1
|
Golebiewska J, Sobkowski M, Stawinski J. Synthesis of Nucleoside Selenophosphoramidates via H-Phosphonate Intermediates. J Org Chem 2024; 89:12032-12043. [PMID: 39167188 DOI: 10.1021/acs.joc.4c00770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Two synthetic routes for the preparation of nucleoside selenophosphoramidates have been developed by using H-phosphonate derivatives as key substrates. The first method is a one-pot synthesis, which involves the condensation of an amine with H-phosphonate monoesters, mediated by a coupling agent, followed by oxidation with elemental selenium (A). The second approach makes use of the oxidative condensation reaction of H-phosphonoselenoate monoesters with amines promoted by iodine as an oxidizing agent (B). Both methods are efficient and experimentally simple, but the second method (B) seems to be more suited for the synthesis of selenophosphoramidates with bulky or sterically hindered amine residues. It has been shown that both methods also provide a convenient way to produce sulfurized counterparts, i.e., the corresponding thiophosphoramidate derivatives.
Collapse
Affiliation(s)
- Justyna Golebiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Michal Sobkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Novgorodtseva AI, Lomzov AA, Vasilyeva SV. Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates. Molecules 2024; 29:4121. [PMID: 39274969 PMCID: PMC11397104 DOI: 10.3390/molecules29174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
This review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates' substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research.
Collapse
Affiliation(s)
- Alina I Novgorodtseva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V Vasilyeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Depmeier H, Kath-Schorr S. Expanding the Horizon of the Xeno Nucleic Acid Space: Threose Nucleic Acids with Increased Information Storage. J Am Chem Soc 2024; 146:7743-7751. [PMID: 38442021 DOI: 10.1021/jacs.3c14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Xeno nucleic acids (XNAs) constitute a class of synthetic nucleic acid analogues characterized by distinct, non-natural modifications within the tripartite structure of the nucleic acid polymers. While most of the described XNAs contain a modification in only one structural element of the nucleic acid scaffold, this work explores the XNA chemical space to create more divergent variants with modifications in multiple parts of the nucleosidic scaffold. Combining the enhanced nuclease resistance of α-l-threofuranosyl nucleic acid (TNA) and the almost natural-like replication efficiency and fidelity of the unnatural hydrophobic base pair (UBP) TPT3:NaM, novel modified nucleoside triphosphates with a dual modification pattern were synthesized. We investigated the enzymatic incorporation of these nucleotide building blocks by XNA-compatible polymerases and confirmed the successful enzymatic synthesis of TPT3-modified TNA, while the preparation of NaM-modified TNA presented greater challenges. This study marks the first enzymatic synthesis of TNA with an expanded genetic alphabet (exTNA), opening promising opportunities in nucleic acid therapeutics, particularly for the selection and evolution of nuclease-resistant, high-affinity aptamers with increased chemical diversity.
Collapse
Affiliation(s)
- Hannah Depmeier
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| | - Stephanie Kath-Schorr
- Institute of Organic Chemistry, Department of Chemistry, University of Cologne, Greinstrasse 4, Cologne 50939, Germany
| |
Collapse
|
4
|
Molenda S, Sikorska A, Florczak A, Lorenc P, Dams-Kozlowska H. Oligonucleotide-Based Therapeutics for STAT3 Targeting in Cancer-Drug Carriers Matter. Cancers (Basel) 2023; 15:5647. [PMID: 38067351 PMCID: PMC10705165 DOI: 10.3390/cancers15235647] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 09/08/2024] Open
Abstract
High expression and phosphorylation of signal transducer and transcription activator 3 (STAT3) are correlated with progression and poor prognosis in various types of cancer. The constitutive activation of STAT3 in cancer affects processes such as cell proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The importance of STAT3 in cancer makes it a potential therapeutic target. Various methods of directly and indirectly blocking STAT3 activity at different steps of the STAT3 pathway have been investigated. However, the outcome has been limited, mainly by the number of upstream proteins that can reactivate STAT3 or the relatively low specificity of the inhibitors. A new branch of molecules with significant therapeutic potential has emerged thanks to recent developments in the regulatory function of non-coding nucleic acids. Oligonucleotide-based therapeutics can silence target transcripts or edit genes, leading to the modification of gene expression profiles, causing cell death or restoring cell function. Moreover, they can reach untreatable targets, such as transcription factors. This review briefly describes oligonucleotide-based therapeutics that found application to target STAT3 activity in cancer. Additionally, this review comprehensively summarizes how the inhibition of STAT3 activity by nucleic acid-based therapeutics such as siRNA, shRNA, ASO, and ODN-decoy affected the therapy of different types of cancer in preclinical and clinical studies. Moreover, due to some limitations of oligonucleotide-based therapeutics, the importance of carriers that can deliver nucleic acid molecules to affect the STAT3 in cancer cells and cells of the tumor microenvironment (TME) was pointed out. Combining a high specificity of oligonucleotide-based therapeutics toward their targets and functionalized nanoparticles toward cell type can generate very efficient formulations.
Collapse
Affiliation(s)
- Sara Molenda
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Agata Sikorska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Patryk Lorenc
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary St., 61-866 Poznan, Poland; (S.M.); (A.S.); (A.F.); (P.L.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary St., 61-866 Poznan, Poland
| |
Collapse
|
5
|
Qin T, Hu B, Zhao Q, Wang Y, Wang S, Luo D, Lyu J, Chen Y, Gan J, Huang Z. Structural Insight into Polymerase Mechanism via a Chiral Center Generated with a Single Selenium Atom. Int J Mol Sci 2023; 24:15758. [PMID: 37958741 PMCID: PMC10647396 DOI: 10.3390/ijms242115758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
DNA synthesis catalyzed by DNA polymerase is essential for all life forms, and phosphodiester bond formation with phosphorus center inversion is a key step in this process. Herein, by using a single-selenium-atom-modified dNTP probe, we report a novel strategy to visualize the reaction stereochemistry and catalysis. We capture the before- and after-reaction states and provide explicit evidence of the center inversion and in-line attacking SN2 mechanism of DNA polymerization, while solving the diastereomer absolute configurations. Further, our kinetic and thermodynamic studies demonstrate that in the presence of Mg2+ ions (or Mn2+), the binding affinity (Km) and reaction selectivity (kcat/Km) of dGTPαSe-Rp were 51.1-fold (or 19.5-fold) stronger and 21.8-fold (or 11.3-fold) higher than those of dGTPαSe-Sp, respectively, indicating that the diastereomeric Se-Sp atom was quite disruptive of the binding and catalysis. Our findings reveal that the third metal ion is much more critical than the other two metal ions in both substrate recognition and bond formation, providing insights into how to better design the polymerase inhibitors and discover the therapeutics.
