1
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
2
|
Malcı K, Santibáñez R, Jonguitud-Borrego N, Santoyo-Garcia JH, Kerkhoven EJ, Rios-Solis L. Improved production of Taxol ® precursors in S. cerevisiae using combinatorial in silico design and metabolic engineering. Microb Cell Fact 2023; 22:243. [PMID: 38031061 PMCID: PMC10687855 DOI: 10.1186/s12934-023-02251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Integrated metabolic engineering approaches that combine system and synthetic biology tools enable the efficient design of microbial cell factories for synthesizing high-value products. In this study, we utilized in silico design algorithms on the yeast genome-scale model to predict genomic modifications that could enhance the production of early-step Taxol® in engineered Saccharomyces cerevisiae cells. RESULTS Using constraint-based reconstruction and analysis (COBRA) methods, we narrowed down the solution set of genomic modification candidates. We screened 17 genomic modifications, including nine gene deletions and eight gene overexpressions, through wet-lab studies to determine their impact on taxadiene production, the first metabolite in the Taxol® biosynthetic pathway. Under different cultivation conditions, most single genomic modifications resulted in increased taxadiene production. The strain named KM32, which contained four overexpressed genes (ILV2, TRR1, ADE13, and ECM31) involved in branched-chain amino acid biosynthesis, the thioredoxin system, de novo purine synthesis, and the pantothenate pathway, respectively, exhibited the best performance. KM32 achieved a 50% increase in taxadiene production, reaching 215 mg/L. Furthermore, KM32 produced the highest reported yields of taxa-4(20),11-dien-5α-ol (T5α-ol) at 43.65 mg/L and taxa-4(20),11-dien-5-α-yl acetate (T5αAc) at 26.2 mg/L among early-step Taxol® metabolites in S. cerevisiae. CONCLUSIONS This study highlights the effectiveness of computational and integrated approaches in identifying promising genomic modifications that can enhance the performance of yeast cell factories. By employing in silico design algorithms and wet-lab screening, we successfully improved taxadiene production in engineered S. cerevisiae strains. The best-performing strain, KM32, achieved substantial increases in taxadiene as well as production of T5α-ol and T5αAc. These findings emphasize the importance of using systematic and integrated strategies to develop efficient yeast cell factories, providing potential implications for the industrial production of high-value isoprenoids like Taxol®.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| | - Rodrigo Santibáñez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Jorge H Santoyo-Garcia
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-412 96, Gothenburg, Sweden
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- Centre for Engineering Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3BF, UK.
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Division, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Caligaris M, Sampaio-Marques B, Hatakeyama R, Pillet B, Ludovico P, De Virgilio C, Winderickx J, Nicastro R. The Yeast Protein Kinase Sch9 Functions as a Central Nutrient-Responsive Hub That Calibrates Metabolic and Stress-Related Responses. J Fungi (Basel) 2023; 9:787. [PMID: 37623558 PMCID: PMC10455444 DOI: 10.3390/jof9080787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Yeast cells are equipped with different nutrient signaling pathways that enable them to sense the availability of various nutrients and adjust metabolism and growth accordingly. These pathways are part of an intricate network since most of them are cross-regulated and subject to feedback regulation at different levels. In yeast, a central role is played by Sch9, a protein kinase that functions as a proximal effector of the conserved growth-regulatory TORC1 complex to mediate information on the availability of free amino acids. However, recent studies established that Sch9 is more than a TORC1-effector as its activity is tuned by several other kinases. This allows Sch9 to function as an integrator that aligns different input signals to achieve accuracy in metabolic responses and stress-related molecular adaptations. In this review, we highlight the latest findings on the structure and regulation of Sch9, as well as its role as a nutrient-responsive hub that impacts on growth and longevity of yeast cells. Given that most key players impinging on Sch9 are well-conserved, we also discuss how studies on Sch9 can be instrumental to further elucidate mechanisms underpinning healthy aging in mammalians.
Collapse
Affiliation(s)
- Marco Caligaris
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Riko Hatakeyama
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK;
| | - Benjamin Pillet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
- ICVS/3B’s-PT Government Associate Laboratory, 4806-909 Guimarães, Portugal
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, B-3001 Heverlee, Belgium;
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (M.C.); (B.P.); (C.D.V.)
| |
Collapse
|
4
|
Systematic Metabolic Profiling Identifies De Novo Sphingolipid Synthesis as Hypha Associated and Essential for Candida albicans Filamentation. mSystems 2022; 7:e0053922. [PMID: 36264075 PMCID: PMC9765226 DOI: 10.1128/msystems.00539-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The yeast-to-hypha transition is a key virulence attribute of the opportunistic human fungal pathogen Candida albicans, since it is closely tied to infection-associated processes such as tissue invasion and escape from phagocytes. While the nature of hypha-associated gene expression required for fungal virulence has been thoroughly investigated, potential morphotype-dependent activity of metabolic pathways remained unclear. Here, we combined global transcriptome and metabolome analyses for the wild-type SC5314 and the hypha-defective hgc1Δ and cph1Δefg1Δ strains under three hypha-inducing (human serum, N-acetylglucosamine, and alkaline pH) and two yeast-promoting conditions to identify metabolic adaptions that accompany the filamentation process. We identified morphotype-related activities of distinct pathways and a metabolic core signature of 26 metabolites with consistent depletion or enrichment during the yeast-to-hypha transition. Most strikingly, we found a hypha-associated activation of de novo sphingolipid biosynthesis, indicating a connection of this pathway and filamentous growth. Consequently, pharmacological inhibition of this partially fungus-specific pathway resulted in strongly impaired filamentation, verifying the necessity of de novo sphingolipid biosynthesis for proper hypha formation. IMPORTANCE The reversible switch of Candida albicans between unicellular yeast and multicellular hyphal growth is accompanied by a well-studied hypha-associated gene expression, encoding virulence factors like adhesins, toxins, or nutrient scavengers. The investigation of this gene expression consequently led to fundamental insights into the pathogenesis of this fungus. In this study, we applied this concept to hypha-associated metabolic adaptations and identified morphotype-dependent activities of distinct pathways and a stimulus-independent metabolic signature of hyphae. Most strikingly, we found the induction of de novo sphingolipid biosynthesis as hypha associated and essential for the filamentation of C. albicans. These findings verified the presence of morphotype-specific metabolic traits in the fungus, which appear connected to the fungal virulence. Furthermore, the here-provided comprehensive description of the fungal metabolome will help to foster future research and lead to a better understanding of fungal physiology.
