1
|
Khunweeraphong N, Mitchell-White J, Szöllősi D, Hussein T, Kuchler K, Kerr ID, Stockner T, Lee JY. Picky ABCG5/G8 and promiscuous ABCG2 - a tale of fatty diets and drug toxicity. FEBS Lett 2020; 594:4035-4058. [PMID: 32978801 PMCID: PMC7756502 DOI: 10.1002/1873-3468.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Structural data on ABCG5/G8 and ABCG2 reveal a unique molecular architecture for subfamily G ATP‐binding cassette (ABCG) transporters and disclose putative substrate‐binding sites. ABCG5/G8 and ABCG2 appear to use several unique structural motifs to execute transport, including the triple helical bundles, the membrane‐embedded polar relay, the re‐entry helices, and a hydrophobic valve. Interestingly, ABCG2 shows extreme substrate promiscuity, whereas ABCG5/G8 transports only sterol molecules. ABCG2 structures suggest a large internal cavity, serving as a binding region for substrates and inhibitors, while mutational and pharmacological analyses support the notion of multiple binding sites. By contrast, ABCG5/G8 shows a collapsed cavity of insufficient size to hold substrates. Indeed, mutational analyses indicate a sterol‐binding site at the hydrophobic interface between the transporter and the lipid bilayer. In this review, we highlight key differences and similarities between ABCG2 and ABCG5/G8 structures. We further discuss the relevance of distinct and shared structural features in the context of their physiological functions. Finally, we elaborate on how ABCG2 and ABCG5/G8 could pave the way for studies on other ABCG transporters.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria.,CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - James Mitchell-White
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dániel Szöllősi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Toka Hussein
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karl Kuchler
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Davis A, Cole LK, Min KKJ, Chow S, Choy PC, Mymin D, Hatch GM. A Phytosterolemic Mixture of Sterols Inhibits Cholesterol Synthesis, Esterification, and Low-Density Lipoprotein Receptor mRNA Abundance in HepG2 Cells. Lipids 2020; 55:193-198. [PMID: 32065674 DOI: 10.1002/lipd.12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 11/11/2022]
Abstract
HepG2 cells were incubated with a 16.5:1.7:1 ratio of cholesterol:sitosterol:campesterol (CSC), a ratio of the major sterols observed in the plasma of phytosterolemia patients, or with cholesterol alone in combination with [14 C]acetate for 24 h and the radioactivity incorporated into lipids determined. Cells incubated with CSC exhibited a 40% reduction in cholesterol esterification (p < 0.05) compared to cells incubated with cholesterol alone. In addition, a 17.5-fold reduction (p < 0.05) in total cholesterol (cholesterol plus cholesteryl ester) synthesis from [14 C]acetate was observed in cells incubated with CSC compared to cholesterol alone. Low-density lipoprotein receptor (LDLR) mRNA abundance was lower in cells incubated with CSC compared to cells incubated with cholesterol alone. Our results suggest that incubation of HepG2 cells with a ratio of sterols that mimic the plasma concentration seen in phytosterolemia patients reduces cholesterol esterification, total cholesterol synthesis, and inhibits LDLR mRNA abundance. We suggest that future cell and animal-based work on phytostosterolemia might employ this methodology to serve as a novel paradigm of the disease.
