1
|
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, Nordestgaard BG, Watts GF, Bruckert E, Fazio S, Ference BA, Graham I, Horton JD, Landmesser U, Laufs U, Masana L, Pasterkamp G, Raal FJ, Ray KK, Schunkert H, Taskinen MR, van de Sluis B, Wiklund O, Tokgozoglu L, Catapano AL, Ginsberg HN. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2021; 41:2313-2330. [PMID: 32052833 PMCID: PMC7308544 DOI: 10.1093/eurheartj/ehz962] [Citation(s) in RCA: 749] [Impact Index Per Article: 249.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/10/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M John Chapman
- Endocrinology-Metabolism Division, Pitié-Salpêtrière University Hospital, Sorbonne University, Paris, France.,National Institute for Health and Medical Research (INSERM), Paris, France
| | - Ronald M Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute and UCSF, Oakland, CA 94609, USA
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jacob F Bentzon
- Department of Clinical Medicine, Heart Diseases, Aarhus University, Aarhus, Denmark.,Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Mat J Daemen
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Linda L Demer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Physiology, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert A Hegele
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen, Denmark
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.,Department of Cardiology, Lipid Disorders Clinic, Royal Perth Hospital, Perth, Australia
| | - Eric Bruckert
- INSERM UMRS1166, Department of Endocrinology-Metabolism, ICAN - Institute of CardioMetabolism and Nutrition, AP-HP, Hopital de la Pitie, Paris, France
| | - Sergio Fazio
- Departments of Medicine, Physiology and Pharmacology, Knight Cardiovascular Institute, Center of Preventive Cardiology, Oregon Health & Science University, Portland, OR, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK.,Institute for Advanced Studies, University of Bristol, Bristol, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Jay D Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, Germany
| | - Luis Masana
- Research Unit of Lipids and Atherosclerosis, IISPV, CIBERDEM, University Rovira i Virgili, C. Sant Llorenç 21, Reus 43201, Spain
| | - Gerard Pasterkamp
- Laboratory of Clinical Chemistry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frederick J Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Kausik K Ray
- Department of Primary Care and Public Health, Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Faculty of Medicine, Technische Universität München, Lazarettstr, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Olov Wiklund
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lale Tokgozoglu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, and IRCCS MultiMedica, Milan, Italy
| | - Henry N Ginsberg
- Department of Medicine, Irving Institute for Clinical and Translational Research, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Monocytes from men living with HIV exhibit heightened atherogenic potential despite long-term viral suppression with antiretroviral therapy. AIDS 2020; 34:513-518. [PMID: 32108672 DOI: 10.1097/qad.0000000000002460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE People living with HIV have an increased risk of cardiovascular disease (CVD) despite effective antiretroviral therapy (ART). Monocytes play a key role in the early stages of atherosclerosis-driven CVD by forming lipid-laden foam cells within artery walls. HIV infection potentiates foam cell formation ex vivo, but the mechanisms contributing to this are not known. METHODS We investigated the atherosclerosis-promoting potential of monocytes from 39 virologically suppressed men living with HIV (MLHIV) on ART and no evidence of CVD, and 25 HIV-uninfected controls of comparable age, sex, smoking status and CVD risk. RESULTS Despite absence of clinical atherosclerosis in both MLHIV and uninfected cohorts (evidenced by a carotid intima-media thickness of 0.6 mm for both groups; P = 0.254), monocytes from MLHIV showed increased potential to form atherosclerosis-promoting foam cells compared with controls in an ex-vivo assay (36.6% vs. 27.6%, respectively, P = 0.003). Consistent with observations of persistent inflammation and immune/endothelial activation in ART-treated HIV infection, levels of soluble tumour necrosis factor receptor II, CXCL10 and soluble VCAM-1 were elevated in MLHIV (P ≤ 0.005 for all), but were not significantly associated with foam cell formation. Foam cell formation was associated with an impaired ability of monocytes to undergo reverse transmigration, and a reduced ability to efflux cholesterol ex vivo (P < 0.05 for both). Importantly, foam cell formation declined significantly with duration of viral suppression (P = 0.004). CONCLUSION These findings highlight the persistence of HIV-related changes to the atherogenic potential of monocytes despite long-term viral suppression, and provide insights into mechanisms potentially driving increased CVD in ART-treated HIV infection.
Collapse
|
3
|
FNDC5 inhibits foam cell formation and monocyte adhesion in vascular smooth muscle cells via suppressing NFκB-mediated NLRP3 upregulation. Vascul Pharmacol 2019; 121:106579. [DOI: 10.1016/j.vph.2019.106579] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/21/2022]
|
4
|
Grajchen E, Hendriks JJA, Bogie JFJ. The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 2018; 6:124. [PMID: 30454040 PMCID: PMC6240956 DOI: 10.1186/s40478-018-0628-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system characterized by massive infiltration of immune cells, demyelination, and axonal loss. Active MS lesions mainly consist of macrophages and microglia containing abundant intracellular myelin remnants. Initial studies showed that these foamy phagocytes primarily promote MS disease progression by internalizing myelin debris, presenting brain-derived autoantigens, and adopting an inflammatory phenotype. However, more recent studies indicate that phagocytes can also adopt a beneficial phenotype upon myelin internalization. In this review, we summarize and discuss the current knowledge on the spatiotemporal physiology of foamy phagocytes in MS lesions, and elaborate on extrinsic and intrinsic factors regulating their behavior. In addition, we discuss and link the physiology of myelin-containing phagocytes to that of foamy macrophages in other disorders such atherosclerosis.