Collapse
|
5
|
Zahumenský J, Mota Fernandes C, Veselá P, Del Poeta M, Konopka JB, Malínský J. Microdomain Protein Nce102 Is a Local Sensor of Plasma Membrane Sphingolipid Balance. Microbiol Spectr 2022; 10:e0196122. [PMID: 35758748 PMCID: PMC9431316 DOI: 10.1128/spectrum.01961-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Sphingolipids are essential building blocks of eukaryotic membranes and important signaling molecules that are regulated tightly in response to environmental and physiological inputs. While their biosynthetic pathway has been well-described, the mechanisms that facilitate the perception of sphingolipid levels at the plasma membrane remain to be uncovered. In Saccharomyces cerevisiae, the Nce102 protein has been proposed to function as a sphingolipid sensor as it changes its plasma membrane distribution in response to sphingolipid biosynthesis inhibition. We show that Nce102 redistributes specifically in regions of increased sphingolipid demand, e.g., membranes of nascent buds. Furthermore, we report that the production of Nce102 increases following sphingolipid biosynthesis inhibition and that Nce102 is internalized when excess sphingolipid precursors are supplied. This finding suggests that the total amount of Nce102 in the plasma membrane is a measure of the current need for sphingolipids, whereas its local distribution marks sites of high sphingolipid demand. The physiological role of Nce102 in the regulation of sphingolipid synthesis is demonstrated by mass spectrometry analysis showing reduced levels of hydroxylated complex sphingolipids in response to heat stress in the nce102Δ deletion mutant. We also demonstrate that Nce102 behaves analogously in the widespread human fungal pathogen Candida albicans, suggesting a conserved principle of local sphingolipid control across species. IMPORTANCE Microorganisms are challenged constantly by their rapidly changing environment. To survive, they have developed diverse mechanisms to quickly perceive stressful situations and adapt to them appropriately. The primary site of both stress sensing and adaptation is the plasma membrane. We identified the yeast protein Nce102 as a marker of local sphingolipid levels and fluidity in the plasma membrane. Nce102 is an important structural and functional component of the membrane compartment Can1 (MCC), a plasma membrane microdomain stabilized by a large cytosolic hemitubular protein scaffold, the eisosome. The MCC/eisosomes are widely conserved among fungi and unicellular algae. To determine if Nce102 carries out similar functions in other organisms, we analyzed the human fungal pathogen Candida albicans and found that Nce102 responds to sphingolipid levels also in this organism, which has potential applications for the development of novel therapeutic approaches. The presented study represents a valuable model for how organisms regulate plasma membrane sphingolipids.
Collapse
Affiliation(s)
- Jakub Zahumenský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Petra Veselá
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| | - James B. Konopka
- Department of Microbiology and Immunology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jan Malínský
- Department of Functional Organization of Biomembranes, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
6
|
Cheng YS, Roma JS, Shen M, Mota Fernandes C, Tsang PS, Forbes HE, Boshoff H, Lazzarini C, Del Poeta M, Zheng W, Williamson PR. Identification of Antifungal Compounds against Multidrug-Resistant Candida auris Utilizing a High-Throughput Drug-Repurposing Screen. Antimicrob Agents Chemother 2021; 65:e01305-20. [PMID: 33468482 PMCID: PMC8097445 DOI: 10.1128/aac.01305-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/31/2020] [Indexed: 12/30/2022] Open
Abstract
Candida auris is an emerging fatal fungal infection that has resulted in several outbreaks in hospitals and care facilities. Current treatment options are limited by the development of drug resistance. Identification of new pharmaceuticals to combat these drug-resistant infections will thus be required to overcome this unmet medical need. We have established a bioluminescent ATP-based assay to identify new compounds and potential drug combinations showing effective growth inhibition against multiple strains of multidrug-resistant Candida auris The assay is robust and suitable for assessing large compound collections by high-throughput screening (HTS). Utilizing this assay, we conducted a screen of 4,314 approved drugs and pharmacologically active compounds that yielded 25 compounds, including 6 novel anti-Candida auris compounds and 13 sets of potential two-drug combinations. Among the drug combinations, the serine palmitoyltransferase inhibitor myriocin demonstrated a combinational effect with flucytosine against all tested isolates during screening. This combinational effect was confirmed in 13 clinical isolates of Candida auris.
Collapse
Affiliation(s)
- Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Jose Santinni Roma
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Patricia S Tsang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - He Eun Forbes
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Helena Boshoff
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Cristina Lazzarini
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA
- Veterans Affairs Medical Center, Northport, New York, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Hasi RY, Miyagi M, Morito K, Ishikawa T, Kawai-Yamada M, Imai H, Fukuta T, Kogure K, Kanemaru K, Hayashi J, Kawakami R, Tanaka T. Glycosylinositol phosphoceramide-specific phospholipase D activity catalyzes transphosphatidylation. J Biochem 2019; 166:441-448. [DOI: 10.1093/jb/mvz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022] Open
Abstract
AbstractGlycosylinositol phosphoceramide (GIPC) is the most abundant sphingolipid in plants and fungi. Recently, we detected GIPC-specific phospholipase D (GIPC-PLD) activity in plants. Here, we found that GIPC-PLD activity in young cabbage leaves catalyzes transphosphatidylation. The available alcohol for this reaction is a primary alcohol with a chain length below C4. Neither secondary alcohol, tertiary alcohol, choline, serine nor glycerol serves as an acceptor for transphosphatidylation of GIPC-PLD. We also found that cabbage GIPC-PLD prefers GIPC containing two sugars. Neither inositol phosphoceramide, mannosylinositol phosphoceramide nor GIPC with three sugar chains served as substrate. GIPC-PLD will become a useful catalyst for modification of polar head group of sphingophospholipid.