Collapse
Affiliation(s)
- Tong Qin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Bei Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Qianwei Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yali Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China;
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Danyan Luo
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acid Institute, Chengdu 618000, China;
| | - Jiazhen Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
| | - Yiqing Chen
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China;
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China; (T.Q.); (B.H.); (Q.Z.); (S.W.); (J.L.)
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acid Institute, Chengdu 618000, China;
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
| |
Collapse
|
6
|
Iadevaia G, Hunter CA. Recognition-Encoded Synthetic Information Molecules. Acc Chem Res 2023; 56:712-727. [PMID: 36894535 PMCID: PMC10035037 DOI: 10.1021/acs.accounts.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
ConspectusNucleic acids represent a unique class of highly programmable molecules, where the sequence of monomer units incorporated into the polymer chain can be read through duplex formation with a complementary oligomer. It should be possible to encode information in synthetic oligomers as a sequence of different monomer units in the same way that the four different bases program information into DNA and RNA. In this Account, we describe our efforts to develop synthetic duplex-forming oligomers composed of sequences of two complementary recognition units that can base-pair in organic solvents through formation of a single H-bond, and we outline some general guidelines for the design of new sequence-selective recognition systems.The design strategy has focused on three interchangeable modules that control recognition, synthesis, and backbone geometry. For a single H-bond to be effective as a base-pairing interaction, very polar recognition units, such as phosphine oxide and phenol, are required. Reliable base-pairing in organic solvents requires a nonpolar backbone, so that the only polar functional groups present are the donor and acceptor sites on the two recognition units. This criterion limits the range of functional groups that can be produced in the synthesis of oligomers. In addition, the chemistry used for polymerization should be orthogonal to the recognition units. Several compatible high yielding coupling chemistries that are suitable for the synthesis of recognition-encoded polymers are explored. Finally, the conformational properties of the backbone module play an important role in determining the supramolecular assembly pathways that are accessible to mixed sequence oligomers.Almost all complementary homo-oligomers will form duplexes provided the product of the association constant for formation of a base-pair and the effective molarity for the intramolecular base-pairing interactions that zip up the duplex is significantly greater than one. For these systems, the structure of the backbone does not play a major role, and the effective molarities for duplex formation tend to fall in the range 10-100 mM for both rigid and flexible backbones. For mixed sequences, intramolecular H-bonding interactions lead to folding. The competition between folding and duplex formation depends critically on the conformational properties of the backbone, and high-fidelity sequence-selective duplex formation is only observed for backbones that are sufficiently rigid to prevent short-range folding between bases that are close in sequence. The final section of the Account highlights the prospects for functional properties, other than duplex formation, that might be encoded with sequence.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
7
|
Gołębiewska J, Stawinski J. Boranephosphonates. Unraveling chemistry of the P-BH 3 functional group. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.1990922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Berger SM, Marder TB. Applications of triarylborane materials in cell imaging and sensing of bio-relevant molecules such as DNA, RNA, and proteins. MATERIALS HORIZONS 2022; 9:112-120. [PMID: 34842251 DOI: 10.1039/d1mh00696g] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Triarylboranes have been known for more than 100 years and have found potential applications in various fields such as anion sensors and optoelectronics, for example in organic light emitting diodes (OLEDs), field effect transistors (OFETs), and organic photovoltaic devices. However, biological applications, such as bioimaging agents and biomolecule sensors have evolved much more recently. This review summarises progress in this relatively young field and highlights the potential of triarylboranes in biological applications.
Collapse
Affiliation(s)
- Sarina M Berger
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
9
|
Epple S, El-Sagheer AH, Brown T. Artificial nucleic acid backbones and their applications in therapeutics, synthetic biology and biotechnology. Emerg Top Life Sci 2021; 5:691-697. [PMID: 34297063 PMCID: PMC8726046 DOI: 10.1042/etls20210169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022]
Abstract
The modification of DNA or RNA backbones is an emerging technology for therapeutic oligonucleotides, synthetic biology and biotechnology. Despite a plethora of reported artificial backbones, their vast potential is not fully utilised. Limited synthetic accessibility remains a major bottleneck for the wider application of backbone-modified oligonucleotides. Thus, a variety of readily accessible artificial backbones and robust methods for their introduction into oligonucleotides are urgently needed to utilise their full potential in therapeutics, synthetic biology and biotechnology.
Collapse
Affiliation(s)
- Sven Epple
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Afaf H. El-Sagheer
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
10
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
11
|
Gołębiewska J, Stawinski J. Reaction of Boranephosphonate Diesters with Pyridines or Tertiary Amines in the Presence of Iodine: Synthetic and Mechanistic Studies. J Org Chem 2020; 85:4312-4323. [PMID: 32073846 DOI: 10.1021/acs.joc.9b03506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Boranephosphonate diesters react with heteroaromatic and certain tertiary amines in the presence of an oxidant (I2) to afford the boron-modified phosphodiester analogues containing a P-B-N structural motif. Our multinuclear 31P and 11B NMR spectroscopy studies lend support for a two-step mechanism involving generation of a λ3-boranephosphonate intermediate that immediately coordinates an amine in the solvent cage, leading to B-pyridinium or B-ammonium boranephosphonate betaine derivatives. We found that the type of the solvent used (e.g., dichloromethane vs acetonitrile) significantly affected the course of the reaction, resulting in either formation of boron-modified derivatives or loss of the boron group with a subsequent oxidation of the phosphorus atom. In aprotic, electron-donating, polar solvents., e.g., acetonitrile (ACN) and tetrahydrofuran (THF), a λ3-boranephosphonate intermediate can also coordinate solvent molecules forming P-B-ACN or P-B-THF complexes that may influence the type of the products formed.