Collapse
Affiliation(s)
- Elien Grajchen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium/School of Life Sciences, Transnationale Universiteit Limburg, Diepenbeek, Belgium.
| |
Collapse
|
5
|
Houben T, Oligschlaeger Y, Bitorina AV, Hendrikx T, Walenbergh SMA, Lenders MH, Gijbels MJJ, Verheyen F, Lütjohann D, Hofker MH, Binder CJ, Shiri-Sverdlov R. Blood-derived macrophages prone to accumulate lysosomal lipids trigger oxLDL-dependent murine hepatic inflammation. Sci Rep 2017; 7:12550. [PMID: 28970532 PMCID: PMC5624963 DOI: 10.1038/s41598-017-13058-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022] Open
Abstract
Despite the consistent rise of non-alcoholic steatohepatitis (NASH) worldwide, the mechanisms that govern the inflammatory aspect of this disease remain unknown. Previous research showed an association between hepatic inflammation and lysosomal lipid accumulation in blood-derived hepatic macrophages. Additionally, in vitro findings indicated that lipids, specifically derived from the oxidized low-density lipoprotein (oxLDL) particle, are resistant to removal from lysosomes. On this basis, we investigated whether lysosomal lipid accumulation in blood-derived hepatic macrophages is causally linked to hepatic inflammation and assessed to what extent increasing anti-oxLDL IgM autoantibodies can affect this mechanism. By creating a proof-of-concept mouse model, we demonstrate a causal role for lysosomal lipids in blood-derived hepatic macrophages in mediating hepatic inflammation and initiation of fibrosis. Furthermore, our findings show that increasing anti-oxLDL IgM autoantibody levels reduces inflammation. Hence, therapies aimed at improving lipid-induced lysosomal dysfunction and blocking oxLDL-formation deserve further investigation in the context of NASH.
Collapse
Affiliation(s)
- Tom Houben
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Albert V Bitorina
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Tim Hendrikx
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Sofie M A Walenbergh
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Marie-Hélène Lenders
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Marion J J Gijbels
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Fons Verheyen
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn; Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Marten H Hofker
- Department of Pathology and Medical Biology, Molecular Genetics, Medical Biology Section, University of Groningen, University Medical Center Groningen; Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna; Spitalgasse 23, 1090, Vienna, Austria
- Center for Molecular Medicine (CeMM), Austrian Academy of Sciences; Lazarettgasse 14, A-1090, Vienna, Austria
| | - Ronit Shiri-Sverdlov
- Departments of Molecular Genetics, Molecular Cell Biology and Electron Microscopy, School of Nutrition and Translational Research in Metabolism (NUTRIM), University of Maastricht; Universiteitssingel 50, ER 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway. Sci Rep 2016; 6:23596. [PMID: 27004848 PMCID: PMC4804242 DOI: 10.1038/srep23596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs.
Collapse
|
7
|
Dubland JA, Francis GA. Lysosomal acid lipase: at the crossroads of normal and atherogenic cholesterol metabolism. Front Cell Dev Biol 2015; 3:3. [PMID: 25699256 PMCID: PMC4313778 DOI: 10.3389/fcell.2015.00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023] Open
Abstract
Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL) plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL) and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.
Collapse
Affiliation(s)
- Joshua A Dubland
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute at St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
8
|
Hendrikx T, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Lysosomal cholesterol accumulation: driver on the road to inflammation during atherosclerosis and non-alcoholic steatohepatitis. Obes Rev 2014; 15:424-33. [PMID: 24629059 DOI: 10.1111/obr.12159] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/05/2014] [Accepted: 01/05/2014] [Indexed: 12/15/2022]
Abstract
Many studies show an association between the accumulation of cholesterol inside lysosomes and the progression towards inflammatory disease states that are closely related to obesity. While in the past, the knowledge regarding lysosomal cholesterol accumulation was limited to its association with plaque severity during atherosclerosis, recently, a growing body of evidence indicates a causal link between lysosomal cholesterol accumulation and inflammation. These findings make lysosomal cholesterol accumulation an important target for intervention in metabolic diseases that are characterized by the presence of an inflammatory response. In this review, we aim to show the importance of cholesterol trapping inside lysosomes to the development of inflammation by focusing upon cardiovascular disease and non-alcoholic steatohepatitis (NASH) in particular. We summarize current data supporting the hypothesis that lysosomal cholesterol accumulation plays a key role in the development of inflammation during atherosclerosis and NASH. In addition, potential mechanisms by which disturbed lysosomal function can trigger the inflammatory response, the challenges in improving cholesterol trafficking in macrophages and recent successful research directions will be discussed.