Collapse
Affiliation(s)
- April Davis
- Departament of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Laura K Cole
- Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kevin Kyung-Jun Min
- DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Sidney Chow
- DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Patrick C Choy
- Departament of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.,Center for Research and Treatment of Atherosclerosis, Winnipeg, MB, Canada
| | - David Mymin
- Center for Research and Treatment of Atherosclerosis, Winnipeg, MB, Canada.,Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Grant M Hatch
- Departament of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada.,Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada.,DREAM Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.,Center for Research and Treatment of Atherosclerosis, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Abstract
Genetic variation arises through multiple different alleles that vary in frequency and severity of effect. Mutations that give rise to Mendelian disorders, such as the LDL receptor (LDLR) mutations that result in familial hypercholesterolaemia, are efficiently winnowed from the population by purifying selection and are almost inevitably rare. Conversely, alleles that are common in the population (such that homozygotes for the minor allele are present even in modest sample sizes) typically have very modest phenotypic effects. Mutations in the gene for proprotein convertase subtilisin/kexin type 9 (PCSK9) represent an unusual but informative exception in that they are relatively common but have large effects on phenotype. Loss-of-function mutations in PCSK9 occur in ~2.5% of African Americans and are associated with large reductions in coronary heart disease (CHD) risk. The development of agents to inhibit PCSK9 demonstrates the utility of translating genetics into clinical therapeutics. Attempts to identify genes responsible for hypercholesterolaemia have used traditional linkage analysis, which requires samples collected from multiple families with defects in the same gene, or genome-wide association, which requires thousands of samples from the population. More recently, whole-exome sequencing studies have revealed loss-of-function mutations in ANGPTL3 associated with pan-hypolipidemia, and in APOC3 that confer protection against CHD. The application of whole-exome sequencing to large populations or to carefully selected patients can streamline the discovery of causal genetic mutations.
Collapse
Affiliation(s)
- J C Cohen
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015. [PMID: 26620375 DOI: 10.1007/s11745‐015‐4096‐7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada
- Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Alphonse PAS, Jones PJH. Revisiting Human Cholesterol Synthesis and Absorption: The Reciprocity Paradigm and its Key Regulators. Lipids 2015; 51:519-36. [PMID: 26620375 DOI: 10.1007/s11745-015-4096-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
Hypercholesterolemia is a major risk factor for cardiovascular disease. Cholesterol homeostasis in the body is governed by the interplay between absorption, synthesis, and excretion or conversion of cholesterol into bile acids. A reciprocal relationship between cholesterol synthesis and absorption is known to regulate circulating cholesterol in response to dietary or therapeutic interventions. However, the degree to which these factors affect synthesis and absorption and the extent to which one vector shifts in response to the other are not thoroughly understood. Also, huge inter-individual variability exists in the manner in which the two systems act in response to any cholesterol-lowering treatment. Various factors are known to account for this variability and in light of recent experimental advances new players such as gene-gene interactions, gene-environmental effects, and gut microbiome hold immense potential in offering an explanation to the complex traits of inter-individual variability in human cholesterol metabolism. In this context, the objective of the present review is to provide an overview on cholesterol metabolism and discuss the role of potential factors such as genetics, epigenetics, epistasis, and gut microbiome, as well as other regulators in modulating cholesterol metabolism, especially emphasizing the reciprocal relationship between cholesterol synthesis and absorption. Furthermore, an evaluation of the implications of this push-pull mechanism on cholesterol-lowering strategies is presented.
Collapse
Affiliation(s)
- Peter A S Alphonse
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.
| | - Peter J H Jones
- Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals (RCFFN), University of Manitoba, 196, Innovation Drive, SmartPark, Winnipeg, MB, R3T 2N2, Canada.,Food Science, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Aberrant de novo cholesterogenesis: Clinical significance and implications. Clin Chim Acta 2015; 450:356-61. [PMID: 26386164 DOI: 10.1016/j.cca.2015.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023]
Abstract
Human cells can acquire cholesterol from the circulation but also have the ability to synthesize it via de novo cholesterogenesis (DC). Cholesterol absorption and de novo cholesterogenesis are the key processes that modulate cholesterol homeostasis in the human body. The endogenous biosynthesis of cholesterol substantially contributes to the whole-body cholesterol pool. Additionally, dysregulation of this pathway is associated with diverse medical conditions. The present review focuses on our current understanding of the cholesterogenic pathway and the various different factors regulating this pathway. It also highlights dysregulation of this pathway in various physiological and pathological conditions including cardiovascular diseases, type II diabetes, obesity and viral infections.