Collapse
Affiliation(s)
- Rumana Yesmin Hasi
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Makoto Miyagi
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Katsuya Morito
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Toshiki Ishikawa
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Maki Kawai-Yamada
- Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Japan
| | - Hiroyuki Imai
- Department of Biology, Graduate School of Natural Science, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, Japan
| | - Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
| | - Kaori Kanemaru
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Junji Hayashi
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Ryushi Kawakami
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima, Japan
- Department of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima, Japan
| |
Collapse
|
8
|
Jin J, Wang Y, Yao M, Gu X, Li B, Liu H, Ding M, Xiao W, Yuan Y. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:230. [PMID: 30159030 PMCID: PMC6106823 DOI: 10.1186/s13068-018-1227-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Astaxanthin is a natural carotenoid pigment with tremendous antioxidant activity and great commercial value. Microbial production of astaxanthin via metabolic engineering has become a promising alternative. Although great efforts have been conducted by tuning the heterologous modules and precursor pools, the astaxanthin yields in these non-carotenogenic microorganisms were still unsatisfactory for commercialization, indicating that in addition to targeted tailoring limited targets guided by rationally metabolic design, combining more globe disturbances in astaxanthin biosynthesis system and uncovering new molecular mechanisms seem to be much more crucial for further development. Since combined metabolic engineering with mutagenesis by screening is a powerful tool to achieve more global variations and even uncover more molecular targets, this study would apply a comprehensive approach integrating heterologous module engineering and mutagenesis by atmospheric and room temperature plasma (ARTP) to promote astaxanthin production in Saccharomyces cerevisiae. RESULTS Here, compared to the strain with β-carotene hydroxylase (CrtZ) from Alcaligenes sp. strain PC-1, involving new CrtZ from Agrobacterium aurantiacum enhanced astaxanthin yield to 1.78-fold and increased astaxanthin ratio to 88.7% (from 66.6%). Astaxanthin yield was further increased by 0.83-fold (to 10.1 mg/g DCW) via ARTP mutagenesis, which is the highest reported yield at shake-flask level in yeast so far. Three underlying molecular targets (CSS1, YBR012W-B and DAN4) associated with astaxanthin biosynthesis were first uncovered by comparative genomics analysis. To be noted, individual deletion of CSS1 can recover 75.6% improvement on astaxanthin yield achieved by ARTP mutagenesis, indicating CSS1 was a very promising molecular target for further development. Eventually, 217.9 mg/L astaxanthin (astaxanthin ratio was 89.4% and astaxanthin yield was up to 13.8 mg/g DCW) was obtained in 5-L fermenter without any addition of inducers. CONCLUSIONS Through integrating rational engineering of pathway modules and random mutagenesis of hosts efficiently, our report stepwise promoted astaxanthin yield to achieve the highest reported one in yeast so far. This work not only breaks the upper ceiling of astaxanthin production in yeast, but also fulfills the underlying molecular targets pools with regard to isoprenoid microbial overproductions.
Collapse
Affiliation(s)
- Jin Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingdong Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xiaoli Gu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bo Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Mingzhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Wenhai Xiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical & Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
9
|
Ferrarini A, Righetti L, Martínez MP, Fernández-López M, Mastrangelo A, Horcajada JP, Betbesé A, Esteban A, Ordóñez J, Gea J, Cabello JR, Pellati F, Lorente JA, Nin N, Rupérez FJ. Discriminant biomarkers of acute respiratory distress syndrome associated to H1N1 influenza identified by metabolomics HPLC-QTOF-MS/MS platform. Electrophoresis 2017; 38:2341-2348. [PMID: 28714069 DOI: 10.1002/elps.201700112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/15/2017] [Accepted: 06/24/2017] [Indexed: 12/21/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a serious complication of influenza A (H1N1) virus infection. Its pathogenesis is unknown and biomarkers are lacking. Untargeted metabolomics allows the analysis of the whole metabolome in a biological compartment, identifying patterns associated with specific conditions. We hypothesized that LC-MS could help identify discriminant metabolites able to define the metabolic alterations occurring in patients with influenza A (H1N1) virus infection that developed ARDS. Serum samples from patients diagnosed with 2009 influenza A (H1N1) virus infection with (n = 25) or without (n = 32) ARDS were obtained on the day of hospital admission and analyzed by LC-MS/MS. Metabolite identification was determined by MS/MS analysis and analysis of standards. The specificity of the patterns identified was confirmed in patients without 2009 influenza A(H1N1) virus pneumonia (15 without and 17 with ARDS). Twenty-three candidate biomarkers were found to be significantly different between the two groups, including lysophospholipids and sphingolipids related to inflammation; bile acids, tryptophan metabolites, and thyroxine, related to the metabolism of the gut microflora. Confirmation results demonstrated the specificity of major alterations occurring in ARDS patients with influenza A (H1N1) virus infection.
