1
|
Eising S, Svensson J, Skogstrand K, Nilsson A, Lynch K, Andersen PS, Lernmark A, Hougaard DM, Pociot F, Nørgaard-Pedersen B, Nerup J. Type 1 diabetes risk analysis on dried blood spot samples from population-based newborns: design and feasibility of an unselected case-control study. Paediatr Perinat Epidemiol 2007; 21:507-17. [PMID: 17937736 DOI: 10.1111/j.1365-3016.2007.00846.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Development of type 1 diabetes mellitus (T1D) may be triggered pre- or perinatally by multiple factors. Identifying new predisposing T1D markers or combinations of markers in a large, well-characterised case-control collection may be important for future T1D prevention. The present work describes the design and feasibility of a large and unselected case-control study, which will define and evaluate prediction criteria for T1D at the time of birth. Danish registries (Biological Specimen Bank for Neonatal Screening, and the National Discharge Registry) made it possible to identify and collect dried blood spots (DBS) from newborns who later developed T1D (cases) born 1981-2002. DBS samples from 2086 cases and two matching control subjects per case were analysed for genetic and immune factors that are associated with T1D: (a) candidate genes (HLA, INS and CTLA4), (b) cytokines and inflammatory markers, (c) islet auto-antibodies (GAD65A, IA-2A). The objective of the study was to define reliable prediction tools for T1D using samples available at the time of birth. In a unique approach, the study linked a large unselected and population-based sample resource to well-ascertained clinical databases and advanced technology. It combined genetic, immunological and demographic data to develop prediction algorithms. It also provided a resource for future studies in which new genetic markers can be included as they are identified.
Collapse
|
2
|
Durinovic-Belló I, Rosinger S, Olson JA, Congia M, Ahmad RC, Rickert M, Hampl J, Kalbacher H, Drijfhout JW, Mellins ED, Al Dahouk S, Kamradt T, Maeurer MJ, Nhan C, Roep BO, Boehm BO, Polychronakos C, Nepom GT, Karges W, McDevitt HO, Sønderstrup G. DRB1*0401-restricted human T cell clone specific for the major proinsulin73-90 epitope expresses a down-regulatory T helper 2 phenotype. Proc Natl Acad Sci U S A 2006; 103:11683-8. [PMID: 16868084 PMCID: PMC1544230 DOI: 10.1073/pnas.0603682103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, we have identified proinsulin (P-Ins)(73-90) as an immunodominant T cell epitope of HLA-DRB1*0401 (DR4) subjects with beta-islet cell autoimmunity and of HLA-DR4/CD4 double-transgenic mice immunized with human P-Ins. We have compared the fine specificities of one human CD4 T cell clone and two mouse T cell hybridoma clones recognizing this epitope, and, although these three clones all recognized the same core region (LALEGSLQK), there were major differences in how they interacted with the peptide (p)/HLA complex, reflecting the fact that human P-Ins is a foreign antigen in the mouse and an autoantigen in the type 1 diabetes patient. The human T cell clone was forkhead transcription factor 3 (Foxp3)-positive, a marker for regulatory T cell lineages, and secreted predominantly IL-5, IL-10, and low levels of IFNgamma in response to P-Ins(73-90). This finding is compatible with the previously detected regulatory cytokine pattern in subjects with beta-cell autoimmunity. However, added N- or C-terminal amino acids drastically changed HLA and tetramer binding capacity as well as T cell reactivity and the cytokine phenotype of the P-Ins(73-90)-specific human CD4 T cell clone, suggesting a potential for this P-Ins epitope as a target for therapeutic intervention in HLA-DR4-positive humans with beta-islet cell autoimmunity or recent-onset type 1 diabetes.
Collapse
Affiliation(s)
- Ivana Durinovic-Belló
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, D-89081 Ulm, Germany
- Departments of Microbiology and Immunology and
| | - Silke Rosinger
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, D-89081 Ulm, Germany
| | | | - Mauro Congia
- Departments of Microbiology and Immunology and
- Department of Biomedical Sciences and Biotechnology, University of Cagliari, I-09121 Cagliari, Italy
| | | | | | - Johannes Hampl
- Biomedical Research Division, Beckman Coulter, Inc., San Diego, CA 92196
| | - Hubert Kalbacher
- Medical Scientific Center, University of Tuebingen, D-72072 Tuebingen, Germany
| | - Jan W. Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands
| | | | - Sascha Al Dahouk
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, D-89081 Ulm, Germany
| | - Thomas Kamradt
- Institut of Immunology, Friedrich Schiller University Clinic, D-07740 Jena, Germany
| | - Markus J. Maeurer
- Department of Medical Microbiology, University of Mainz, D-55101 Mainz, Germany
| | - Carol Nhan
- Endocrine Genetics Laboratory, McGill University Health Center, Montreal, QC, Canada H3H 1P3; and
| | - Bart O. Roep
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Bernhard O. Boehm
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, D-89081 Ulm, Germany
| | - Constantin Polychronakos
- Endocrine Genetics Laboratory, McGill University Health Center, Montreal, QC, Canada H3H 1P3; and
| | - Gerald T. Nepom
- Virginia Mason Research Center, Benaroya Research Institute, Seattle, WA 98101-2795
| | - Wolfram Karges
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, D-89081 Ulm, Germany
| | | | | |
Collapse
|
3
|
Abstract
Type 1A diabetes mellitus is caused by specific and progressive autoimmune destruction of the beta cells in the islets of Langerhans whereas the other cell types in the islet (alpha, delta, and PP) are spared. The autoantigens of Type 1A diabetes may be divided into subgroups based on their tissue distributions: Beta-cell-specific antigens like insulin, insulin derivatives, and IGRP (Islet-specific Glucose-6-phosphatase catalytic subunit Related Peptide); neurendocrine antigens such as carboxypeptidase H, insulinoma-associated antigen (IA-2), glutamic acid decarboxylase (GAD65), and carboxypeptidase E; and those expressed ubiquitously like heat shock protein 60 (a putative autoantigen for type 1 diabetes). This review will focus specifically on insulin as a primary autoantigen, an essential target for disease, in type 1A diabetes mellitus. In particular, immunization with insulin peptide B:9-23 can be used to induce insulin autoantibodies and diabetes in animal models or used to prevent diabetes. Genetic manipulation of the insulin 1 and 2 genes reciprocally alters development of diabetes in the NOD mouse, and insulin gene polymorphisms are important determinants of childhood diabetes. We are pursuing the hypothesis that insulin is a primary autoantigen for type 1 diabetes, and thus the pathogenesis of the disease relates to specific recognition of one or more peptides.