Collapse
|
7
|
Wong WPS, Altemus JB, Hester JF, Chan ER, Côté JF, Serre D, Sehayek E. Cathepsin B is a novel gender-dependent determinant of cholesterol absorption from the intestine. J Lipid Res 2012; 54:816-822. [PMID: 23248330 DOI: 10.1194/jlr.m034579] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a mouse C57BL/6J×CASA/Rk intercross to map a locus on chromosome 14 that displayed a gender-dependent effect on cholesterol absorption from the intestine. Studies in congenic animals revealed a complex locus with multiple operating genetic determinants resulting in alternating gender-dependent phenotypic effects. Fine-mapping narrowed the locus to a critical 6.3 Mb interval. Female subcongenics, but not males, of the critical interval displayed a decrease of 33% in cholesterol absorption. RNA-Seq analysis of female subcongenic jejunum revealed that cysteine protease cathepsin B (Ctsb) is a candidate to explain the interval effect. Consistent with the phenotype in critical interval subcongenics, female Ctsb knockout mice, but not males, displayed a decrease of 31% in cholesterol absorption. Although studies in Ctsb knockouts revealed a gender-dependent effect on cholesterol absorption, further fine-mapping dismissed a role for Ctsb in determining the effect of the critical 6.3 Mb interval on cholesterol absorption.
Collapse
Affiliation(s)
- Winifred P S Wong
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Jessica B Altemus
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James F Hester
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Ernest R Chan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | | | - David Serre
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Ephraim Sehayek
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
8
|
Myrie SB, Mymin D, Triggs-Raine B, Jones PJH. Serum lipids, plant sterols, and cholesterol kinetic responses to plant sterol supplementation in phytosterolemia heterozygotes and control individuals. Am J Clin Nutr 2012; 95:837-44. [PMID: 22378727 PMCID: PMC3302361 DOI: 10.3945/ajcn.111.028985] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Plant sterol (PS) supplementation is increasingly accepted as a dietary strategy to lower plasma cholesterol concentrations. However, information is scarce about the effect of increased PS intake in potentially vulnerable groups, such as phytosterolemia heterozygotes (HET). OBJECTIVE This study assessed the responsiveness of circulating PS and lipid concentrations and cholesterol kinetics (absorption and synthesis) to daily PS supplementation in HET (ABCG8 S107X mutation) compared with a healthy control cohort. DESIGN A double-blind, randomized, crossover, placebo-controlled study was conducted in 10 HET and 15 control subjects. The participants had a mean (±SEM) age of 34 ± 2 y and a BMI (in kg/m²) of 29.9 ± 1.1 and consumed ∼1.6 g PS or placebo capsules daily with supper for 4 wk. Cholesterol absorption and synthesis were assessed by using [¹³C]cholesterol and deuterium oxide, respectively. RESULTS Plasma LDL-cholesterol concentrations decreased (P = 0.006) in both groups after PS supplementation (HET: 2.73 ± 0.19 mmol/L; control: 3.11 ± 0.19 mmol/L) compared with placebo (HET: 3.12 ± 0.20 mmol/L; control: 3.50 ± 0.21 mmol/L), whereas PS concentrations (campesterol+β-sitosterol) increased (P = 0.03) in both groups after PS supplementation (HET: 39.72 ± 6.05 μmol/L; control: 24.03 ± 1.65 μmol/L) compared with placebo (HET: 27.32 ± 3.80 μmol/L; control: 21.12 ± 2.05 μmol/L). Cholesterol absorption efficiency decreased (P = 0.010) by ∼22% and ∼17% and synthesis rates increased (P = 0.040) by ∼20% and ∼24% in the HET and control groups, respectively, in response to PS consumption compared with placebo. CONCLUSION These data suggest that heterozygosity for the ABCG8 S107X mutation does not influence the action of dietary PS on circulating cholesterol concentrations but may affect sterol absorption.