Collapse
Affiliation(s)
- Alessia Ferrarini
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Laura Righetti
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain.,Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Ma Paz Martínez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | | | - Annalaura Mastrangelo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Juan P Horcajada
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antoni Betbesé
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Esteban
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jordi Ordóñez
- Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquín Gea
- Hospital del Mar. IMIM. DCEXS, Universitat Pompeu Fabra, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Jesús Ruiz Cabello
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain.,Departamento de Química Física II, Universidad Complutense de Madrid Facultad de Farmacia, Madrid, Spain
| | - Federica Pellati
- Dipartimento di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - José A Lorente
- Hospital Universitario de Getafe, Madrid, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES, ISCiii), Madrid, Spain
| | - Nicolás Nin
- Hospital de Torrejón de Ardoz, Madrid, Spain.,Hospital Español Juan José Crottogini, Montevideo, Uruguay
| | - Francisco J Rupérez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| |
Collapse
|
10
|
Chauhan N, Han G, Somashekarappa N, Gable K, Dunn T, Kohlwein SD. Regulation of Sphingolipid Biosynthesis by the Morphogenesis Checkpoint Kinase Swe1. J Biol Chem 2015; 291:2524-34. [PMID: 26634277 PMCID: PMC4732232 DOI: 10.1074/jbc.m115.693200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid (SL) biosynthesis is negatively regulated by the highly conserved endoplasmic reticulum-localized Orm family proteins. Defective SL synthesis in Saccharomyces cerevisiae leads to increased phosphorylation and inhibition of Orm proteins by the kinase Ypk1. Here we present evidence that the yeast morphogenesis checkpoint kinase, Swe1, regulates SL biosynthesis independent of the Ypk1 pathway. Deletion of the Swe1 kinase renders mutant cells sensitive to serine palmitoyltransferase inhibition due to impaired sphingoid long-chain base synthesis. Based on these data and previous results, we suggest that Swe1 kinase perceives alterations in SL homeostasis, activates SL synthesis, and may thus represent the missing regulatory link that controls the SL rheostat during the cell cycle.
Collapse
Affiliation(s)
- Neha Chauhan
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| | - Gongshe Han
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | - Kenneth Gable
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Teresa Dunn
- the Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Sepp D Kohlwein
- From the Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria and
| |
Collapse
|
11
|
Role of Inositol Phosphosphingolipid Phospholipase C1, the Yeast Homolog of Neutral Sphingomyelinases in DNA Damage Response and Diseases. J Lipids 2015; 2015:161392. [PMID: 26346287 PMCID: PMC4544949 DOI: 10.1155/2015/161392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids play a very crucial role in many diseases and are well-known as signaling mediators in many pathways. Sphingolipids are produced during the de novo process in the ER (endoplasmic reticulum) from the nonsphingolipid precursor and comprise both structural and bioactive lipids. Ceramide is the central core of the sphingolipid pathway, and its production has been observed following various treatments that can induce several different cellular effects including growth arrest, DNA damage, apoptosis, differentiation, and senescence. Ceramides are generally produced through the sphingomyelin hydrolysis and catalyzed by the enzyme sphingomyelinase (SMase) in mammals. Presently, there are many known SMases and they are categorized into three groups acid SMases (aSMases), alkaline SMases (alk-SMASES), and neutral SMases (nSMases). The yeast homolog of mammalians neutral SMases is inositol phosphosphingolipid phospholipase C. Yeasts generally have inositol phosphosphingolipids instead of sphingomyelin, which may act as a homolog of mammalian sphingomyelin. In this review, we shall explain the structure and function of inositol phosphosphingolipid phospholipase C1, its localization inside the cells, mechanisms, and its roles in various cell responses during replication stresses and diseases. This review will also give a new basis for our understanding for the mechanisms and nature of the inositol phosphosphingolipid phospholipase C1/nSMase.
Collapse
|
12
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
13
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
14
|
Aguilera-Romero A, Gehin C, Riezman H. Sphingolipid homeostasis in the web of metabolic routes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:647-56. [DOI: 10.1016/j.bbalip.2013.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/17/2013] [Accepted: 10/19/2013] [Indexed: 10/26/2022]
|
15
|
Swinnen E, Wilms T, Idkowiak-Baldys J, Smets B, De Snijder P, Accardo S, Ghillebert R, Thevissen K, Cammue B, De Vos D, Bielawski J, Hannun YA, Winderickx J. The protein kinase Sch9 is a key regulator of sphingolipid metabolism in Saccharomyces cerevisiae. Mol Biol Cell 2013; 25:196-211. [PMID: 24196832 PMCID: PMC3873890 DOI: 10.1091/mbc.e13-06-0340] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sphingolipids play crucial roles in the determination of growth and survival of eukaryotic cells. The budding yeast protein kinase Sch9 is not only an effector, but also a regulator of sphingolipid metabolism. This new function provides a crucial link between nutrient and sphingolipid signaling. The Saccharomyces cerevisiae protein kinase Sch9 is an in vitro and in vivo effector of sphingolipid signaling. This study examines the link between Sch9 and sphingolipid metabolism in S. cerevisiae in vivo based on the observation that the sch9Δ mutant displays altered sensitivity to different inhibitors of sphingolipid metabolism, namely myriocin and aureobasidin A. Sphingolipid profiling indicates that sch9Δ cells have increased levels of long-chain bases and long-chain base-1 phosphates, decreased levels of several species of (phyto)ceramides, and altered ratios of complex sphingolipids. We show that the target of rapamycin complex 1–Sch9 signaling pathway functions to repress the expression of the ceramidase genes YDC1 and YPC1, thereby revealing, for the first time in yeast, a nutrient-dependent transcriptional mechanism involved in the regulation of sphingolipid metabolism. In addition, we establish that Sch9 affects the activity of the inositol phosphosphingolipid phospholipase C, Isc1, which is required for ceramide production by hydrolysis of complex sphingolipids. Given that sphingolipid metabolites play a crucial role in the regulation of stress tolerance and longevity of yeast cells, our data provide a model in which Sch9 regulates the latter phenotypes by acting not only as an effector but also as a regulator of sphingolipid metabolism.
