1
|
Shen X, Chen M, Zhang J, Lin Y, Gao X, Tu J, Chen K, Zhu A, Xu S. Unveiling the Impact of ApoF Deficiency on Liver and Lipid Metabolism: Insights from Transcriptome-Wide m6A Methylome Analysis in Mice. Genes (Basel) 2024; 15:347. [PMID: 38540406 PMCID: PMC10970566 DOI: 10.3390/genes15030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024] Open
Abstract
Lipid metabolism participates in various physiological processes and has been shown to be connected to the development and progression of multiple diseases, especially metabolic hepatopathy. Apolipoproteins (Apos) act as vectors that combine with lipids, such as cholesterol and triglycerides (TGs). Despite being involved in lipid transportation and metabolism, the critical role of Apos in the maintenance of lipid metabolism has still not been fully revealed. This study sought to clarify variations related to m6A methylome in ApoF gene knockout mice with disordered lipid metabolism based on the bioinformatics method of transcriptome-wide m6A methylome epitranscriptomics. High-throughput methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted in both wild-type (WT) and ApoF knockout (KO) mice. As a result, the liver histopathology presented vacuolization and steatosis, and the serum biochemical assays reported abnormal lipid content in KO mice. The m6A-modified mRNAs were conformed consensus sequenced in eukaryotes, and the distribution was enriched within the coding sequences and 3' non-coding regions. In KO mice, the functional annotation terms of the differentially expressed genes (DEGs) included cholesterol, steroid and lipid metabolism, and lipid storage. In the differentially m6A-methylated mRNAs, the functional annotation terms included cholesterol, TG, and long-chain fatty acid metabolic processes; lipid transport; and liver development. The overlapping DEGs and differential m6A-modified mRNAs were also enriched in terms of lipid metabolism disorder. In conclusion, transcriptome-wide MeRIP sequencing in ApoF KO mice demonstrated the role of this crucial apolipoprotein in liver health and lipid metabolism.
Collapse
Affiliation(s)
- Xuebin Shen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Mengting Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Jian Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Yifan Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Xinyue Gao
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| | - Jionghong Tu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Kunqi Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - An Zhu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China; (M.C.); (J.T.); (K.C.)
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping 353000, China; (X.S.); (Y.L.); (X.G.)
| |
Collapse
|
2
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
3
|
Morton RE, Liu Y, Izem L. ApoF knockdown increases cholesteryl ester transfer to LDL and impairs cholesterol clearance in fat-fed hamsters. J Lipid Res 2019; 60:1868-1879. [PMID: 31511396 DOI: 10.1194/jlr.ra119000171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Indexed: 02/04/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) regulates intravascular lipoprotein metabolism. In vitro studies indicate that ApoF alters CETP function by inhibiting its activity with LDL. To explore in vivo the complexities driving ApoF's effects on CETP, we developed a siRNA-based hamster model of ApoF knockdown. In both male and female hamsters on chow- or fat-fed diets, we measured lipoprotein levels and composition, determined CETP-mediated transfer of cholesteryl esters (CEs) between lipoproteins, and quantified reverse cholesterol transport (RCT). We found that apoF knockdown in chow-fed hamsters had no effect on lipoprotein levels or composition, but these ApoF-deficient lipoproteins supported 50-100% higher LDL CETP activity in vitro. ApoF knockdown in fat-fed male hamsters created a phenotype in which endogenous CETP-mediated CE transfer from HDL to LDL increased up to 2-fold, LDL cholesterol increased 40%, HDL declined 25%, LDL and HDL lipid compositions were altered, and hepatic LDLR gene expression was decreased. Diet-induced hypercholesterolemia obscured this phenotype on occasion. In fat-fed female hamsters, ApoF knockdown caused similar but smaller changes in plasma CETP activity and LDL cholesterol. Notably, ApoF knockdown impaired HDL RCT in fat-fed hamsters but increased sterol excretion in chow-fed animals. These in vivo data validate in vitro findings that ApoF regulates lipid transfer to LDL. The consequences of ApoF knockdown on lipoproteins and sterol excretion depend on the underlying lipid status. By minimizing the transfer of HDL-derived CE to LDL, ApoF helps control LDL cholesterol levels when LDL clearance mechanisms are limiting.