Collapse
Affiliation(s)
- Semone B Myrie
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
9
|
Calandra S, Tarugi P, Speedy HE, Dean AF, Bertolini S, Shoulders CC. Mechanisms and genetic determinants regulating sterol absorption, circulating LDL levels, and sterol elimination: implications for classification and disease risk. J Lipid Res 2011; 52:1885-926. [PMID: 21862702 DOI: 10.1194/jlr.r017855] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This review integrates historical biochemical and modern genetic findings that underpin our understanding of the low-density lipoprotein (LDL) dyslipidemias that bear on human disease. These range from life-threatening conditions of infancy through severe coronary heart disease of young adulthood, to indolent disorders of middle- and old-age. We particularly focus on the biological aspects of those gene mutations and variants that impact on sterol absorption and hepatobiliary excretion via specific membrane transporter systems (NPC1L1, ABCG5/8); the incorporation of dietary sterols (MTP) and of de novo synthesized lipids (HMGCR, TRIB1) into apoB-containing lipoproteins (APOB) and their release into the circulation (ANGPTL3, SARA2, SORT1); and receptor-mediated uptake of LDL and of intestinal and hepatic-derived lipoprotein remnants (LDLR, APOB, APOE, LDLRAP1, PCSK9, IDOL). The insights gained from integrating the wealth of genetic data with biological processes have important implications for the classification of clinical and presymptomatic diagnoses of traditional LDL dyslipidemias, sitosterolemia, and newly emerging phenotypes, as well as their management through both nutritional and pharmaceutical means.
Collapse
Affiliation(s)
- Sebastiano Calandra
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Systematic haplotype analysis resolves a complex plasma plant sterol locus on the Micronesian Island of Kosrae. Proc Natl Acad Sci U S A 2009; 106:13886-91. [PMID: 19667188 DOI: 10.1073/pnas.0907336106] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pinpointing culprit causal variants along signal peaks of genome-wide association studies (GWAS) is challenging. To overcome confounding effects of multiple independent variants at such a locus and narrow the interval for causal allele capture, we developed an approach that maps local shared haplotypes harboring a putative causal variant. We demonstrate our method in an extreme isolate founder population, the pacific Island of Kosrae. We analyzed plasma plant sterol (PPS) levels, a surrogate measure of cholesterol absorption from the intestine, where previous studies have implicated 2p21 mutations in the ATP binding cassette subfamily G members 5 or 8 (ABCG5 or ABCG8) genes. We have previously reported that 11.1% of the islanders are carriers of a frameshift ABCG8 mutation increasing PPS levels in carriers by 50%. GWAS adjusted for this mutation revealed genomewide significant signals along 11 Mb around it. To fine-map this signal, we detected pairwise identity-by-descent haplotypes using our tool GERMLINE and implemented a clustering algorithm to identify haplotypes shared across multiple samples with their unique shared boundaries. A single 526-kb haplotype mapped strongly to PPS levels, dramatically refining the mapped interval. This haplotype spans the ABCG5/ABCG8 genes, is carried by 1.8% of the islanders, and results in a striking 100% increase of PPS in carriers. Resequencing of ABCG5 in these carriers found a D450H missense mutation along the associated haplotype. These findings exemplify the power of haplotype analysis for mapping mutations in isolated populations and specifically for dissecting effects of multiple variants of the same locus.