Collapse
Affiliation(s)
- Erwin Swinnen
- Functional Biology, KU Leuven, 3001 Heverlee, Belgium Centre for Surface Chemistry and Catalysis, KU Leuven, 3001 Heverlee, Belgium Centre of Microbial and Plant Genetics, KU Leuven, 3001 Heverlee, Belgium Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29403
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bessa C, Pereira C, Leão M, Maciel C, Gomes S, Gonçalves J, Corte-Real M, Costa V, Saraiva L. Using yeast to uncover the regulation of protein kinase Cδ by ceramide. FEMS Yeast Res 2013; 13:700-5. [PMID: 23937324 DOI: 10.1111/1567-1364.12069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022] Open
Abstract
The regulation of protein kinase C (PKC) isoforms by ceramide is still controversial. In this work, the yeast Saccharomyces cerevisiae was used as a model to elucidate the effect of ceramide on the activity of mammalian PKC isoforms. For that, isc1Δ cells, with a deletion in the pathway for ceramide production by hydrolysis of complex sphingolipids, individually expressing mammalian PKCα, δ and ζ were used. Contrary to PKCα and ζ, expression of PKCδ in isc1Δ cells exhibited a similar phenotype to that observed with wild-type yeast cells expressing PKCδ treated with a PKC activator, as phorbol 12-myristate 13-acetate (PMA), specifically a growth inhibition associated with a G2/M cell cycle arrest. Interestingly, in isc1Δ yeast cells expressing PKCδ this phenotype was completely abrogated in the presence of exogenous ceramide. Moreover, using a yeast-based assay previously developed for the screening of PKC inhibitors, it was also shown that, like the known PKC inhibitor NPC 15437, ceramide reduced the PMA-induced growth inhibition, supporting an inhibitory effect of ceramide on PKCδ. Altogether, these results may indicate that ceramide distinctly interfere with the activity of PKCα, δ and ζ. Most importantly, they showed that ceramide is an inhibitor of PKCδ.
Collapse
Affiliation(s)
- Cláudia Bessa
- REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gururaj C, Federman RS, Federman R, Chang A. Orm proteins integrate multiple signals to maintain sphingolipid homeostasis. J Biol Chem 2013; 288:20453-63. [PMID: 23737533 DOI: 10.1074/jbc.m113.472860] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids are structural components of membranes, and sphingolipid metabolites serve as signaling molecules. The first and rate-limiting step in sphingolipid synthesis is catalyzed by serine palmitoyltransferase (SPT). The recently discovered SPT-associated proteins, Orm1 and Orm2, are critical regulators of sphingolipids. Orm protein phosphorylation mediating feedback regulation of SPT activity occurs in response to multiple sphingolipid intermediates, including long chain base and complex sphingolipids. Both branches of the TOR signaling network, TORC1 and TORC2, participate in regulating sphingolipid synthesis via Orm phosphorylation in response to sphingolipid intermediates as well as nutritional conditions. Moreover, sphingolipid synthesis is regulated in response to endoplasmic reticulum (ER) stress by activation of a calcium- and calcineurin-dependent pathway via transcriptional induction of ORM2. Conversely, the calcium- and calcineurin-dependent pathway signals ER stress response upon lipid dysregulation in the absence of the Orm proteins to restore ER homeostasis.
Collapse
Affiliation(s)
- Charulatha Gururaj
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
18
|
Matmati N, Metelli A, Tripathi K, Yan S, Mohanty BK, Hannun YA. Identification of C18:1-phytoceramide as the candidate lipid mediator for hydroxyurea resistance in yeast. J Biol Chem 2013; 288:17272-84. [PMID: 23620586 DOI: 10.1074/jbc.m112.444802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recent studies showed that deletion of ISC1, the yeast homologue of the mammalian neutral sphingomyelinase, resulted in an increased sensitivity to hydroxyurea (HU). This raised an intriguing question as to whether sphingolipids are involved in pathways initiated by HU. In this study, we show that HU treatment led to a significant increase in Isc1 activity. Analysis of sphingolipid deletion mutants and pharmacological analysis pointed to a role for ceramide in mediating HU resistance. Lipid analysis revealed that HU induced increases in phytoceramides in WT cells but not in isc1Δ cells. To probe functions of specific ceramides, we developed an approach to supplement the medium with fatty acids. Oleate (C18:1) was the only fatty acid protecting isc1Δ cells from HU toxicity in a ceramide-dependent manner. Because phytoceramide activates protein phosphatases in yeast, we evaluated the role of CDC55, the regulatory subunit of ceramide-activated protein phosphatase PP2A. Overexpression of CDC55 overcame the sensitivity to HU in isc1Δ cells. However, addition of oleate did not protect the isc1Δ,cdc55Δ double mutant from HU toxicity. These results demonstrate that HU launches a lipid pathway mediated by a specific sphingolipid, C18:1-phytoceramide, produced by Isc1, which provides protection from HU by modulating Swe1 levels through the PP2A subunit Cdc55.
Collapse
Affiliation(s)
- Nabil Matmati
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Stony Brook, New York 11794-8155, USA
| | | | | | | | | | | |
Collapse
|
19
|
Borklu Yucel E, Ulgen KO. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches. MOLECULAR BIOSYSTEMS 2013; 9:2914-31. [DOI: 10.1039/c3mb70248k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
20
|
Abstract
Sphingolipids are an important class of lipid molecules that play fundamental roles in our cells and body. Beyond a structural role, it is now clearly established that sphingolipids serve as bioactive signaling molecules to regulate diverse processes including inflammatory signaling, cell death, proliferation, and pain sensing. Sphingolipid metabolites have been implicated in the onset and progression of various diseases including cancer, lung disease, diabetes, and lysosomal storage disorders. Here we review sphingolipid metabolism to introduce basic concepts as well as emerging complexities in sphingolipid function gained from modern technological advances and detailed cell and animal studies. Furthermore, we discuss the family of neutral sphingomyelinases (N-SMases), which generate ceramide through the hydrolysis of sphingomyelin and are key enzymes in sphingolipid metabolism. Four mammalian N-SMase enzymes have now been identified. Most prominent is nSMase2 with established roles in bone mineralization, exosome formation, and cellular stress responses. Function for the other N-SMases has been more enigmatic and is an area of active investigation. The known properties and potential role(s) of each enzyme are discussed to help guide future studies.