Collapse
Affiliation(s)
- J M Jasinski
- Human Medical Genetics Program, Aurora, CO 80010, USA.
| | | |
Collapse
|
4
|
Durinovic-Belló I, Jelinek E, Schlosser M, Eiermann T, Boehm BO, Karges W, Marchand L, Polychronakos C. Class III alleles at the insulin VNTR polymorphism are associated with regulatory T-cell responses to proinsulin epitopes in HLA-DR4, DQ8 individuals. Diabetes 2005; 54 Suppl 2:S18-24. [PMID: 16306335 DOI: 10.2337/diabetes.54.suppl_2.s18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A variable number of tandem repeats (VNTR) polymorphism upstream of the insulin promoter is strongly associated with type 1 diabetes. The short class I alleles are predisposing and the long class III alleles are protective. As a possible mechanism for this effect, we previously reported a two- to threefold higher insulin transcription from class III than from class I chromosomes in thymus where insulin is expressed at low levels, presumably for the purpose of self-tolerance. In this article, we confirm this finding with independent methodology and report studies testing the hypothesis that class III alleles are associated with T-cell tolerance to (pro)insulin. Cytokine release in vitro after stimulation with 21 overlapping preproinsulin epitopes was assessed in blood mononuclear cells as well as naive and memory CD4+ T-cell subsets from 33 individuals with the high-risk DRB1*04, DQ8 haplotype (12 type 1 diabetic patients, 11 healthy control subjects, and 10 autoantibody-positive subjects). No significant differences between genotypes (24 I/I subjects versus 10 I/III or III/III subjects) were observed for gamma-interferon, tumor necrosis factor-alpha, or interleukin (IL)-4. By contrast, the I/III + III/III group showed a significant threefold higher IL-10 release in memory T-cells for whole proinsulin and the immunodominant region. Given that IL-10 is a marker of regulatory function, our data are consistent with the hypothesis that higher insulin levels in the thymus promote the formation of regulatory T-cells, a proposed explanation for the protective effect of the class III alleles.
Collapse
Affiliation(s)
- Ivana Durinovic-Belló
- Department of Internal Medicine I, Division of Endocrinology, University of Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fernandes APM, Pace AE, Zanetti ML, Foss MC, Donadi EA. Fatores imunogenéticos associados ao diabetes mellitus do tipo 1. Rev Lat Am Enfermagem 2005; 13:743-9. [PMID: 16308633 DOI: 10.1590/s0104-11692005000500020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
O diabetes mellitus do tipo 1 tem sido considerado uma doença auto-imune órgão-específica, decorrente da destruição seletiva das células betapancreáticas. Apresenta patogenia complexa, envolvendo a participação de vários fatores, dentre esses a susceptibilidade imunogenética com forte associação aos genes de histocompatibilidade (HLA), eventos ambientais e resposta auto-imune com presença de auto-anticorpos e/ou linfócitos auto-reativos, culminando em anormalidades metabólicas. Neste estudo, a revisão da literatura descreve os mecanismos pelos quais determinados fatores conferem susceptibilidade para o seu desencadeamento e, adicionalmente, as inovações na predição dessa desordem que, certamente, contribuirão para a assistência de enfermagem aos pacientes portadores do diabetes tipo 1.
Collapse
|
6
|
Castro A, Jerez MJ, Gil C, Martinez A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med Res Rev 2005; 25:229-44. [PMID: 15514991 DOI: 10.1002/med.20020] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of phosphodiesterases (PDEs) is associated with a wide variety of diseases and an intense effort toward the development of specific PDEs inhibitors has been generated for the last years. They are the enzymes responsible for the hydrolysis of intracellular cyclic adenosine and guanosine monophosphate, and their complexity, as well as their different functional role, makes these enzymes a very attractive therapeutic target. This review is focused on the role of PDEs played on immunomodulatory processes and the advance on the development of specific inhibitors, covering PDEs mainly related to the regulation of autoimmune processes, PDE4 and PDE7. The review also highlights the novel structural classes of PDE4 and PDE7 inhibitors, and the therapeutic potential that combined PDE4/PDE7 inhibitors offer as immunomodulatory agents.
Collapse
Affiliation(s)
- Ana Castro
- Instituto de Química Médica, Juan de la Cierva 3, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|