Collapse
|
11
|
Togo M, Hashimoto Y, Iso-O N, Kurano M, Hara M, Kadowaki T, Koike K, Tsukamoto K. Identification of a novel mutation for phytosterolemia. Genetic analyses of 2 cases. Clin Chim Acta 2009; 401:165-9. [DOI: 10.1016/j.cca.2008.10.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/24/2008] [Accepted: 10/24/2008] [Indexed: 11/30/2022]
|
12
|
Smith JG, Lowe JK, Kovvali S, Maller JB, Salit J, Daly MJ, Stoffel M, Altshuler DM, Friedman JM, Breslow JL, Newton-Cheh C. Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. Heart Rhythm 2009; 6:634-41. [PMID: 19389651 DOI: 10.1016/j.hrthm.2009.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/11/2009] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cardiac conduction, as assessed by electrocardiographic PR interval and QRS duration, is an important electrophysiological trait and a determinant of arrhythmia risk. OBJECTIVE We sought to identify common genetic determinants of these measures. METHODS We examined 1604 individuals from the island of Kosrae, Federated States of Micronesia, an isolated founder population. We adjusted for covariates and estimated the heritability of quantitative electrocardiographic QRS duration and PR interval and, secondarily, its subcomponents, P-wave duration and PR segment. Finally, we performed a genome-wide association study (GWAS) in a subset of 1262 individuals genotyped using the Affymetrix GeneChip Human Mapping 500K microarray. RESULTS The heritability of PR interval was 34% (standard error [SE] 5%, P = 4 x 10(-18)); of PR segment, 31% (SE 6%, P = 3.2 x 10(-13)); and of P-wave duration, 17% (SE 5%, P = 5.8 x 10(-6)), but the heritablility of QRS duration was only 3% (SE 4%, P = .20). Hence, GWAS was performed only for the PR interval and its subcomponents. A total of 338,049 single nucleotide polymorphisms (SNPs) passed quality filters. For the PR interval, the most significantly associated SNPs were located in and downstream of the alpha-subunit of the cardiac voltage-gated sodium channel gene SCN5A, with a 4.8 ms (SE 1.0) or 0.23 standard deviation increase in adjusted PR interval for each minor allele copy of rs7638909 (P = 1.6 x 10(-6), minor allele frequency 0.40). These SNPs were also associated with P-wave duration (P = 1.5 x 10(-4)) and PR segment (P = .01) but not with QRS duration (P > or =.22). CONCLUSIONS The PR interval and its subcomponents showed substantial heritability in a South Pacific islander population and were associated with common genetic variation in SCN5A.
Collapse
Affiliation(s)
- J Gustav Smith
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chen ZC, Shin SJ, Kuo KK, Lin KD, Yu ML, Hsiao PJ. Significant association of ABCG8:D19H gene polymorphism with hypercholesterolemia and insulin resistance. J Hum Genet 2008; 53:757-763. [PMID: 18581044 DOI: 10.1007/s10038-008-0310-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 05/25/2008] [Indexed: 11/28/2022]
Abstract
The absorption efficiency of cholesterol is closely correlated to dietary phytosterol content and determined by genetic factors. The ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 act as a sterol efflux pump to regulate the absorption of cholesterol and phytosterol. The levels of cholesterol and phytosterol associated with a Chinese diet are very different from those associated with a Western diet. This study aims to explore the association between serum total cholesterol/LDL-C levels and ABCG5/ABCG8 polymorphisms in a Taiwanese population consuming an ordinary Chinese diet. A total of 1,046 subjects (894 men and 152 women) were recruited in a hospital-based health check-up center in Kaohsiung Medical University Hospital. Five nonsynonymous polymorphisms of Q604E (ABCG5), D19H, C54Y, T400 K and A632 V (ABCG8) were analyzed by TaqMan genotyping assay. Analysis showed that the D19H polymorphism of the ABCG8 gene was significantly associated with serum total cholesterol, LDL-C levels and HOMA-IR index. Adjusting for sex and age, subjects with the D19H (GC) genotype were significantly associated with a threefold higher risk of high cholesterol and LDL-C levels than subjects with D19 (GG). These results suggest that the D19H polymorphism of ABCG8 could be considered a susceptible gene marker indicating an increased likelihood of developing high cholesterol and LDL-C levels in Taiwanese consuming an ordinary Chinese diet. It is supposed that the coexistence of higher insulin resistance and hypercholesterolemia for carriers of the D19H polymorphism may result in a greater risk of cardiovascular disease.
Collapse
Affiliation(s)
- Zhih-Cherng Chen
- Division of Cardiology and General Medicine, Chi-Mei Medical Center, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Shyi-Jang Shin
- Division of Endocrinology and Metabolism, Internal Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Hepatobiliary Division, Department of Surgery, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kun-Der Lin
- Division of Endocrinology and Metabolism, Internal Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan
| | - Ming-Lung Yu
- Department of Preventive Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pi-Jung Hsiao
- Division of Endocrinology and Metabolism, Internal Medicine, Kaohsiung Medical University, 100 Tzyou 1st Rd, Kaohsiung, 807, Taiwan.
