1
|
Gan PY, Tan DSY, Ooi JD, Alikhan MA, Kitching AR, Holdsworth SR. Myeloperoxidase Peptide-Based Nasal Tolerance in Experimental ANCA-Associated GN. J Am Soc Nephrol 2015; 27:385-91. [PMID: 26047792 DOI: 10.1681/asn.2015010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/27/2015] [Indexed: 12/20/2022] Open
Abstract
Less toxic treatment options for patients with myeloperoxidase (MPO)-ANCA-associated GN are needed. Using an established murine model of focal necrotizing GN mediated by autoimmunity to MPO (autoimmune anti-MPO GN), we assessed the capacity for nasal tolerance induced by nasal insufflation of the immunodominant nephritogenic MPO peptide (MPO409-428) to attenuate this disease. Compared with mice that received an irrelevant immunodominant ovalbumin (OVA) peptide, OVA323-339, mice that received MPO409-428 were protected from the development of humoral and cell-mediated autoimmunity to full-length MPO and the development of GN. In mice with established anti-MPO autoimmunity, nasal insufflation of MPO409-428 as a therapeutic attenuated anti-MPO GN. To investigate the nature of this induced tolerance, we isolated CD4(+) T cells from the upper airway draining lymph nodes of both OVA323-339- and MPO409-428-tolerized mice. Adoptive transfer of CD4(+) T cells from MPO409-428- but not OVA323-339-tolerized mice to animals with established anti-MPO autoimmunity attenuated the subsequent development of GN, confirming that the immunosuppression induced by these T cells is antigen specific. Ex vivo studies showed that nasal tolerance to MPO is mediated by both conventional and induced T regulatory cells. The strong homology between the pathogenic human MPO B cell epitope recognized by ANCA in patients with acute vasculitis and the nephritogenic murine T cell MPO epitope emphasizes the clinical relevance of this study.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and
| | - Diana S Y Tan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia; and Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Thomas R. Dendritic cells and the promise of antigen-specific therapy in rheumatoid arthritis. Arthritis Res Ther 2013; 15:204. [PMID: 23374912 PMCID: PMC3672739 DOI: 10.1186/ar4130] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease resulting from an autoimmune response to self-antigens, leading to inflammation of synovial tissue of joints and subsequent cartilage and bone erosion. Current disease-modifying anti-rheumatic drugs and biologic inhibitors of TNF, IL-6, T cells and B cells block inflammation nonspecifically, which may lead to adverse effects, including infection. They do not generally induce long-term drug-free remission or restoration of immune tolerance to self-antigens, and lifelong treatment is usual. The development of antigen-specific strategies in RA has so far been limited by insufficient knowledge of autoantigens, of the autoimmune pathogenesis of RA and of the mechanisms of immune tolerance in man. Effective tolerance-inducing antigen-specific immunotherapeutic strategies hold promise of greater specificity, of lower toxicity and of a longer-term solution for controlling or even preventing RA. This paper reviews current understanding of autoantigens and their relationship to immunopathogenesis of RA, and emerging therapeutics that aim to leverage normal tolerance mechanisms for implementation of antigen-specific therapy in RA.
Collapse
|
3
|
Liang MS, Andreadis ST. Engineering fibrin-binding TGF-β1 for sustained signaling and contractile function of MSC based vascular constructs. Biomaterials 2011; 32:8684-93. [PMID: 21864893 DOI: 10.1016/j.biomaterials.2011.07.079] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/27/2011] [Indexed: 01/02/2023]
Abstract
We present a strategy to conjugate TGF-β1 into fibrin hydrogels to mimic the in vivo presentation of the growth factor in a 3D context. To this end, we engineered fusion proteins between TGF-β1 and a bi-functional peptide composed of a Factor XIII domain and a plasmin cleavage site. In another version the protease cleavage site was omitted to examine whether the growth factor that could not be released from the scaffold by cells had different effects on tissue constructs. The optimal insertion site which yielded correctly processed, functional protein was found between the latency associated peptide and mature TGF-β1 domains. In solution the fusion proteins exhibited similar biological activity as native TGF-β1 as evidenced by inhibition of cell proliferation and promoter activity assays. Immunoprecipitation experiments demonstrated that the fusion TGF-β1 protein bound to fibrinogen in a Factor XIII dependent manner and could be released from the peptide by the action of plasmin. In contrast to bolus delivery, immobilized TGF-β1 induced sustained signaling in fibrin-embedded cells for several days as evidenced by Smad2 phosphorylation. Prolonged pathway activation correlated with enhanced contractile function of vascular constructs prepared from hair follicle mesenchymal stem cells or bone marrow derived smooth muscle cells. Our results suggest that fibrin-immobilized TGF-β1 may be used to enhance the local microenvironment and improve the function of engineered tissues in vitro and potentially also after implantation in vivo where growth factor delivery faces overwhelming challenges.