Collapse
Affiliation(s)
- Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
4
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
5
|
Rodríguez M, Guardiola M, Oliva I, Carles Vallvé J, Ferré R, Masana L, Parra S, Ribalta J, Castro A. Low-density lipoprotein net charge is a risk factor for atherosclerosis in lupus patients independent of lipid concentrations. Int J Rheum Dis 2018; 22:480-487. [PMID: 30450745 DOI: 10.1111/1756-185x.13445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/17/2018] [Accepted: 10/21/2018] [Indexed: 01/20/2023]
Abstract
AIMS Patients with systemic lupus erythematosus (SLE) suffer from accelerated atherosclerosis. Their most common cause of death is a cardiovascular disease (CVD), in spite of the presence of moderate lipid alterations and normal cardiovascular risk scores. However, cholesterol still accumulates in the arteries of SLE patients, so we aim to identify additional factors that may help explain the residual risk that exists in these patients. We focus on investigating whether the net charge contributes significantly to both the development and the progression of atherosclerosis in patients with SLE. METHODS The lipoproteins from 78 patients with SLE and 32 controls were isolated via sequential ultracentrifugation. Lipoprotein subclasses distributions were analyzed via nuclear magnetic resonance spectroscopy and the net charges of very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density lipoprotein (HDL) were measured using a Zetasizer Nano-ZS. The degree of atherosclerosis (carotid intima-media thickness [cIMT]) was determined in all the participants. RESULTS Each lipoprotein class exhibited a negative net charge. IDL and LDL net charge correlated negatively with cIMT (r = -0.274, P = 0.034; r = -0.288; P = 0.033, respectively) in patients with SLE. This effect was independent of age, body mass index (BMI), gender, tobacco consumption, high-sensitivity C-reactive protein (hsCRP), lipid concentration and lipoprotein particle number. LDL net charge explained 4% of the cIMT variability among these patients; this contribution was also independent of age, BMI, gender, tobacco consumption, lipids levels, apolipoproteins and hsCRP. CONCLUSIONS Low-density lipoprotein net charge may be considered a new independent contributor to subclinical atherosclerosis in SLE patients. The observed relationship was independent of lipid concentrations and extends the prominent role that IDL and LDL play in cardiovascular risk.
Collapse
Affiliation(s)
- Marina Rodríguez
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Montse Guardiola
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Iris Oliva
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Joan Carles Vallvé
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Raimon Ferré
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain.,Unitat de Medicina Vascular i Metabolisme (UVASMET), Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Lluís Masana
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain.,Unitat de Medicina Vascular i Metabolisme (UVASMET), Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Sandra Parra
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Unitat de Malalties Autoinmunes, Medicina Interna, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirurgia, Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, Reus, Spain.,Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Antoni Castro
- Institut d'Investigació Sanitària Pere Virgili, Reus, Spain.,Unitat de Malalties Autoinmunes, Medicina Interna, Hospital Universitari Sant Joan de Reus, Reus, Spain
| |
Collapse
|
6
|
Lauer ME, Graff-Meyer A, Rufer AC, Maugeais C, von der Mark E, Matile H, D'Arcy B, Magg C, Ringler P, Müller SA, Scherer S, Dernick G, Thoma R, Hennig M, Niesor EJ, Stahlberg H. Cholesteryl ester transfer between lipoproteins does not require a ternary tunnel complex with CETP. J Struct Biol 2016; 194:191-8. [PMID: 26876146 DOI: 10.1016/j.jsb.2016.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 01/13/2023]
Abstract
The cholesteryl ester transfer protein (CETP) enables the transfer of cholesteryl ester (CE) from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the plasma compartment. CETP inhibition raises plasma levels of HDL cholesterol; a ternary tunnel complex with CETP bridging HDL and LDL was suggested as a mechanism. Here, we test whether the inhibition of CETP tunnel complex formation is a promising approach to suppress CE transfer from HDL to LDL, for potential treatment of cardio-vascular disease (CVD). Three monoclonal antibodies against different epitopes of CETP are assayed for their potential to interfere with CE transfer between HDL and/or LDL. Surprisingly, antibodies that target the tips of the elongated CETP molecule, interaction sites sterically required to form the suggested transfer complexes, do not interfere with CETP activity, but an antibody binding to the central region does. We show that CETP interacts with HDL, but not with LDL. Our findings demonstrate that a ternary tunnel complex is not the mechanistic prerequisite to transfer CE among lipoproteins.