| |
Collapse
|
14
|
Keller S, Helbig D, Härtl A, Jahreis G. Nanoscale and customary non-esterified sitosterols are equally enriched in different body compartments of the guinea pig. Mol Nutr Food Res 2008; 51:1503-9. [PMID: 17987610 DOI: 10.1002/mnfr.200700237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The impact of sitosterol formulation particle size on the intestinal sterol absorption and the sterol status in various tissues in Dunkin Hartley guinea pigs was investigated. Three groups of animals (six each) were fed a basal diet ("control") or a basal diet containing either customary sitosterol ("customary", particle size: 10 000-90 000 nm) or nanoscale sitosterol ("nanoscale", particle size: 200-300 nm). The average daily sitosterol intake was 21 +/- 7 mg (control), 154 +/- 8 mg (customary), and 127 +/- 18 mg (nanoscale) for 2 weeks. Sitosterol and cholesterol were analyzed in samples of plasma, blood cells, bile, liver, kidney, jejunal mucosa/serosa, cecum, colon and feces. Concentrations of sitosterol in all analyzed matrices increased significantly in the supplemented groups when compared to control group. No differences in the sitosterol concentrations in analyzed matrices occurred between nanoscale and customary group. The cholesterol concentrations in tissues remained unchanged. Fecal fatty acid and sterol distributions were modified during sitosterol intervention. Both particle sizes equally increased sitosterol levels in cholesterol-metabolizing compartments in the guinea pig. No differences in body compartment accumulation and intestinal absorption of the different sitosterol particle sizes were observed.
Collapse
Affiliation(s)
- Sylvia Keller
- Friedrich Schiller University, Institute of Nutrition, Dornburger Strasse 24, Jena, Germany
| | | | | | | |
Collapse
|
15
|
Abstract
Phytochemicals have been proposed to offer protection against a variety of chronic ailments including cardiovascular diseases, obesity, diabetes, and cancer. As for cancer protection, it has been estimated that diets rich in phytochemicals can significantly reduce cancer risk by as much as 20%. Phytosterols are specific phytochemicals that resemble cholesterol in structure but are found exclusively in plants. Phytosterols are absorbed from the diet in small but significant amounts. Epidemiological data suggest that the phytosterol content of the diet is associated with a reduction in common cancers including cancers of the colon, breast, and prostate. The means by which dietary phytosterols may be achieving these effects is becoming clearer from molecular studies with tumorigenic research models. Phytosterols affect host systems potentially enabling more robust antitumor responses, including the boosting of immune recognition of cancer, influencing hormonal dependent growth of endocrine tumors, and altering sterol biosynthesis. In addition, phytosterols have effects that directly inhibit tumor growth, including the slowing of cell cycle progression, the induction of apoptosis, and the inhibition of tumor metastasis. This review summarizes the current state of knowledge regarding the anticancer effects of phytosterols.
Collapse
Affiliation(s)
- Peter G Bradford
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3000, USA.
| | | |
Collapse
|
16
|
Santosa S, Varady KA, AbuMweis S, Jones PJH. Physiological and therapeutic factors affecting cholesterol metabolism: does a reciprocal relationship between cholesterol absorption and synthesis really exist? Life Sci 2006; 80:505-14. [PMID: 17113605 DOI: 10.1016/j.lfs.2006.10.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 09/18/2006] [Accepted: 10/10/2006] [Indexed: 01/06/2023]
Abstract
Cholesterol absorption and synthesis contribute to maintaining cholesterol homeostasis. Several physiological and therapeutic factors affect cholesterol homeostasis, including: genetics, circadian rhythm, body weight, plant sterols, ezetimibe, and statin therapy. The present objective is to determine the main vector, i.e. cholesterol absorption or synthesis, affected by each of these factors, and to examine whether an alteration in one vector is linked to a reciprocal change in the other. Current techniques used to assess cholesterol absorption and synthesis are also reviewed. Review of physiological factors affecting cholesterol metabolism suggest a reciprocal relationship between these two vectors. Carriers of the E2 isoform of apolipoprotein E and ATP binding cassette (ABC) G8 19H (exon 1 mutation) show a decrease in cholesterol absorption accompanied by a corresponding increase in synthesis. Circadian rhythm affects cholesterol synthesis, however, its effect on absorption has yet to be established. Obese subjects show an increase in cholesterol synthesis with a subsequent decrease in cholesterol absorption. Weight loss down regulates cholesterol synthesis, but has little or no effect on absorption. In the case of therapeutic factors, plant sterols and stanols inhibit cholesterol absorption, which results in a compensatory increase in synthesis. Ezetimibe also decreases intestinal absorption, while reciprocally increasing synthesis. Statin therapy down regulates synthesis, which is accompanied by a rise in absorption. These findings suggest that a change in one vector, fairly consistently, results in a compensatory and opposing change in the other. An understanding of this reciprocal relationship between cholesterol absorption and synthesis may allow for the development of more effective interventions for dyslipidemic disorders.
