping. Differences in messenger RNA expression of positional candidate genes were determined using reverse-transcription and real-time polymerase chain reaction. RESULTS We identified significant loci associated with gallstone weight on chromosomes 10 and 4, named Lith7 and Lith8, respectively (both susceptibility alleles conferred by strain I/LnJ). Positional candidate genes with higher expression in I/LnJ mice are Fxr (official symbol, Nr1h4), encoding the nuclear bile salt receptor, on chromosome 10 and Shp1 (official symbol, Nr0b2), encoding the small heterodimer partner 1, on chromosome 4. A significant locus associated with gallstone score on chromosome 17, named Lith9 (susceptibility allele conferred by strain PERA/Ei), colocalizes with the genes Abcg5 and Abcg8 that encode the canalicular cholesterol transporter. Higher hepatic messenger RNA expression of Abcg5 and Abcg8 in strain PERA/Ei correlates positively with higher biliary cholesterol levels. CONCLUSIONS Our findings suggest a primary role of the nuclear bile salt receptor FXR and the canalicular cholesterol transporter ABCG5/ABCG8 in the genetic susceptibility and pathogenesis of cholesterol cholelithiasis in these strains of inbred mice.
Collapse
|
22
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Leonard MR, Churchill GA, Carey MC, Paigen B. New quantitative trait loci that contribute to cholesterol gallstone formation detected in an intercross of CAST/Ei and 129S1/SvImJ inbred mice. Physiol Genomics 2003; 14:225-39. [PMID: 12837957 DOI: 10.1152/physiolgenomics.00073.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cholesterol gallstone formation is a response to interactions between multiple genes and environmental stimuli. To determine the subset of cholesterol gallstone susceptibility (Lith) genes possessed by strains CAST/Ei (susceptible) and 129S1/SvImJ (resistant), we conducted quantitative trait locus (QTL) analyses of an intercross between these strains. Parental strains and F(1) mice of both genders were evaluated for gallstone formation after consumption of a lithogenic diet for 8 wk. Gallstone susceptibility of strain CAST was predominantly due to cholesterol hypersecretion. Male intercross offspring were genotyped and phenotyped for cholesterol gallstone formation after consumption of the lithogenic diet for 10 wk. Linkage analysis was performed using PSEUDOMARKER software. One significant, new QTL was detected and named Lith13 [chromosome (Chr) 5, 30 cM]. Statistical analyses and QTL fine mapping suggest this QTL may comprise two closely linked loci. We confirmed the presence of Lith6 (Chr 6). Suggestive QTL were detected on Chrs 1, 2, 5, 14, and 16. The QTL on Chrs 2 and 16 confirmed previously identified, suggestive QTL. Therefore, they were named Lith12 (101 cM) and Lith14 (42 cM), respectively. We identified candidate genes based on known function and location and performed mRNA expression analyses using both parental strains and intercross progeny for preliminary evaluation of their contributions to gallstone formation. Cebpb (Lith12), Pparg (Lith6), and Slc21a1 (Lith6) displayed expression differences. Our work continues to demonstrate the genetic complexity and to elucidate the pathophysiology of cholesterol gallstone formation. It should facilitate the development of new approaches for treating this common human disorder.
Collapse
|
23
|
Lyons MA, Wittenburg H, Li R, Walsh KA, Churchill GA, Carey MC, Paigen B. Quantitative trait loci that determine lipoprotein cholesterol levels in DBA/2J and CAST/Ei inbred mice. J Lipid Res 2003; 44:953-67. [PMID: 12588951 DOI: 10.1194/jlr.m300002-jlr200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate genetic contributions to individual variations of lipoprotein cholesterol concentrations, we performed quantitative trait locus/loci (QTL) analyses of an intercross of CAST/Ei and DBA/2J inbred mouse strains after feeding a high-cholesterol cholic acid diet for 10 weeks. In total, we identified four QTL for HDL cholesterol. Three of these were novel and were named Hdlq10 [20 centimorgans (cM), chromosome 4], Hdlq11 (48 cM, chromosome 6), and Hdlq12 (68 cM, chromosome 6). The fourth QTL, Hdl1 (48 cM, chromosome 2), confirmed a locus discovered previously using a breeding cross that employed different inbred mouse strains. In addition, we identified one novel QTL for total and non-HDL cholesterol (8 cM, chromosome 9) that we named Chol6. Hdlq10, colocalized with a mutagenesis-induced point mutation (Lch), also affecting HDL. We provide molecular evidence for Abca1 as the gene underlying Hdlq10 and Ldlr as the gene underlying Chol6 that, coupled with evidence generated by other researchers using knockout and transgenic models, causes us to postulate that polymorphisms of these genes, different from the mutations leading to Tangier's disease and familial hypercholesterolemia, respectively, are likely primary genetic determinants of quantitative variation of lipoprotein levels in mice and, by orthology, in the human population.
Collapse
MESH Headings
- Animals
- Cholesterol, Dietary/administration & dosage
- Cholesterol, HDL/blood
- Cholesterol, HDL/drug effects
- Cholic Acid/administration & dosage
- Chromosome Mapping
- Crosses, Genetic
- Dose-Response Relationship, Drug
- Female
- Genotype
- Humans
- Male
- Mice
- Mice, Inbred DBA/genetics
- Mice, Inbred Strains/genetics
- Molecular Sequence Data
- Phenotype
- Polymorphism, Genetic
- Quantitative Trait Loci/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Time Factors
Collapse
|