Collapse
Affiliation(s)
- Matthias E Lauer
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexandra Graff-Meyer
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Arne C Rufer
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Cyrille Maugeais
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Elisabeth von der Mark
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hugues Matile
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Brigitte D'Arcy
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christine Magg
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland; Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Philippe Ringler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Shirley A Müller
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Sebastian Scherer
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gregor Dernick
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Ralf Thoma
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Hennig
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland; Current address: LeadXpro AG, CH-5234 Villigen, Switzerland
| | - Eric J Niesor
- Pharma Research and Early Development, pRED, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland.
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
7
|
Charles MA, Kane JP. New molecular insights into CETP structure and function: a review. J Lipid Res 2012; 53:1451-8. [PMID: 22679067 DOI: 10.1194/jlr.r027011] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is important clinically and is the current target for new drug development. Its structure and mechanism of action has not been well understood. We have combined current new structural and functional methods to compare with relevant prior data. These analyses have led us to propose several steps in CETP's function at the molecular level, in the context of its interactions with lipoproteins, e.g., sensing, penetration, docking, selectivity, ternary complex formation, lipid transfer, and HDL dissociation. These new molecular insights improve our understanding of CETP's mechanisms of action.
Collapse
Affiliation(s)
- M Arthur Charles
- Department of Medicine University of California, San Francisco, CA 94158, USA.
| | | |
Collapse
|
8
|
The effects of apolipoprotein F deficiency on high density lipoprotein cholesterol metabolism in mice. PLoS One 2012; 7:e31616. [PMID: 22363685 PMCID: PMC3282742 DOI: 10.1371/journal.pone.0031616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/10/2012] [Indexed: 12/30/2022] Open
Abstract
Apolipoprotein F (apoF) is 29 kilodalton secreted sialoglycoprotein that resides on the HDL and LDL fractions of human plasma. Human ApoF is also known as Lipid Transfer Inhibitor protein (LTIP) based on its ability to inhibit cholesteryl ester transfer protein (CETP)-mediated transfer events between lipoproteins. In contrast to other apolipoproteins, ApoF is predicted to lack strong amphipathic alpha helices and its true physiological function remains unknown. We previously showed that overexpression of Apolipoprotein F in mice reduced HDL cholesterol levels by 20–25% by accelerating clearance from the circulation. In order to investigate the effect of physiological levels of ApoF expression on HDL cholesterol metabolism, we generated ApoF deficient mice. Unexpectedly, deletion of ApoF had no substantial impact on plasma lipid concentrations, HDL size, lipid or protein composition. Sex-specific differences were observed in hepatic cholesterol content as well as serum cholesterol efflux capacity. Female ApoF KO mice had increased liver cholesteryl ester content relative to wild type controls on a chow diet (KO: 3.4+/−0.9 mg/dl vs. WT: 1.2+/−0.3 mg/dl, p<0.05). No differences were observed in ABCG1-mediated cholesterol efflux capacity in either sex. Interestingly, ApoB-depleted serum from male KO mice was less effective at promoting ABCA1-mediated cholesterol efflux from J774 macrophages relative to WT controls.
Collapse
|
9
|
Cazita PM, Castilho LN, Carvalho MDT, Sesso AC, Oliveira HCF, Quintão ECR. Reversible flow of cholesteryl ester between high-density lipoproteins and triacylglycerol-rich particles is modulated by the fatty acid composition and concentration of triacylglycerols. Braz J Med Biol Res 2010; 43:1135-42. [PMID: 21140099 DOI: 10.1590/s0100-879x2010007500136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/10/2010] [Indexed: 11/21/2022] Open
Abstract
We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.