Collapse
Affiliation(s)
- Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY 14260-4200, USA
| | | |
Collapse
|
4
|
Wei W, Zhang LL, Xu JH, Xiao F, Bao CD, Ni LQ, Li XF, Wu YQ, Sun LY, Zhang RH, Sun BL, Xu SQ, Liu S, Zhang W, Shen J, Liu HX, Wang RC. A multicenter, double-blind, randomized, controlled phase III clinical trial of chicken type II collagen in rheumatoid arthritis. Arthritis Res Ther 2009; 11:R180. [PMID: 19951408 PMCID: PMC3003530 DOI: 10.1186/ar2870] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/29/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022] Open
Abstract
Introduction Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. A 24-week, double-blind, double-dummy, randomized, methotrexate (MTX)-controlled study was conducted to evaluate the efficacy and safety of CCII in the treatment of rheumatoid arthritis (RA). Methods Five hundred three RA patients were included in the study. Patients received either 0.1 mg daily of CCII (n = 326) or 10 mg once a week of MTX (n = 177) for 24 weeks. Each patient was evaluated for pain, morning stiffness, tender joint count, swollen joint count, health assessment questionnaire (HAQ), assessments by investigator and patient, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) by using the standard tools at baseline (week 0) and at weeks 12 and 24. Additionally, rheumatoid factor (RF) was evaluated at weeks 0 and 24. Measurement of a battery of biochemical parameters in serum, hematological parameters, and urine analysis was performed to evaluate the safety of CCII. Results Four hundred fifty-four patients (94.43%) completed the 24-week follow-up. In both groups, there were decreases in pain, morning stiffness, tender joint count, swollen joint count, HAQ, and assessments by investigator and patient, and all differences were statistically significant. In the MTX group, ESR and CRP decreased. RF did not change in either group. At 24 weeks, 41.55% of patients in the CCII group and 57.86% in the MTX group met the American College of Rheumatology 20% improvement criteria (ACR-20) and 16.89% and 30.82%, respectively, met the ACR 50% improvement criteria (ACR-50). Both response rates for ACR-20 and ACR-50 in the CCII group were lower than those of the MTX group, and this difference was statistically significant (P < 0.05). The DAS28 (disease activity score using 28 joint counts) values of the two treatment groups were calculated, and there was a statistically significant difference between the two treatment groups (P < 0.05). Gastrointestinal complaints were common in both groups, but there were fewer and milder side effects in the CCII group than in the MTX group. The incidence of adverse events between the two groups was statistically significant (P < 0.05). Conclusions CCII is effective in the treatment of RA and is safe for human consumption. CCII exerts its beneficial effects by controlling inflammatory responses through inducing oral tolerance in RA patients. Trials Registration Clinical trial registration number: ChiCTR-TRC-00000093.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, 81 Meishan Road, Hefei 230032, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reynolds J, Abbott DS, Karegli J, Evans DJ, Pusey CD. Mucosal tolerance induced by an immunodominant peptide from rat alpha3(IV)NC1 in established experimental autoimmune glomerulonephritis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2202-10. [PMID: 19406992 PMCID: PMC2684185 DOI: 10.2353/ajpath.2009.081041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2009] [Indexed: 11/20/2022]
Abstract
Experimental autoimmune glomerulonephritis (EAG), an animal model of Goodpasture's disease, can be induced in Wistar Kyoto (WKY) rats by immunization with the noncollagenous domain of the alpha 3 chain of type IV collagen, alpha3(IV)NC1. Recent studies have identified an immunodominant peptide, pCol (24-38), from the N-terminus of rat alpha3(IV)NC1; this peptide contains the major B- and T-cell epitopes in EAG and can induce crescentic nephritis. In this study, we investigated the mechanisms of mucosal tolerance in EAG by examining the effects of the nasal administration of this peptide after the onset of disease. A dose-dependent effect was observed: a dose of 300 microg had no effect, a dose of 1000 microg resulted in a moderate reduction in EAG severity, and a dose of 3000 microg produced a marked reduction in EAG severity accompanied by diminished antigen-specific, T-cell proliferative responses. These results demonstrate that mucosal tolerance in EAG can be induced by nasal administration of an immunodominant peptide from the N-terminus of alpha3(IV)NC1 and should be of value in designing new therapeutic strategies for patients with Goodpasture's disease and other autoimmune disorders.