Collapse
Affiliation(s)
- Sylvia Santosa
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
17
|
Chan YM, Varady KA, Lin Y, Trautwein E, Mensink RP, Plat J, Jones PJH. Plasma Concentrations of Plant Sterols: Physiology and Relationship with Coronary Heart Disease. Nutr Rev 2006; 64:385-402. [PMID: 17002235 DOI: 10.1111/j.1753-4887.2006.tb00224.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Recently, it has been questioned whether elevated levels of circulating plant sterols increase the risk of coronary heart disease (CHD). To date, no definitive conclusions regarding such a relationship have been reached, nor have there been any studies summarizing the factors that contribute to the observed elevations in plant sterol concentrations in plasma. Thus, the purpose of this review is to systematically compare the plant sterol levels of subjects from the general population and to describe factors that contribute to the variations observed. The question of whether elevated plasma concentrations of plant sterols are associated with an increased risk of CHD was also assessed. Results indicate that the key factors accounting for variations in circulating plant sterol concentrations include: apolipoprotein E phenotypes, ATP-binding cassette transporter polymorphisms, use of statin drugs, presence of metabolic syndrome, dietary intake of plant sterols, gender, and analytical techniques used in the measurement of plant sterols in the plasma. An analysis of the studies examining the relationship between circulating levels of plant sterols and CHD risk in non-sitosterolemic populations revealed no clear associations. Furthermore, it was shown that the above-mentioned factors play an important role in determining the levels of plant sterols in plasma. Since these factors may act as potential confounders, they must be controlled for before more solid conclusions can be reached.
Collapse
Affiliation(s)
- Yen-Ming Chan
- School of Dietetics and Human Nutrition, McGill University, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Québec, Canada H9X 3V9
| | | | | | | | | | | | | |
Collapse
|
18
|
Sehayek E, Fung YY, Yu HJ, Lembcke J, Ceglarek U, Teupser D, Thiery J, Lutjohann D, von Bergmann K, Breslow JL. A complex plasma plant sterol locus on mouse chromosome 14 has at least two genes regulating intestinal sterol absorption. J Lipid Res 2006; 47:2291-6. [PMID: 16840795 DOI: 10.1194/jlr.m600202-jlr200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously identified two inbred mouse strains, C57BL/6J and CASA/Rk, with different plasma plant sterol levels. An intercross between these strains revealed a broad plasma plant sterol locus on chromosome 14, which peaked at 17 centimorgan (cM) with a maximum logarithm of the odds score of 9.9. Studies in a chromosome 14 congenic strain, 14KK, with a 4-60 cM CASA/Rk interval on the C57BL/6J background revealed that males, but not females, had decreased plasma plant sterol levels and intestinal cholesterol absorption. In two subcongenic strains, 14PKK and 14DKK, with 4-19.5 and 19.5-60 cM CASA/Rk intervals, respectively, both males and females had decreased plasma plant sterol levels and decreased intestinal cholesterol absorption. Compatible with the decreased plasma plant sterol phenotype, 14PKK mice had increased biliary plant sterol excretion, whereas 14DKK mice did not. Therefore, gender-dependent interactions of genes at the 14PKK and 14DKK intervals are likely to underlie the 14KK interval effect on plasma plant sterol levels and sterol absorption from the intestine. These studies confirm the plasma plant sterol locus on mouse chromosome 14 and provide evidence that there are at least two sets of genes operating: one set affecting intestinal sterol absorption and biliary excretion, and the other set mainly affecting intestinal sterol absorption.