Collapse
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
12
|
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A, Woodgate R, Orozco M, Holliger P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 2019; 11:533-542. [PMID: 31011171 DOI: 10.1038/s41557-019-0255-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
Collapse
Affiliation(s)
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
13
|
Gołębiewska J, Rachwalak M, Jakubowski T, Romanowska J, Stawinski J. Reaction of Boranephosphonate Diesters with Amines in the Presence of Iodine: The Case for the Intermediacy of H-Phosphonate Derivatives. J Org Chem 2018; 83:5496-5505. [DOI: 10.1021/acs.joc.8b00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marta Rachwalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Tomasz Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
14
|
Shivalingam A, Tyburn AES, El-Sagheer AH, Brown T. Molecular Requirements of High-Fidelity Replication-Competent DNA Backbones for Orthogonal Chemical Ligation. J Am Chem Soc 2017; 139:1575-1583. [PMID: 28097865 DOI: 10.1021/jacs.6b11530] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The molecular properties of the phosphodiester backbone that made it the evolutionary choice for the enzymatic replication of genetic information are not well understood. To address this, and to develop new chemical ligation strategies for assembly of biocompatible modified DNA, we have synthesized oligonucleotides containing several structurally and electronically varied artificial linkages. This has yielded a new highly promising ligation method based on amide backbone formation that is chemically orthogonal to CuAAC "click" ligation. A study of kinetics and fidelity of replication through these artificial linkages by primer extension, PCR, and deep sequencing reveals that a subtle interplay between backbone flexibility, steric factors, and ability to hydrogen bond to the polymerase modulates rapid and accurate information decoding. Even minor phosphorothioate modifications can impair the copying process, yet some radical triazole and amide DNA backbones perform surprisingly well, indicating that the phosphate group is not essential. These findings have implications in the field of synthetic biology.
Collapse
Affiliation(s)
- Arun Shivalingam
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Agnes E S Tyburn
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University , Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
15
|
Iadevaia G, Stross AE, Neumann A, Hunter CA. Mix and match backbones for the formation of H-bonded duplexes. Chem Sci 2016; 7:1760-1767. [PMID: 28936325 PMCID: PMC5592378 DOI: 10.1039/c5sc04467g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/18/2015] [Indexed: 11/21/2022] Open
Abstract
The formation of well-defined supramolecular assemblies involves competition between intermolecular and intramolecular interactions, which is quantified by effective molarity. Formation of a duplex between two oligomers equipped with recognition sites displayed along a non-interacting backbone requires that once one intermolecular interaction has been formed, all subsequent interactions take place in an intramolecular sense. The efficiency of this process is governed by the geometric complementarity and conformational flexibility of the backbone linking the recognition sites. Here we report a series of phosphine oxide H-bond acceptor AA 2-mers and phenol H-bond donor DD 2-mers, where the two recognition sites are connected by isomeric backbone modules that vary in geometry and flexibility. All AA and DD combinations form stable AA·DD duplexes, where two cooperative H-bonds lead to an increase in stability of an order of magnitude compared with the corresponding A·D complexes that can only form one H-bond. For all six possible backbone combinations, the effective molarity for duplex formation is approximately constant (7-20 mM). Thus strict complementarity and high degrees of preorganisation are not required for efficient supramolecular assembly. Provided there is some flexibility, quite different backbone modules can be used interchangeably to construct stable H-bonded duplexes.
Collapse
Affiliation(s)
- Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Anja Neumann
- Department of Chemistry , University of Sheffield , Sheffield S3 7HF , UK
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
16
|
Stross AE, Iadevaia G, Hunter CA. Cooperative duplex formation by synthetic H-bonding oligomers. Chem Sci 2015; 7:94-101. [PMID: 29861969 PMCID: PMC5950798 DOI: 10.1039/c5sc03414k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/15/2015] [Indexed: 01/12/2023] Open
Abstract
Flexible phenol-phosphine oxide oligomers show promise as a new class of synthetic information molecule.
A series of flexible oligomers equipped with phenol H-bond donors and phosphine oxide H-bond acceptors have been synthesised using reductive amination chemistry. H-bonding interactions between complementary oligomers leads to the formation of double-stranded complexes which were characterised using NMR titrations and thermal denaturation experiments. The stability of the duplex increases by one order of magnitude for every H-bonding group added to the chain. Similarly, the enthalpy change for duplex assembly and the melting temperature for duplex denaturation both increase with increasing chain length. These observations indicate that H-bond formation along the oligomers is cooperative despite the flexible backbone, and the effective molarity for intramolecular H-bond formation (14 mM) is sufficient to propagate the formation of longer duplexes using this approach. The product K EM, which is used to quantify chelate cooperativity is 5, which means that each H-bond is more than 80% populated in the assembled duplex. The modular design of these oligomers represents a general strategy for the design of synthetic information molecules that could potentially encode and replicate chemical information in the same way as nucleic acids.
Collapse
Affiliation(s)
- Alexander E Stross
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Giulia Iadevaia
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| | - Christopher A Hunter
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , UK .
| |
Collapse
|
17
|
Xu Z, Ramsay Shaw B. Synthesis, Hydrolysis, and Protonation-Promoted Intramolecular Reductive Breakdown of Potential NRTIs: Stavudine α-P-Borano-γ-P-N-L-tryptophanyltriphosphates. Molecules 2015; 20:18808-26. [PMID: 26501247 PMCID: PMC6332514 DOI: 10.3390/molecules201018808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022] Open
Abstract
Phosphorus-modified prodrugs of dideoxynucleoside triphosphates (ddNTPs) have shown promise as pronucleotide strategies for improving antiviral activity compared to their parent dideoxynucleosides. Borane modified NTPs offer a promising choice as nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs). However, the availability of α-P-borano-γ-P-substituted NTP analogs remains limited due to challenges with synthesis and purification. Here, we report the chemical synthesis and stability of a new potential class of NRTI prodrugs: stavudine (d4T) 5′-α-P-borano-γ-P-N-l-tryptophanyltriphosphates. One-pot synthesis of these compounds was achieved via a modified cyclic trimetaphosphate approach. Pure Rp and Sp diastereomers were obtained after HPLC separation. Based on LC-MS analysis, we report degradation pathways, half-lives (5–36 days) and mechanisms arising from structural differences to generate the corresponding borano tri- and di-phosphates, and H-phosphonate, via several parallel routes in buffer at physiologically relevant pH and temperature. Here, the major hydrolysis products, d4T α-P-boranotriphosphate Rp and Sp isomers, were isolated by HPLC and identified with spectral data. We first propose that one of the major degradation products, d4T H-phosphonate, is generated from the d4T pronucleotides via a protonation-promoted intramolecular reduction followed by a second step nucleophilic attack. This report could provide valuable information for pronucleotide-based drug design in terms of selective release of target nucleotides.