Collapse
Affiliation(s)
- T Hendrikx
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
9
|
Radovic B, Aflaki E, Kratky D. Adipose triglyceride lipase in immune response, inflammation, and atherosclerosis. Biol Chem 2012; 393:1005-11. [PMID: 22944699 PMCID: PMC3520003 DOI: 10.1515/hsz-2012-0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/23/2012] [Indexed: 12/15/2022]
Abstract
Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, including macrophages. The hydrolytic cleavage of triacylglycerol by adipose triglyceride lipase (ATGL) generates non-esterified fatty acids, which are subsequently used as essential precursors for lipid and membrane synthesis, mediators in cell signaling processes or as energy substrate in mitochondria. This review summarizes the current knowledge concerning the consequences of ATGL deficiency in macrophages with particular emphasis on macrophage (dys)-function, apoptosis, and atherosclerosis.
Collapse
Affiliation(s)
- Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| | | | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, A-8010 Graz, Austria
| |
Collapse
|
10
|
Aflaki E, Radović B, Chandak PG, Kolb D, Eisenberg T, Ring J, Fertschai I, Uellen A, Wolinski H, Kohlwein SD, Zechner R, Levak-Frank S, Sattler W, Graier WF, Malli R, Madeo F, Kratky D. Triacylglycerol accumulation activates the mitochondrial apoptosis pathway in macrophages. J Biol Chem 2011; 286:7418-28. [PMID: 21196579 PMCID: PMC3044998 DOI: 10.1074/jbc.m110.175703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 12/19/2010] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death of lipid-laden macrophages is a prominent feature of atherosclerotic lesions and mostly ascribed to accumulation of excess intracellular cholesterol. The present in vitro study investigated whether intracellular triacylglycerol (TG) accumulation could activate a similar apoptotic response in macrophages. To address this question, we utilized peritoneal macrophages isolated from mice lacking adipose triglyceride lipase (ATGL), the major enzyme responsible for TG hydrolysis in multiple tissues. In Atgl(-/-) macrophages, we observed elevated levels of cytosolic Ca(2+) and reactive oxygen species, stimulated cytochrome c release, and nuclear localization of apoptosis-inducing factor. Fragmented mitochondria prior to cell death were indicative of the mitochondrial apoptosis pathway being triggered as a consequence of defective lipolysis. Other typical markers of apoptosis, such as externalization of phosphatidylserine in the plasma membrane, caspase 3 and poly(ADP-ribose) polymerase cleavage, were increased in Atgl(-/-) macrophages. An artificial increase of cellular TG levels by incubating wild-type macrophages with very low density lipoprotein closely mimicked the apoptotic phenotype observed in Atgl(-/-) macrophages. Results obtained during the present study define a novel pathway linking intracellular TG accumulation to mitochondrial dysfunction and programmed cell death in macrophages.
Collapse
Affiliation(s)
- Elma Aflaki
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Branislav Radović
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Prakash G. Chandak
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Dagmar Kolb
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Tobias Eisenberg
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Julia Ring
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Ismene Fertschai
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Andreas Uellen
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Heimo Wolinski
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Sepp-Dieter Kohlwein
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Rudolf Zechner
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Sanja Levak-Frank
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Wolfgang Sattler
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Wolfgang F. Graier
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Roland Malli
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| | - Frank Madeo
- the Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 31A/Humboldtstrasse 50, 8010 Graz, Austria
| | - Dagmar Kratky
- From the Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria and
| |
Collapse
|
11
|
Abstract
Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells.
Collapse
Affiliation(s)
- W Gray Jerome
- Department of Pathology, U-2206 Medical Center North Vanderbilt University School of Medicine 1161 21st Avenue, South Nashville, TN 37232-32561, USA, Tel.: +1 615 322 5530
| |
Collapse
|
12
|
Namgaladze D, Morbitzer D, von Knethen A, Brüne B. Phospholipase A
2
–Modified Low-Density Lipoprotein Activates Macrophage Peroxisome Proliferator–Activated Receptors. Arterioscler Thromb Vasc Biol 2010; 30:313-20. [DOI: 10.1161/atvbaha.109.199232] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dmitry Namgaladze
- From Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I/ZAFES, Frankfurt, Germany (D.N., D.M., A.v.K., and B.B.)
| | - Daniel Morbitzer
- From Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I/ZAFES, Frankfurt, Germany (D.N., D.M., A.v.K., and B.B.)
| | - Andreas von Knethen
- From Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I/ZAFES, Frankfurt, Germany (D.N., D.M., A.v.K., and B.B.)
| | - Bernhard Brüne
- From Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I/ZAFES, Frankfurt, Germany (D.N., D.M., A.v.K., and B.B.)
| |
Collapse
|