Collapse
|
10
|
Vourvouhaki E, Dedoussis GV. Cholesterol ester transfer protein: a therapeutic target in atherosclerosis? Expert Opin Ther Targets 2008; 12:937-48. [DOI: 10.1517/14728222.12.8.937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Sparks DL, Chatterjee C, Young E, Renwick J, Pandey NR. Lipoprotein charge and vascular lipid metabolism. Chem Phys Lipids 2008; 154:1-6. [DOI: 10.1016/j.chemphyslip.2008.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 11/27/2022]
|
12
|
Boucher JG, Nguyen T, Sparks DL. Lipoprotein electrostatic properties regulate hepatic lipase association and activity. Biochem Cell Biol 2008; 85:696-708. [PMID: 18059528 DOI: 10.1139/o07-137] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of lipoprotein electrostatic properties on the catalytic regulation of hepatic lipase (HL) was investigated. Enrichment of serum or very low density lipoprotein (VLDL) with oleic acid increased lipoprotein negative charge and stimulated lipid hydrolysis by HL. Similarly, enrichment of serum or isolated lipoproteins with the anionic phospholipids phosphatidylinositol (PI), phosphatidic acid, or phosphatidylserine also increased lipoprotein negative charge and stimulated hydrolysis by HL. Anionic lipids had a small effect on phospholipid hydrolysis, but significantly stimulated triacylglyceride (TG) hydrolysis. High density lipoprotein (HDL) charge appears to have a specific effect on lipolysis. Enrichment of HDL with PI significantly stimulated VLDL-TG hydrolysis by HL. To determine whether HDL charge affects the association of HL with HDL and VLDL, HL-lipoprotein interactions were probed immunochemically. Under normal circumstances, HL associates with HDL particles, and only small amounts bind to VLDL. PI enrichment of HDL blocked the binding of HL with HDL. These data indicate that increasing the negative charge of HDL stimulates VLDL-TG hydrolysis by reducing the association of HL with HDL. Therefore, HDL controls the hydrolysis of VLDL by affecting the interlipoprotein association of HL. Lipoprotein electrostatic properties regulate lipase association and are an important regulator of the binding and activity of lipolytic enzymes.
Collapse
Affiliation(s)
- Jonathan G Boucher
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, 40 Ruskin Street H452, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
13
|
Pérez-Méndez O, Alvarez-Salcedo P, Carreón Torres E, Luc G, Arce Fonseca M, de la Peña A, Cruz Robles D, García JJ, Vargas-Alarcón G. Palmitic acid in HDL is associated to low apo A-I fractional catabolic rates in vivo. Clin Chim Acta 2007; 378:53-8. [PMID: 17173884 DOI: 10.1016/j.cca.2006.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/11/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND HDL becomes enriched with non-esterified fatty acids (NEFAs) in some pathologies, such as nephrotic syndrome, as well as after aerobic exercise. However, little is known about the impact of NEFAs on HDL metabolism. We investigated the effects of one NEFA, the palmitic acid, on HDL structure and catabolism. METHODS HDL enrichment with palmitic acid (HDLPal) was performed by fusing phosphatidyl choline small unilamellar vesicles containing the NEFA with human HDL isolated from a pool of 5 normolipidemic plasma. HDL enriched only with phosphatidyl choline (HDLPhl) and native HDL (HDLCtrl) were included as controls. RESULTS As expected, HDLPal surface charge density was higher than HDLPhl and HDLCtrl (2014.4+/-164.8 vs. 1682.7+/-149.5 and 1758.2+/-124.3-esu/cm2, respectively, p<0.05). Both, HDLPal and HDLPhl were better substrates for cholesteryl esters transfer protein (CETP) than HDLCtrl (% of transfer, 13.02+/-3.8 and 12.7+/-4.5 vs. 7.8+/-2.7% in 16 h, respectively, p<0.05). HDLPal apo A-I catabolism in vivo, as performed in New Zealand white rabbits by exogenous radiolabeling, was markedly lower than that of HDLPhl and HDLCtrl (fractional catabolic rate, 0.019+/-0.008 vs. 0.030+/-0.005 and 0.047+/-0.003 h-1, respectively, p<0.001), suggesting that negative charge is inversely related to HDL-apo A-I catabolism. CONCLUSIONS Enrichment with palmitic acid increases the negative electric charge of HDL at physiological pH, contributes to decrease their catabolism, and is associated to an enhanced lipid transfer by CETP that has been related to the atherogenic process.