Collapse
Affiliation(s)
- Zhihong Xu
- Shaw Department of Chemistry, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
18
|
Xu Z, Shaw BR. Phosphorus deprotonation by a non-nucleophilic base is critical for the synthesis of nucleoside α-P-boranodiphosphates via a phosphoramidite approach. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Kowalska J, Wypijewska del Nogal A, Darzynkiewicz ZM, Buck J, Nicola C, Kuhn AN, Lukaszewicz M, Zuberek J, Strenkowska M, Ziemniak M, Maciejczyk M, Bojarska E, Rhoads RE, Darzynkiewicz E, Sahin U, Jemielity J. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Res 2014; 42:10245-64. [PMID: 25150148 PMCID: PMC4176373 DOI: 10.1093/nar/gku757] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Modified mRNA cap analogs aid in the study of mRNA-related processes and may enable creation of novel therapeutic interventions. We report the synthesis and properties of 11 dinucleotide cap analogs bearing a single boranophosphate modification at either the α-, β- or γ-position of the 5',5'-triphosphate chain. The compounds can potentially serve either as inhibitors of translation in cancer cells or reagents for increasing expression of therapeutic proteins in vivo from exogenous mRNAs. The BH3-analogs were tested as substrates and binding partners for two major cytoplasmic cap-binding proteins, DcpS, a decapping pyrophosphatase, and eIF4E, a translation initiation factor. The susceptibility to DcpS was different between BH3-analogs and the corresponding analogs containing S instead of BH3 (S-analogs). Depending on its placement, the boranophosphate group weakened the interaction with DcpS but stabilized the interaction with eIF4E. The first of the properties makes the BH3-analogs more stable and the second, more potent as inhibitors of protein biosynthesis. Protein expression in dendritic cells was 2.2- and 1.7-fold higher for mRNAs capped with m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2, respectively, than for in vitro transcribed mRNA capped with m2 (7,3'-O)GpppG. Higher expression of cancer antigens would make mRNAs containing m2 (7,2'-O)GppBH3pG D1 and m2 (7,2'-O)GppBH3pG D2 favorable for anticancer immunization.
Collapse
Affiliation(s)
- Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Anna Wypijewska del Nogal
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Zbigniew M Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Janina Buck
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany
| | | | - Andreas N Kuhn
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany TRON-Translational Oncology at the University Medical Center Mainz, Germany
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Malwina Strenkowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Marcin Ziemniak
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | | | | | - Robert E Rhoads
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland Centre of New Technologies, University of Warsaw, Poland
| | - Ugur Sahin
- BioNTech RNA Pharmaceuticals GmbH, Mainz, Germany TRON-Translational Oncology at the University Medical Center Mainz, Germany
| | - Jacek Jemielity
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland Centre of New Technologies, University of Warsaw, Poland
| |
Collapse
|
20
|
Pinheiro VB, Holliger P. Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends Biotechnol 2014; 32:321-8. [PMID: 24745974 PMCID: PMC4039137 DOI: 10.1016/j.tibtech.2014.03.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Nucleic acids display remarkable properties beyond information storage and propagation. The well-understood base pairing rules have enabled nucleic acids to be assembled into nanostructures of ever increasing complexity. Although nanostructures can be constructed using other building blocks, including peptides and lipids, it is the capacity to evolve that sets nucleic acids apart from all other nanoscale building materials. Nonetheless, the poor chemical and biological stability of DNA and RNA constrain their applications. Recent advances in nucleic acid chemistry and polymerase engineering enable the synthesis, replication, and evolution of a range of synthetic genetic polymers (XNAs) with improved chemical and biological stability. We discuss the impact of this technology on the generation of XNA ligands, enzymes, and nanostructures with tailor-made chemistry.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
21
|
Antisense therapy in neurology. J Pers Med 2013; 3:144-76. [PMID: 25562650 PMCID: PMC4251390 DOI: 10.3390/jpm3030144] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022] Open
Abstract
Antisense therapy is an approach to fighting diseases using short DNA-like molecules called antisense oligonucleotides. Recently, antisense therapy has emerged as an exciting and promising strategy for the treatment of various neurodegenerative and neuromuscular disorders. Previous and ongoing pre-clinical and clinical trials have provided encouraging early results. Spinal muscular atrophy (SMA), Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), Duchenne muscular dystrophy (DMD), Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy (including limb-girdle muscular dystrophy 2B; LGMD2B, Miyoshi myopathy; MM, and distal myopathy with anterior tibial onset; DMAT), and myotonic dystrophy (DM) are all reported to be promising targets for antisense therapy. This paper focuses on the current progress of antisense therapies in neurology.
Collapse
|
22
|
Xu Z, Sergueeva ZA, Shaw BR. Synthesis and hydrolytic properties of thymidine boranomonophosphate. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.03.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Cheek MA, Sharaf ML, Dobrikov MI, Shaw BR. Inhibition of hepatitis C viral RNA-dependent RNA polymerase by α-P-boranophosphate nucleotides: exploring a potential strategy for mechanism-based HCV drug design. Antiviral Res 2013; 98:144-52. [PMID: 23466667 PMCID: PMC3653414 DOI: 10.1016/j.antiviral.2013.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/02/2013] [Accepted: 02/21/2013] [Indexed: 12/31/2022]
Abstract
Improved treatments for chronic HCV infections remain a challenge, and new chemical strategies are needed to expand the current paradigm. The HCV RNA polymerase (RdR(P)) has been a target for antiviral development. For the first time we show that the boranophosphate (BP) modification increases the substrate efficiency of ATP analogs into HCV NS5BΔ55 RdRP-catalyzed RNA. Boranophosphate nucleotides contain a borane (BH₃) group substituted for a non-bridging phosphoryl oxygen of a normal phosphate group, resulting in a class of modified isoelectronic DNA and RNA mimics capable of modulating the reading and writing of genetic information. We determine that HCV NS5BΔ55, being a stereospecific enzyme, incorporates the Rp isomer of both ATPαB and the two boranophosphate analogs: 2'-O-methyladenosine 5'-(α-P-borano) triphosphate (2'-OMe ATPαB, 5a) and 3'-deoxyadenosine 5'-(α-P-borano) triphosphate (3'-dATPαB, 5b). The R(p) diastereomer of ATPαB (6), having no ribose modifications, was found to be a slightly better substrate than natural ATP, showing a 42% decrease in the apparent Michaelis-Menten constant (K(m)). The IC₅₀ of both 2'-O-Me and 3'-deoxy ATP was decreased with the boranophosphate modification up to 16-fold. This "borano effect" was further confirmed by determining the steady-state inhibitory constant (K(i)), showing a comparable potency shift (21-fold). These experiments also indicate that the boranophosphate analogs 5a and 5b inhibit HCV NS5B through a competitive mode of inhibition. This evidence, together with previous crystal structure data, further supports the idea that HCV NS5B (in a similar manner to HIV-1 RT) discriminates against the 3'-deoxy modification via lost interactions between the 3'-OH on the ribose and the active site residues, or lost intramolecular hydrogen bonding interactions between the 3'-OH and the pyrophosphate leaving group during phosphoryl transfer. To our knowledge, these data represent the first time a phosphate modified NTP has been studied as a substrate for HCV NS5B RdRP.