Collapse
|
21
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
22
|
Goñi FM, Montes LR, Alonso A. Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Prog Lipid Res 2012; 51:238-66. [DOI: 10.1016/j.plipres.2012.03.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
|
23
|
Chaube R, Kallakunta VM, Espey MG, McLarty R, Faccenda A, Ananvoranich S, Mutus B. Endoplasmic reticulum stress-mediated inhibition of NSMase2 elevates plasma membrane cholesterol and attenuates NO production in endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:313-23. [DOI: 10.1016/j.bbalip.2011.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/12/2011] [Accepted: 10/17/2011] [Indexed: 12/20/2022]
|
24
|
Zhang O, Xu W, Balakrishna Pillai A, Zhang K. Developmentally regulated sphingolipid degradation in Leishmania major. PLoS One 2012; 7:e31059. [PMID: 22299050 PMCID: PMC3267774 DOI: 10.1371/journal.pone.0031059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/01/2012] [Indexed: 12/22/2022] Open
Abstract
Leishmania parasites alternate between extracellular promastigotes in sandflies and intracellular amastigotes in mammals. These protozoans acquire sphingolipids (SLs) through de novo synthesis (to produce inositol phosphorylceramide) and salvage (to obtain sphingomyelin from the host). A single ISCL (Inositol phosphoSphingolipid phospholipase C-Like) enzyme is responsible for the degradation of both inositol phosphorylceramide (the IPC hydrolase or IPCase activity) and sphingomyelin (the SMase activity). Recent studies of a L. major ISCL-null mutant (iscl−) indicate that SL degradation is required for promastigote survival in stationary phase, especially under acidic pH. ISCL is also essential for L. major proliferation in mammals. To further understand the role of ISCL in Leishmania growth and virulence, we introduced a sole IPCase or a sole SMase into the iscl− mutant. Results showed that restoration of IPCase only complemented the acid resistance defect in iscl− promastigotes and improved their survival in macrophages, but failed to recover virulence in mice. In contrast, a sole SMase fully restored parasite infectivity in mice but was unable to reverse the promastigote defects in iscl−. These findings suggest that SL degradation in Leishmania possesses separate roles in different stages: while the IPCase activity is important for promastigote survival and acid tolerance, the SMase activity is required for amastigote proliferation in mammals. Consistent with these findings, ISCL was preferentially expressed in stationary phase promastigotes and amastigotes. Together, our results indicate that SL degradation by Leishmania is critical for parasites to establish and sustain infection in the mammalian host.
Collapse
Affiliation(s)
- Ou Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | | | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Cellular morphogenesis under stress is influenced by the sphingolipid pathway gene ISC1 and DNA integrity checkpoint genes in Saccharomyces cerevisiae. Genetics 2011; 189:533-47. [PMID: 21840863 DOI: 10.1534/genetics.111.132092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, replication stress induced by hydroxyurea (HU) and methyl methanesulfonate (MMS) activates DNA integrity checkpoints; in checkpoint-defective yeast strains, HU treatment also induces morphological aberrations. We find that the sphingolipid pathway gene ISC1, the product of which catalyzes the generation of bioactive ceramides from complex sphingolipids, plays a novel role in determining cellular morphology following HU/MMS treatment. HU-treated isc1Δ cells display morphological aberrations, cell-wall defects, and defects in actin depolymerization. Swe1, a morphogenesis checkpoint regulator, and the cell cycle regulator Cdk1 play key roles in these morphological defects of isc1Δ cells. A genetic approach reveals that ISC1 interacts with other checkpoint proteins to control cell morphology. That is, yeast carrying deletions of both ISC1 and a replication checkpoint mediator gene including MRC1, TOF1, or CSM3 display basal morphological defects, which increase following HU treatment. Interestingly, strains with deletions of both ISC1 and the DNA damage checkpoint mediator gene RAD9 display reduced morphological aberrations irrespective of HU treatment, suggesting a role for RAD9 in determining the morphology of isc1Δ cells. Mechanistically, the checkpoint regulator Rad53 partially influences isc1Δ cell morphology in a dosage-dependent manner.
Collapse
|
26
|
Abstract
Intensive research over the past 2 decades has implicated ceramide in the regulation of several cell responses. However, emerging evidence points to dramatic complexities in ceramide metabolism and structure that defy the prevailing unifying hypothesis on ceramide function that is based on the understanding of ceramide as a single entity. Here, we develop the concept that "ceramide" constitutes a family of closely related molecules, subject to metabolism by >28 enzymes and with >200 structurally distinct mammalian ceramides distinguished by specific structural modifications. These ceramides are synthesized in a combinatorial fashion with distinct enzymes responsible for the specific modifications. These multiple pathways of ceramide generation led to the hypothesis that individual ceramide molecular species are regulated by specific biochemical pathways in distinct subcellular compartments and execute distinct functions. In this minireview, we describe the "many ceramides" paradigm, along with the rationale, supporting evidence, and implications for our understanding of bioactive sphingolipids and approaches for unraveling these pathways.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SouthCarolina 29425, USA.