Collapse
Affiliation(s)
- Oscar Pérez-Méndez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Partial suppression of CETP activity beneficially modifies the lipid transfer profile of plasma. Atherosclerosis 2006; 192:100-7. [PMID: 16905138 DOI: 10.1016/j.atherosclerosis.2006.06.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 06/08/2006] [Accepted: 06/25/2006] [Indexed: 11/25/2022]
Abstract
Cholesteryl ester transfer protein (CETP) regulates human lipoprotein metabolism. Because reducing CETP increases plasma HDL, CETP inhibitors are currently being investigated for their pharmacologic value. However, complete CETP deficiency may have undesirable consequences. In contrast, based on previous studies with purified components, we hypothesized that partial CETP inhibition, which will still elevate HDL, may induce beneficial changes in plasma lipid metabolism. To address this, CETP activity in human plasma was variably inhibited with monoclonal antibody. In control plasma, VLDL to LDL lipid transfer was >2-fold higher than to HDL(3) with lipid transfer to HDL(2) intermediate. However, individual lipid transfer events were uniquely sensitive to CETP suppression such that when CETP activity was inhibited by 60%, lipid transfer from VLDL to LDL, HDL(2) and HDL(3) were equal. The ratio of lipid transfers to LDL versus HDL declined linearly with CETP inhibition. In mass lipid transfer experiments, 25-50% inhibition of CETP significantly reduced lipid flux between VLDL and LDL but minimally affected cholesteryl ester (CE) loss from HDL. Complete CETP inhibition did not reduce cholesterol esterification rates but completely blocked the delivery of new CE to VLDL, whereas, 50% inhibition of CETP reduced this CE flux to VLDL by <20%. Thus, inhibition of CETP by <or=50% preferentially blocks lipid transfers involving LDL while largely maintaining lipid flux through HDL. These results suggest that a more beneficial therapeutic outcome may be achieved with partial, rather than extensive, CETP suppression.
Collapse
|
15
|
Liinamaa MJ, Hannuksela ML, Rämet ME, Savolainen MJ. DEFECTIVE GLYCOSYLATION OF CHOLESTERYL ESTER TRANSFER PROTEIN IN PLASMA FROM ALCOHOL ABUSERS. Alcohol Alcohol 2005; 41:18-23. [PMID: 16203750 DOI: 10.1093/alcalc/agh216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Alcohol consumption reduces the carbohydrate content of some glycoproteins, e.g. carbohydrate-deficient transferrin. The aim of this study was to investigate if there is such an alcohol-induced glycosylation defect in plasma cholesteryl ester transfer protein (CETP). A defect in the posttranslational glycosylation of CETP may affect its structure and electrical charge and may therefore affect its function. CETP activity is low in alcohol abusers. METHODS We studied the effect of alcohol consumption on CETP properties in 10 alcohol abusers and 10 control subjects. CETP was partially purified from lipoprotein-free plasma by FPLC using a Phenyl-Sepharose column. Isoelectric focusing, polyacrylamide gel electrophoresis, and western blotting were performed for partially purified CETP. RESULTS CETP had a lower molecular weight in the alcohol abusers than in the controls (range 50.6-84.0 kDa in the alcohol abusers vs 51.3-85.0 kDa in the controls). CETP purified from alcohol abusers had a higher isoelectric point, indicating a lower negative charge on the surface of the protein than in the controls' CETP. A similar effect was observed when control CETP was incubated with neuraminidase, an enzyme which is known to remove sialic acid from glycoproteins. CONCLUSIONS We conclude that CETP from alcohol abusers may have a glycosylation defect due to defective sialylation caused posttranslationally by alcohol itself or its metabolite acetaldehyde. The defective glycosylation of CETP associated with altered binding to lipoproteins may lead to the low CETP activity observed previously in alcoholic subjects.
Collapse
Affiliation(s)
- M Johanna Liinamaa
- Department of Internal Medicine, University of Oulu, PO Box 5000, 90014 Oulu, Finland.
| | | | | | | |
Collapse
|