Collapse
Affiliation(s)
| | - Mariam L. Sharaf
- Box 90346, Department of Chemistry, Duke University, Durham NC 27708-0346
| | | | | |
Collapse
|
24
|
Martin AR, Vasseur JJ, Smietana M. Boron and nucleic acid chemistries: merging the best of both worlds. Chem Soc Rev 2013; 42:5684-713. [DOI: 10.1039/c3cs60038f] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Pinheiro VB, Holliger P. The XNA world: progress towards replication and evolution of synthetic genetic polymers. Curr Opin Chem Biol 2012; 16:245-52. [PMID: 22704981 DOI: 10.1016/j.cbpa.2012.05.198] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 01/25/2023]
Abstract
Life's diversity is built on the wide range of properties and functions that can be encoded in natural biopolymers such as polypeptides and nucleic acids. However, despite their versatility, the range of chemical functionalities is limited, particularly in the case of nucleic acids. Chemical modification of nucleic acids can greatly increase their functional diversity but access to the full phenotypic potential of such polymers requires a system of replication. Here we review progress in the chemical and enzymatic synthesis, replication and evolution of unnatural nucleic acid polymers, which promises to enable the exploration of a vast sequence space not accessible to nature and deliver ligands, catalysts and materials based on this new class of biopolymers.
Collapse
Affiliation(s)
- Vitor B Pinheiro
- Laboratory of Molecular Biology, Medical Research Council, Cambridge CB2 0QH, UK
| | | |
Collapse
|
26
|
Reddy GCS, Reddy MVN, Rani CR, Reddy NB, Rao KUM, Nayak S, Reddy CS. Synthesis and antiosteoclast activity of Di(1-oxo/thioxoperhydro-1λ5-[1,3,2] diazaphospholo [1,5-a]pyridine-1-yl) (4-substituted phenyl) boronates. HETEROATOM CHEMISTRY 2012. [DOI: 10.1002/hc.21010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Højland T, Veedu RN, Vester B, Wengel J. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides. ARTIFICIAL DNA, PNA & XNA 2012; 3:14-21. [PMID: 22679529 PMCID: PMC3368812 DOI: 10.4161/adna.19272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We describe the first enzymatic incorporation of an α-L-LNA nucleotide into an oligonucleotide. It was found that the 5'-triphosphate of α-L-LNA is a substrate for the DNA polymerases KOD, 9°N(m), Phusion and HIV RT. Three dispersed α-L-LNA thymine nucleotides can be incorporated into DNA strands by all four polymerases, but they were unable to perform consecutive incorporations of α-L-LNA nucleotides. In addition it was found that primer extension can be achieved using templates containing one α-L-LNA nucleotide.
Collapse
Affiliation(s)
- Torben Højland
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Rakesh N. Veedu
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
- School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane, Australia
| | - Birte Vester
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy; Nucleic Acid Center; Department of Biochemistry and Molecular Biology; University of Southern Denmark; Odense, Denmark
| |
Collapse
|
28
|
Liang QF, Wang Q, Qi QS. [Synthetic biology and rearrangements of microbial genetic material]. YI CHUAN = HEREDITAS 2011; 33:1102-1112. [PMID: 21993285 DOI: 10.3724/sp.j.1005.2011.01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.
Collapse
|
29
|
Krishna H, Caruthers MH. Solid-phase synthesis, thermal denaturation studies, nuclease resistance, and cellular uptake of (oligodeoxyribonucleoside)methylborane phosphine-DNA chimeras. J Am Chem Soc 2011; 133:9844-54. [PMID: 21585202 DOI: 10.1021/ja201314q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major hurdle associated with utilizing oligodeoxyribonucleotides for therapeutic purposes is their poor delivery into cells coupled with high nuclease susceptibility. In an attempt to combine the nonionic nature and high nuclease stability of the P-C bond of methylphosphonates with the high membrane permeability, low toxicity, and improved gene silencing ability of borane phosphonates, we have focused our research on the relatively unexplored methylborane phosphine (Me-P-BH(3)) modification. This Article describes the automated solid-phase synthesis of mixed-backbone oligodeoxynucleotides (ODNs) consisting of methylborane phosphine and phosphate or thiophosphate linkages (16-mers). Nuclease stability assays show that methylborane phosphine ODNs are highly resistant to 5' and 3' exonucleases. When hybridized to a complementary strand, the ODN:RNA duplex was more stable than its corresponding ODN:DNA duplex. The binding affinity of ODN:RNA duplex increased at lower salt concentration and approached that of a native DNA:RNA duplex under conditions close to physiological saline, indicating that the Me-P-BH(3) linkage is positively charged. Cellular uptake measurements indicate that these ODNs are efficiently taken up by cells even when the strand is 13% modified. Treatment of HeLa cells and WM-239A cells with fluorescently labeled ODNs shows significant cytoplasmic fluorescence when viewed under a microscope. Our results suggest that methylborane phosphine ODNs may prove very valuable as potential candidates in antisense research and RNAi.
Collapse
Affiliation(s)
- Heera Krishna
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
30
|
Liang J, Luo Y, Zhao H. Synthetic biology: putting synthesis into biology. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:7-20. [PMID: 21064036 PMCID: PMC3057768 DOI: 10.1002/wsbm.104] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself—encompassing many branches of science and across many scales of application. New DNA synthesis and assembly techniques have made routine customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery—a self‐replicating organism—is being pursued at this moment. The aim of this article is to dissect and organize these various components of synthetic biology into a coherent picture. WIREs Syst Biol Med 2011 3 7–20 DOI: 10.1002/wsbm.104 This article is categorized under:
Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Metabolomics
Collapse
Affiliation(s)
- Jing Liang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
31
|
Lu H, Krueger AT, Gao J, Liu H, Kool ET. Toward a designed genetic system with biochemical function: polymerase synthesis of single and multiple size-expanded DNA base pairs. Org Biomol Chem 2010; 8:2704-10. [PMID: 20407680 DOI: 10.1039/c002766a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of alternative architectures for genetic information-encoding systems offers the possibility of new biotechnological tools as well as basic insights into the function of the natural system. In order to examine the potential of benzo-expanded DNA (xDNA) to encode and transfer biochemical information, we carried out a study of the processing of single xDNA pairs by DNA Polymerase I Klenow fragment (Kf, an A-family sterically rigid enzyme) and by the Sulfolobus solfataricus polymerase Dpo4 (a flexible Y-family polymerase). Steady-state kinetics were measured and compared for enzymatic synthesis of the four correct xDNA pairs and twelve mismatched pairs, by incorporation of dNTPs opposite single xDNA bases. Results showed that, like Kf, Dpo4 in most cases selected the correctly paired partner for each xDNA base, but with efficiency lowered by the enlarged pair size. We also evaluated kinetics for extension by these polymerases beyond xDNA pairs and mismatches, and for exonuclease editing by the Klenow exo+ polymerase. Interestingly, the two enzymes were markedly different: Dpo4 extended pairs with relatively high efficiencies (within 18-200-fold of natural DNA), whereas Kf essentially failed at extension. The favorable extension by Dpo4 was tested further by stepwise synthesis of up to four successive xDNA pairs on an xDNA template.