| | | |
Collapse
|
27
|
Huang H, Zhang Y, Liu X, Li Z, Xu W, He S, Huang Y, Zhang H. Acid sphingomyelinase contributes to evodiamine-induced apoptosis in human gastric cancer SGC-7901 cells. DNA Cell Biol 2011; 30:407-12. [PMID: 21294641 DOI: 10.1089/dna.2010.1122] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Evodiamine-induced apoptosis has been shown to have anticancer activity by eradication of some carcinoma cell lines. This study was designed to evaluate the effects of evodiamine on the viability of human gastric cancer SGC-7901 cells and to define the cell death pathway. Flow cytometry detection showed that 1.5 μM evodiamine significantly induced SGC-7901 cell apoptosis in a time-dependent manner. This apoptosis was partially inhibited by the pancaspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methylketone, which suggests that evodiamine-induced apoptosis in SGC-7901 cells is partially caspase independent. Further, the total content of sphingomyelin was decreased and expression of acid sphingomyelinase (aSMase) and neutral SMase genes in the SGC-7901cells was upregulated. Protein expression of aSMase, which was exposed to evodiamine, was shown to be increased by western blot analysis and could have been responsible for inducing caspase-independent apoptosis. Our results indicate that evodiamine stimulates upregulation of aSMase expression and hydrolysis of sphingomyelin into ceramide, which might be one of the mechanisms by which apoptosis occurs in SGC-7901 cells.
Collapse
Affiliation(s)
- Hai Huang
- Department of Clinical Biochemistry, Guiyang Medical College, No. 9 Beijing Road, Guiyang, China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Mendoza-Macías CL, Barrios-Ceballos MP, Anaya-Velázquez F, Nakada-Tsukui K, Nozaki T, Padilla-Vaca F. Entamoeba histolytica: Molecular cloning and characterization of a novel neutral sphingomyelinase. Exp Parasitol 2010; 125:279-85. [DOI: 10.1016/j.exppara.2010.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 01/21/2023]
|
29
|
Wu BX, Clarke CJ, Hannun YA. Mammalian neutral sphingomyelinases: regulation and roles in cell signaling responses. Neuromolecular Med 2010; 12:320-30. [PMID: 20552297 DOI: 10.1007/s12017-010-8120-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/02/2010] [Indexed: 12/22/2022]
Abstract
Ceramide, a bioactive lipid, has been extensively studied and identified as an essential bioactive molecule in mediating cellular signaling pathways. Sphingomyelinase (SMase), (EC 3.1.4.12) catalyzes the cleavage of the phosphodiester bond in sphingomyelin (SM) to form ceramide and phosphocholine. In mammals, three Mg(2+)-dependent neutral SMases termed nSMase1, nSMase2 and nSMase3 have been identified. Among the three enzymes, nSMase2 is the most studied and has been implicated in multiple physiological responses including cell growth arrest, apoptosis, development and inflammation. In this review, we summarize recent findings for the cloned nSMases and discuss the insights for their roles in regulation ceramide metabolism and cellular signaling pathway.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | | | | |
Collapse
|
30
|
Wu BX, Rajagopalan V, Roddy PL, Clarke CJ, Hannun YA. Identification and characterization of murine mitochondria-associated neutral sphingomyelinase (MA-nSMase), the mammalian sphingomyelin phosphodiesterase 5. J Biol Chem 2010; 285:17993-8002. [PMID: 20378533 DOI: 10.1074/jbc.m110.102988] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sphingolipids play important roles in regulating cellular responses. Although mitochondria contain sphingolipids, direct regulation of their levels in mitochondria or mitochondria-associated membranes is mostly unclear. Neutral SMase (N-SMase) isoforms, which catalyze hydrolysis of sphingomyelin (SM) to ceramide and phosphocholine, have been found in the mitochondria of yeast and zebrafish, yet their existence in mammalian mitochondria remains unknown. Here, we have identified and cloned a cDNA based on nSMase homologous sequences. This cDNA encodes a novel protein of 483 amino acids that displays significant homology to nSMase2 and possesses the same catalytic core residues as members of the extended N-SMase family. A transiently expressed V5-tagged protein co-localized with both mitochondria and endoplasmic reticulum markers in MCF-7 and HEK293 cells; accordingly, the enzyme is referred to as mitochondria-associated nSMase (MA-nSMase). MA-nSMase was highly expressed in testis, pancreas, epididymis, and brain. MA-nSMase had an absolute requirement for cations such as Mg(2+) and Mn(2+) and activation by the anionic phospholipids, especially phosphatidylserine and the mitochondrial cardiolipin. Importantly, overexpression of MA-nSMase in HEK293 cells significantly increased in vitro N-SMase activity and also modulated the levels of SM and ceramide, indicating that the identified cDNA encodes a functional SMase. Thus, these studies identify and characterize, for the first time, a mammalian MA-nSMase. The characterization of MA-nSMase described here will contribute to our understanding of pathways regulated by sphingolipid metabolites, particularly with reference to the mitochondria and associated organelles.
Collapse
Affiliation(s)
- Bill X Wu
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
31
|
Complementation of coenzyme Q-deficient yeast by coenzyme Q analogues requires the isoprenoid side chain. FEBS J 2010; 277:2067-82. [PMID: 20345901 DOI: 10.1111/j.1742-4658.2010.07622.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ubiquinone coenzyme Q (CoQ) is synthesized in mitochondria with a large, hydrophobic isoprenoid side chain. It functions in mitochondrial respiration as well as protecting membranes from oxidative damage. Yeast that cannot synthesize CoQ (DeltaCoQ) are viable, but cannot grow on nonfermentable carbon sources, unless supplied with ubiquinone. Previously we demonstrated that the isoprenoid side chain of the exogenous ubiquinone was important for growth of a DeltaCoQ strain on the nonfermentable substrate glycerol [James AM et al. (2005) J Biol Chem280, 21295-21312]. In the present study we investigated the structural requirements of exogenously supplied CoQ(2) for growth on glycerol and found that the first double bond of the initial isoprenoid unit is essential for utilization of respiratory substrates. As CoQ(2) analogues that did not complement growth on glycerol supported respiration in isolated mitochondria, discrimination does not occur via the respiratory chain complexes. The endogenous form of CoQ in yeast (CoQ(6)) is extremely hydrophobic and transported to mitochondria via the endocytic pathway when supplied exogenously. We found that CoQ(2) does not require this pathway when supplied exogenously and the pathway is unlikely to be responsible for the structural discrimination observed. Interestingly, decylQ, an analogue unable to support growth on glycerol, is not toxic, but antagonizes growth of DeltaCoQ yeast in the presence of exogenous CoQ(2). Using a DeltaCoQ double-knockout library we identified a number of genes that decrease the ability of yeast to grow on exogenous CoQ. Here we suggest that CoQ or its redox state may be a signal for growth during the shift to respiration.