Collapse
Affiliation(s)
- Ephraim Sehayek
- Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rees DC, Iolascon A, Carella M, O'marcaigh AS, Kendra JR, Jowitt SN, Wales JK, Vora A, Makris M, Manning N, Nicolaou A, Fisher J, Mann A, Machin SJ, Clayton PT, Gasparini P, Stewart GW. Stomatocytic haemolysis and macrothrombocytopenia (Mediterranean stomatocytosis/macrothrombocytopenia) is the haematological presentation of phytosterolaemia. Br J Haematol 2005; 130:297-309. [PMID: 16029460 DOI: 10.1111/j.1365-2141.2005.05599.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phytosterolaemia (sitosterolaemia) is a recessively inherited metabolic condition in which the absorption of both cholesterol and plant-derived cholesterol-like molecules at the gut is unselective and unrestricted. In haematology, Mediterranean stomatocytosis or Mediterranean macrothrombocytopenia is a poorly understood haematological condition that combines stomatocytic haemolysis with the presence of very large platelets. Five pedigrees showing this haematology were identified. Gas chromatography mass spectrometry (GC-MS) showed that all of the patients with this highly specific haematology had grossly elevated levels of phytosterols in the blood, diagnostic of phytosterolaemia. All showed mutations in the ABCG5 and ABCG8 previously linked to phytosterolaemia. Three pedigrees showed five new mutations, while two pedigrees showed the common W361X mutation in ABCG8. We draw the following four conclusions: (i) that Mediterranean stomatocytosis/macrothrombocytopenia is caused by an excess of phytosterols in the blood; (ii) that phytosterolaemia, which does not respond to standard statin treatment, can be diagnosed via the distinctive haematology described here, even when the cholesterol is normal; (iii) that phytosterolaemia should be considered in the differential diagnosis of all patients with large platelets; and (iv) that the platelet size should be noted in patients with hypercholesterolaemia.
Collapse
Affiliation(s)
- David C Rees
- Sheffield Children's Hospital, Royal Hallamshire Hospital, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sudhop T, Lütjohann D, von Bergmann K. Sterol transporters: targets of natural sterols and new lipid lowering drugs. Pharmacol Ther 2004; 105:333-41. [PMID: 15737409 DOI: 10.1016/j.pharmthera.2004.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2004] [Indexed: 12/18/2022]
Abstract
Recent insights in the role of ATP-binding cassette (ABC) transporters ABCG5 and ABCG8, the discovery of ezetimibe, the first approved direct cholesterol absorption inhibitor, as well as the identification of Niemann-Pick C1 Like 1 (NPC1L1) protein as sterol transporter in the gut, focused attention on sterol transport processes in the small intestine and the liver. The identification of defective structures in the ABCG5 or ABCG8 transporters in patients with the rare disease of sitosterolemia elucidated their role as sterol efflux pumps regulating at least in parts the intestinal sterol absorption and the hepatic sterol output. ABCG5 and ABCG8 themselves are regulated by cholesterol via liver X receptors (LXRs), which are also activated by oxysterols and some derivatives of plant sterols. NPC1L1 could recently be identified as a major sterol transporter for the intestinal uptake of cholesterol as well as plant sterols. Studies in NPC1L1 knockout mice indicate that this transporter is essential for the intestinal uptake of sterols and that NPC1L1 might also be involved in the mechanism of action of ezetimibe. However, studies with photoreactive cholesterol as well as with photoreactive ezetimibe analogues suggest that other processes might also be involved in the mechanism of action of ezetimibe.
Collapse
Affiliation(s)
- Thomas Sudhop
- Department of Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | |
Collapse
|