Collapse
Affiliation(s)
- Haige Lu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
32
|
McKenna CE, Kashemirov BA, Peterson LW, Goodman MF. Modifications to the dNTP triphosphate moiety: from mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1223-30. [PMID: 20079885 DOI: 10.1016/j.bbapap.2010.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
Abstract
Abnormal replication of DNA is associated with many important human diseases, most notably viral infections and neoplasms. Existing approaches to chemotherapeutics for diseases associated with dysfunctional DNA replication classically involve nucleoside analogues that inhibit polymerase activity due to modification in the nucleobase and/or ribose moieties. These compounds must undergo multiple phosphorylation steps in vivo, converting them into triphosphosphates, in order to inhibit their targeted DNA polymerase. Nucleotide monophosphonates enable bypassing the initial phosphorylation step at the cost of decreased bioavailability. Relatively little attention has been paid to higher nucleotides (corresponding to the natural di- and triphosphate DNA polymerase substrates) as drug platforms due to their expected poor deliverability. However, a better understanding of DNA polymerase mechanism and fidelity dependence on the triphosphate moiety is beginning to emerge, aided by systematic incorporation into this group of substituted methylenebisphosphonate probes. Meanwhile, other bridging, as well as non-bridging, modifications have revealed intriguing possibilities for new drug design. We briefly survey some of this recent work, and argue that the potential of nucleotide-based drugs, and intriguing preliminary progress in this area, warrant acceptance of the challenges that they present with respect to bioavailability and metabolic stability.
Collapse
Affiliation(s)
- Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
33
|
Appella DH. Non-natural nucleic acids for synthetic biology. Curr Opin Chem Biol 2009; 13:687-96. [PMID: 19879178 PMCID: PMC3152792 DOI: 10.1016/j.cbpa.2009.09.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 09/24/2009] [Accepted: 09/29/2009] [Indexed: 11/29/2022]
Abstract
Genetic manipulation is an important facet of synthetic biology but can be complicated by undesired nuclease degradation. Incorporating non-natural nucleic acids into a gene could convey resistance to nucleases and promote expression. The compatibility of non-natural nucleosides with polymerases is reviewed with a focus on results from the past two years. Details are provided about how the different systems could be useful in synthetic biology.
Collapse
Affiliation(s)
- Daniel H Appella
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
34
|
Delaney JC, Gao J, Liu H, Shrivastav N, Essigmann JM, Kool ET. Efficient replication bypass of size-expanded DNA base pairs in bacterial cells. Angew Chem Int Ed Engl 2009; 48:4524-7. [PMID: 19444841 DOI: 10.1002/anie.200805683] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Supersize me! Size-expanded DNA bases (xDNA) are able to encode natural DNA sequences in replication. In vitro experiments with a DNA polymerase show nucleotide incorporation opposite the xDNA bases with correct pairing. In vivo experiments using E. coli show that two xDNA bases (xA and xC, see picture) encode the correct replication partners.
Collapse
Affiliation(s)
- James C Delaney
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
35
|
Delaney J, Gao J, Liu H, Shrivastav N, Essigmann J, Kool E. Efficient Replication Bypass of Size-Expanded DNA Base Pairs in Bacterial Cells. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Stereospecificity, substrate, and inhibitory properties of nucleoside diphosphate analogs for creatine and pyruvate kinases. Bioorg Chem 2008; 36:169-77. [PMID: 18433830 DOI: 10.1016/j.bioorg.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 11/23/2022]
Abstract
Antiviral alpha-P-borano substituted NTPs are promising chain terminators targeting HIV reverse transcriptase (RT). Activation of antiviral nucleoside diphosphates (NDPs) to NTPs may be carried out by pyruvate kinase (PK) and creatine kinase (CK). Herein, are presented the effects of nucleobase, ribose, and alpha-phosphate substitutions on substrate specificities of CK and PK. Both enzymes showed two binding modes and negative cooperativity with respect to substrate binding. The stereospecificity and inhibition of ADP phosphorylation by alpha-P-borano substituted NDP (NDPalphaB) stereoisomers were also investigated. The Sp-ADPalphaB isomer was a 70-fold better substrate for CK than the Rp isomer, whereas PK preferred the Rp isomer of NDPalphaBs. For CK, the Sp-ADPalphaB isomer was a competitive inhibitor; for PK, the Rp-ADPalphaB isomer was a poor competitive inhibitor and the Sp-ADPalphaB isomer was a poor non-competitive inhibitor. Taken together, these data suggest that, although the Rp-NDPalphaB isomer would be minimally phosphorylated by CK or PK, it should not inhibit either enzyme.
Collapse
|
37
|
Khan SI, Shaw BR. Efficient synthesis of thymidine boranophosphoramidates conjugated with amino acids. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:621-3. [PMID: 18066867 DOI: 10.1080/15257770701490415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An efficient synthesis of a thymidine boranophosphoramidate prodrug was accomplished using a phosphoramidite approach in high yield. This new class of compounds is designed to have improved antiviral and anticancer advantages conferred by combining the boranophosphate and normal nucleoside amino acid phosphoramidate. Compounds were characterized by MS and 31P NMR.