Collapse
|
32
|
Rhome R, Del Poeta M. Sphingolipid signaling in fungal pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:232-7. [PMID: 20919658 DOI: 10.1007/978-1-4419-6741-1_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sphingolipid involvement in infectious disease is a new and exciting branch of research. Various microbial pathogens have been shown to synthesize their own sphingolipids and some have evolved methods to "hijack" host sphingolipids for their own use. For instance, Sphingomonas species are bacterial pathogens that lack the lipopolysaccharide component typical but instead contain glycosphingolipids (Kawahara 1991, 2006). In terms of sphingolipid signaling and function, perhaps the best-studied group of microbes is the pathogenic fungi. Pathogenic fungi still represent significant problems in human disease, despite treatments that have been used for decades. Because fungi are eukaryotic, drug targets in fungi can have many similarities to mammalian processes. This often leads to significant side effects of antifungal drugs that can be dose limiting in many patient populations. The search for fungal-specific drugs and the need for better understanding of cellular processes of pathogenic fungi has led to a large body of research on fungal signaling. One particularly interesting and rapidly growing field in this research is the involvement of fungal sphingolipid pathways in signaling and virulence. In this chapter, the research relating to sphingolipid signaling pathogenic fungi will be reviewed and summarized, in addition to highlighting pathways that show promise for future research.
Collapse
Affiliation(s)
- Ryan Rhome
- Department of Biochemistry and Molecular Biology, Division of Infectious Diseases, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
33
|
Zhang O, Wilson MC, Xu W, Hsu FF, Turk J, Kuhlmann FM, Wang Y, Soong L, Key P, Beverley SM, Zhang K. Degradation of host sphingomyelin is essential for Leishmania virulence. PLoS Pathog 2009; 5:e1000692. [PMID: 20011126 PMCID: PMC2784226 DOI: 10.1371/journal.ppat.1000692] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, sphingolipids (SLs) are important membrane components and powerful signaling molecules. In Leishmania, the major group of SLs is inositol phosphorylceramide (IPC), which is common in yeast and Trypanosomatids but absent in mammals. In contrast, sphingomyelin is not synthesized by Leishmania but is abundant in mammals. In the promastigote stage in vitro, Leishmania use SL metabolism as a major pathway to produce ethanolamine (EtN), a metabolite essential for survival and differentiation from non-virulent procyclics to highly virulent metacyclics. To further probe SL metabolism, we identified a gene encoding a putative neutral sphingomyelinase (SMase) and/or IPC hydrolase (IPCase), designated ISCL (Inositol phosphoSphingolipid phospholipase C-Like). Despite the lack of sphingomyelin synthesis, L. major promastigotes exhibited a potent SMase activity which was abolished upon deletion of ISCL, and increased following over-expression by episomal complementation. ISCL-dependent activity with sphingomyelin was about 20 fold greater than that seen with IPC. Null mutants of ISCL (iscl(-)) showed modest accumulation of IPC, but grew and differentiated normally in vitro. Interestingly, iscl(-) mutants did not induce lesion pathology in the susceptible BALB/c mice, yet persisted indefinitely at low levels at the site of infection. Notably, the acute virulence of iscl(-) was completely restored by the expression of ISCL or heterologous mammalian or fungal SMases, but not by fungal proteins exhibiting only IPCase activity. Together, these findings strongly suggest that degradation of host-derived sphingomyelin plays a pivotal role in the proliferation of Leishmania in mammalian hosts and the manifestation of acute disease pathology.
Collapse
Affiliation(s)
- Ou Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Wilson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Fong-Fu Hsu
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John Turk
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - F. Matthew Kuhlmann
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Yingwei Wang
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Phillip Key
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Matmati N, Kitagaki H, Montefusco D, Mohanty BK, Hannun YA. Hydroxyurea sensitivity reveals a role for ISC1 in the regulation of G2/M. J Biol Chem 2009; 284:8241-6. [PMID: 19158081 DOI: 10.1074/jbc.m900004200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking ISC1 (inositol phosphosphingolipase C) exhibit sensitivity to genotoxic agents such as methyl methanesulfonate and hydroxyurea (HU). Cell cycle analysis by flow cytometry revealed a G(2)/M block in isc1Delta cells when treated with methyl methanesulfonate or HU. Further investigation revealed that the levels of Cdc28 phosphorylated on Tyr-19, which plays an essential role in the regulation of the G(2)/M checkpoint, were higher in synchronized and asynchronous cells lacking ISC1 in response to HU. Use of a Cdc28-Y19F mutant protected isc1Delta from the G(2)/M block. In wild type cells, HU induced a loss of the Swe1p kinase, the enzyme that phosphorylates Cdc28-Tyr-19, correlating with resumption of the cell cycle. In the isc1Delta cells, however, the levels of Swe1p remained at sustained high levels in response to HU. Significantly, deletion of SWE1 in an isc1Delta background overcame the G(2)/M block in response to HU. The double isc1Delta/swe1Delta mutant also overcame the growth defect on HU. Taken together, these findings implicate Isc1p as an upstream regulator of Swe1p levels and stability and Cdc28-Tyr-19 phosphorylation, in effect signaling recovery from the effects of genotoxic stress and allowing G(2)/M progression.
Collapse
Affiliation(s)
- Nabil Matmati
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403, USA
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|