Collapse
Affiliation(s)
- Shoeb I Khan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
38
|
|
39
|
Lin N, Yan J, Huang Z, Altier C, Li M, Carrasco N, Suyemoto M, Johnston L, Wang S, Wang Q, Fang H, Caton-Williams J, Wang B. Design and synthesis of boronic-acid-labeled thymidine triphosphate for incorporation into DNA. Nucleic Acids Res 2007; 35:1222-9. [PMID: 17267413 PMCID: PMC1851626 DOI: 10.1093/nar/gkl1091] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The boronic acid moiety is a versatile functional group useful in carbohydrate recognition, glycoprotein pull-down, inhibition of hydrolytic enzymes and boron neutron capture therapy. The incorporation of the boronic-acid group into DNA could lead to molecules of various biological functions. We have successfully synthesized a boronic acid-labeled thymidine triphosphate (B-TTP) linked through a 14-atom tether and effectively incorporated it into DNA by enzymatic polymerization. The synthesis was achieved using the Huisgen cycloaddition as the key reaction. We have demonstrated that DNA polymerase can effectively recognize the boronic acid-labeled DNA as the template for DNA polymerization, that allows PCR amplification of boronic acid-labeled DNA. DNA polymerase recognitions of the B-TTP as a substrate and the boronic acid-labeled DNA as a template are critical issues for the development of DNA-based lectin mimics via in vitro selection.
Collapse
Affiliation(s)
- Na Lin
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Jun Yan
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Zhen Huang
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Craig Altier
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Minyong Li
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Nicolas Carrasco
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Mitsu Suyemoto
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Lynette Johnston
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Siming Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Qian Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Hao Fang
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Julianne Caton-Williams
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
| | - Binghe Wang
- Department of Chemistry and Center for Biotechnology and Drug Design, Campus Box 4098, Georgia State University, Atlanta, GA 30302-4098, USA, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough St., Raleigh, NC 27606, USA and Department of Chemistry and Biochemistry, 631 Sumter St. University of South Carolina, Columbia, SC 29202, USA
- *To whom correspondence should be addressed. Tel: +1 404 651 0289; Fax: +1 404 654 5827;
| |
Collapse
|
40
|
Tjarks W, Tiwari R, Byun Y, Narayanasamy S, Barth RF. Carboranyl thymidine analogues for neutron capture therapy. Chem Commun (Camb) 2007:4978-91. [DOI: 10.1039/b707257k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Hall AHS, Wan J, Spesock A, Sergueeva Z, Shaw BR, Alexander KA. High potency silencing by single-stranded boranophosphate siRNA. Nucleic Acids Res 2006; 34:2773-81. [PMID: 16717282 PMCID: PMC1464415 DOI: 10.1093/nar/gkl339] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In RNA interference (RNAi), double-stranded short interfering RNA (ds-siRNA) inhibits expression from complementary mRNAs. Recently, it was demonstrated that short, single-stranded antisense RNA (ss-siRNA) can also induce RNAi. While ss-siRNA may offer several advantages in both clinical and research applications, its overall poor activity compared with ds-siRNA has prevented its widespread use. In contrast to the poor gene silencing activity of native ss-siRNA, we found that the silencing activity of boranophosphate-modified ss-siRNA is comparable with that of unmodified ds-siRNA. Boranophosphate ss-siRNA has excellent maximum silencing activity and is highly effective at low concentrations. The silencing activity of boranophosphate ss-siRNA is also durable, with significant silencing up to 1 week after transfection. Thus, we have demonstrated that boranophosphate-modified ss-siRNA can silence gene expression as well as native ds-siRNA, suggesting that boranophosphate-modified ss-siRNAs should be investigated as a potential new class of therapeutic agents.
Collapse
Affiliation(s)
- Allison H. S. Hall
- Department of Molecular Genetics and MicrobiologyBox 3020Duke University Medical CenterDurham, NC 27710, USA
| | - Jing Wan
- Department of ChemistryBox 90354Duke UniversityDurham, NC 27708, USA
| | - April Spesock
- Department of Molecular Genetics and MicrobiologyBox 3020Duke University Medical CenterDurham, NC 27710, USA
| | - Zinaida Sergueeva
- Department of ChemistryBox 90354Duke UniversityDurham, NC 27708, USA
| | | | - Kenneth A. Alexander
- Department of Molecular Genetics and MicrobiologyBox 3020Duke University Medical CenterDurham, NC 27710, USA
- Department of Pediatrics, Section of Pediatric Infectious Diseases, The University of Chicago5841 S. Maryland Ave., MC 6054, Chicago, IL, 60637, USA
- To whom correspondence should be addressed. Tel: 1 773 834 2711; Fax: 1 773 702 1196;
| |
Collapse
|
42
|
Li P, Xu Z, Liu H, Wennefors CK, Dobrikov MI, Ludwig J, Shaw BR. Synthesis of alpha-P-modified nucleoside diphosphates with ethylenediamine. J Am Chem Soc 2006; 127:16782-3. [PMID: 16316213 DOI: 10.1021/ja055179y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report describes a one-pot synthesis of alpha-P-borano-, alpha-P-thio-, and alpha-P-seleno-modified nucleoside diphosphate analogues that are otherwise difficult to obtain. The key step involves the intramolecular nucleophilic attack by an amino group in 5 to remove the gamma-phosphate. The absolute configurations of P-diastereomers were confirmed by analysis of their 1H NMR. Affinity studies revealed that the nucleoside boranodiphosphates are potentially useful in antiviral research.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Li P, Shaw BR. Model synthesis of nucleoside boranophosphoramidate with amino acid for prodrug purpose. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:675-8. [PMID: 16248012 DOI: 10.1081/ncn-200060244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A model synthesis of a nucleoside boranophosphoramidate prodrug with (L)-tryptophan methyl ester was accomplished in a one-pot reaction via an H-phosphonate approach. This new type of compound is expected to possess the potent antiviral and anticancer advantages conferred by boranophosphates and normal nucleoside amino acid phosphoramidate.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Duke University, Box 90346, Durham, NC 27708-0346, USA
| | | |
Collapse
|
44
|
Wan J, Shaw BR. Incorporation of ribonucleoside 5'-(alpha-P-borano)triphosphates into a 20-mer RNA by T7 RNA polymerase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:943-6. [PMID: 16248068 DOI: 10.1081/ncn-200059303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The enzymatic synthesis of short boranophosphate RNA was studied by comparing the yield and pattern of abortive products of in vitro transcription at steady-state conditions with that of normal RNA. Boranophosphate short RNA can be readily synthesized by T7 RNA polymerase.
Collapse
Affiliation(s)
- Jing Wan
- Department of Chemistry, P.M. Gross Chemical Laboratory, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
45
|
Wang JX, Shaw BR. Synthesis of 5-(1-propynyl)-2'-deoxyuridine 5'-(alpha-P-borano)triphosphate and kinetic characterization as a substrate for mmlv reverse transcriptase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:947-50. [PMID: 16248069 DOI: 10.1081/ncn-200059307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In order to introduce pyrimidine C5-propynyl modification into boranophosphate oligodeoxyribonucleotides (BP- ODNs), 5-(1-propynyl)-2'-deoxyuridine 5'-(alpha-P-borano) triphosphate (d5PUTPalphaB) was synthesized. The two diastereomers were separated by reverse-phase HPLC. Kinetic studies showed that the Rp isomer was a slightly better substrate for MMLV reverse transcriptase than thymidine triphosphate or Rp-thymidine 5'-(alpha-P-borano)triphosphate. Using the Rp isomers of d5PUTPalphaB and the other three 5'-(alpha-P-borano) triphosphates, a DNA primer could be extended to the full length of the template.
Collapse
Affiliation(s)
- Joy Xin Wang
- Department of Chemistry, P.M. Gross Chemical Laboratory, Duke University, Durham, North Carolina, USA
| | | |
Collapse
|
46
|
Wang JX, Sergueev DS, Shaw BR. The effect of a single boranophosphate substitution with defined configuration on the thermal stability and conformation of a DNA duplex. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:951-5. [PMID: 16248070 DOI: 10.1081/ncn-200059310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Substitution of one non-bridging oxygen in a natural phosphodiester internucleotide linkage with a borano (-BH3) group results in a chiral phosphorus center in boranophosphate. UV thermal melting profiles were recorded for DNA duplexes formed between a DNA 9-mer with either an Sp or a Rp boranophosphate linkage in the middle and the complementary DNA 9-mer, as well as for their unmodified parent duplex. The thermal stability of the DNA duplexes was in the order of normal > Sp borano > Rp borano. CD spectra of all three duplexes exhibited typical B-DNA profile, which closely resembled each other.
Collapse
Affiliation(s)
- Joy Xin Wang
- Chemistry, P.M. Gross Chemical Laboratory, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
47
|
Khan SI, Dobrikov MI, Shaw BR. Synthesis of 5-ethynyl-2'-deoxyuridine-5'-boranomono phosphate as a potential thymidylate synthase inhibitor. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:1047-9. [PMID: 16248089 DOI: 10.1081/ncn-200060046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The 5-ethynyl-2'-deoxyuridine nucleoside and the 5'-boranomonophosphate nucleotide were synthesized as analogs of 5-fluoro-2'-deoxyuridine monophosphate (5-FdUMP), a widely used mechanism-based inhibitor of thymidylate synthase. Synthesis was carried out from protected 5-iodo-2'-deoxyuridine and trimethylsilylacetylene by Sonogashira palladium-catalyzed cross coupling reaction followed by selective phosphorylation and finally boronation.
Collapse
Affiliation(s)
- Shoeb I Khan
- Department of Chemistry, P. M. Gross Chemical Laboratory, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
48
|
Markosian M, Hyde RM. Oligonucleotides and polyribonucleotides: a review of antiviral activity. Antivir Chem Chemother 2005; 16:91-102. [PMID: 15889532 DOI: 10.1177/095632020501600202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current antiviral therapies are insufficient for treating emerging, re-emerging and established viral diseases. In an effort to find new therapeutics, oligo- and polyribonucleotides are being studied for their antiviral capabilities. Studies have shown that uniquely modified single- and double-stranded nucleic acid constructs are effective in inhibiting viral proliferation by various mechanisms. This review gives a brief history and highlights the development of oligo- and polyribonucleotides as antiviral agents primarily in the fields of interferon induction, mRNA complementation and reverse transcriptase inhibition.
Collapse
|
49
|
Li P, Shaw BR. Synthesis of Nucleoside Boranophosphoramidate Prodrugs Conjugated with Amino Acids. J Org Chem 2005; 70:2171-83. [PMID: 15760202 DOI: 10.1021/jo0481248] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[structure: see text] Nucleoside boranophosphates and nucleoside amino acid phosphoramidates have been shown to be potent antiviral and anticancer agents with the potential to act as nucleoside prodrugs. A combination of these two types of compounds results in a boranophosphoramidate linkage between the nucleoside and amino acid. This new class of potential prodrugs is expected to possess advantages conferred by both types of parent compounds. Two approaches, specifically the H-phosphonate and oxathiaphospholane approaches, are described here to synthesize nucleoside boranophosphoramidate prodrugs conjugated with amino acids. The H-phosphonate approach involves a key intermediate, silylated nucleoside amino acid phosphoramidite 6, prepared from a series of reactions starting from nucleoside H-phosphonate in the presence of condensing reagent DPCP. Due to the lengthy procedure and the difficulties in removing DPCP from the final products, we switched to the oxathiaphospholane approach in which the DBU-assisted oxathiaphospholane ring-opening process constituted a key step for the generation of nucleoside amino acid boranophosphoramidates 24. We demonstrate that this key step did not cause any measurable C-racemization of boranophosphorylated amino acids 22. Diastereomers of compounds 24a-f were separated by RP-HPLC. An "adjacent"-type mechanism is proposed to explain the diastereomer ratio in the final products obtained via the oxathiaphospholane approach. A tentative assignment of configuration for the diastereomers was carried out based on the mechanism, molecular modeling, and (1)H NMR. Conclusively, the oxathiaphospholane methodology proved to be more facile and efficient than H-phosphonate chemistry in the preparation of the nucleoside amino acid boranophosphoramidate analogues that are promising as a new type of antiviral prodrugs.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|
50
|
Li P, Shaw BR. Convenient synthesis of nucleoside borane diphosphate analogues: deoxy- and ribonucleoside 5'-P(alpha)-boranodiphosphates. J Org Chem 2004; 69:7051-7. [PMID: 15471452 DOI: 10.1021/jo049094b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleoside boranophosphates, having one of the nonbridging phosphate oxygens substituted with a borane (BH(3)) group, have shown potential therapeutical applications as aptamers, antisense agents, and antiviral prodrugs. An oxathiaphospholane approach, which does not require exocyclic amine protection of the nucleobase, has been successfully developed to efficiently synthesize 5'-P(alpha)-boranodiphosphates of 2'-deoxythymidine, adenosine, guanosine, and uridine. The approach involves a key intermediate, the borane complex of nucleoside 5'-O-1,3,2-oxathiaphospholane 16, that undergoes a ring-opening reaction catalyzed by 1,4-diazabicyclo[5.4.0]-undec-7-ene to form the protected nucleoside 5'-P(alpha)-boranodiphosphate 18. Treatment of 18 with ammonium hydroxide yielded diastereoisomeric mixtures of nucleoside 5'-P(alpha)-boranodiphosphates 5. This oxathiaphospholane approach ensures the availability of nucleoside 5'-P(alpha)-boranodiphosphate analogues needed for antiviral drug research.
Collapse
Affiliation(s)
- Ping Li
- Department of Chemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|