Collapse
Affiliation(s)
- John Reynolds
- Renal Section, Division of Medicine, Imperial College London, Hammersmith Campus, Du Cane Rd., London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
6
|
Satpute SR, Durai M, Moudgil KD. Antigen-specific tolerogenic and immunomodulatory strategies for the treatment of autoimmune arthritis. Semin Arthritis Rheum 2008; 38:195-207. [PMID: 18177689 PMCID: PMC2723747 DOI: 10.1016/j.semarthrit.2007.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/18/2007] [Accepted: 10/21/2007] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To review various antigen-specific tolerogenic and immunomodulatory approaches for arthritis in animal models and patients in regard to their efficacy, mechanisms of action, and limitations. METHODS We reviewed the published literature in Medline (PubMed) on the induction of antigen-specific tolerance and its effect on autoimmune arthritis, as well as the recent work on B-cell-mediated tolerance from our laboratory. The prominent key words used in different combinations included arthritis, autoimmunity, immunotherapy, innate immunity, tolerance, treatment, and rheumatoid arthritis (RA). Although this search spanned the years 1975 to 2007, the majority of the short-listed articles belonged to the period 1990 to 2007. The relevant primary as well as cross-referenced articles were then collected from links within PubMed and reviewed. RESULTS Antigen-specific tolerance has been successful in the prevention and/or treatment of arthritis in animal models. The administration of soluble native antigen or an altered peptide ligand intravenously, orally, or nasally, and the delivery of the DNA encoding a particular antigen by gene therapy have been the mainstay of immunomodulation. Recently, the methods for in vitro expansion of CD4+CD25+ regulatory T-cells have been optimized. Furthermore, interleukin-17 has emerged as a promising new therapeutic target in arthritis. However, in RA patients, non-antigen-specific therapeutic approaches have been much more successful than antigen-specific tolerogenic regimens. CONCLUSION An antigen-specific treatment against autoimmune arthritis is still elusive. However, insights into newly emerging mechanisms of disease pathogenesis provide hope for the development of effective and safe immunotherapeutic strategies in the near future.
Collapse
Affiliation(s)
- Shailesh R. Satpute
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malarvizhi Durai
- Johns Hopkins Medical Institutions, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Arima T, Shimojo N, Yamaguchi KI, Tomiita M, Kohn LD, Kohno Y. Enhancement of experimental Graves' disease by intranasal administration of a T cell epitope of the thyrotropin receptor. Clin Immunol 2008; 127:7-13. [PMID: 18234558 DOI: 10.1016/j.clim.2007.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 10/30/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
We previously showed that immunization of mice with murine fibroblasts transfected with the thyrotropin receptor (TSHR) and a murine major histocompatibility complex (MHC) class II molecule induces immune thyroid disease with the humoral and histological features of human Graves' disease in about 20% of mice. In this model, based on the proliferative response of T cells from hyperthyroid mice to a panel of overlapping TSHR peptides, we now demonstrate that TSHR 121-140 peptide contains an immunodominant T cell epitope. Supporting this conclusion, spleen cells from mice immunized with TSHR 121-140 peptide showed a strong proliferative response to fibroblasts transfected with the TSHR and a murine I-A(k) molecule, but not either alone. Also, intranasal administration of 100 mug of TSHR 121-140 peptide led to suppressed proliferative response of lymph node cells to the peptide. Interestingly, however, administration of this peptide enhanced, rather than suppressed, the frequency and severity of Graves' disease induced by the immunization of the fibroblasts transfected with the TSHR and a murine I-A(k) molecule. Spleen cells from hyperthyroid mice that were pretreated with intranasal peptide tended to produce lesser amounts of IL-4, IL-10 and IFN-gamma than those from normothyroid control mice. Although precise mechanisms of this enhancement remain to be determined, the results suggest that attempts to treat Graves' disease by intranasal administration of an immunodominant TSHR T cell epitope may aggravate, not prevent, the disease.
Collapse
Affiliation(s)
- Takayasu Arima
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chiba City, Chiba 260-8670, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? THE JOURNAL OF IMMUNOLOGY 2007; 179:5633-8. [PMID: 17947632 DOI: 10.4049/jimmunol.179.9.5633] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mucosal administration of Ags induces specific Abs in external secretions and systemic unresponsiveness termed oral or mucosal tolerance. The dominant response depends on the species studied, the nature, dose, frequency, route of Ag application, and the use of adjuvants. The temporal sequence of Ag exposure determines the quality of the ensuing immune response; although initial mucosal Ag exposure results in systemic T cell hyporesponsiveness, pre-existing systemic responses are refractory to the tolerizing effects of mucosal Ag encounter. Mucosal and systemic humoral responses may be induced concomitantly with diminished systemic T cell responses, thereby permitting Ab-mediated containment of mucosal Ags without stimulation of the systemic immune compartment. B cell Ig isotype switching and differentiation toward IgA production share common regulatory mechanisms with the suppression of T cells. Optimization of mucosal vaccination strategies has the potential for enhancing protective immune responses and suppressing systemic responses to autoantigens desirable for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
9
|
Kannan K, Ortmann RA, Kimpel D. Animal models of rheumatoid arthritis and their relevance to human disease. ACTA ACUST UNITED AC 2006; 12:167-81. [PMID: 16171986 DOI: 10.1016/j.pathophys.2005.07.011] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rodent models of rheumatoid arthritis (RA) are useful tools to study the pathogenic process of RA. Among the most widely used models of RA are the streptococcal cell wall (SCW) arthritis model and the collagen-induced arthritis (CIA). Both innate and adaptive immune mechanisms are involved in these rodent models. While no models perfectly duplicate the condition of human RA, they are easily reproducible, well defined and have proven useful for development of new therapies for arthritis, as exemplified by cytokine blockade therapies. Besides SCW and CIA models, there are numerous others including transgenic models such as K/BxN, induced models such as adjuvant-induced and pristane models, and spontaneous models in certain mouse strains, that have been used to help understand some of the underlying mechanisms. This review provides an update and analysis of RA models in mice and rats. The array of models has provided rheumatologists and immunologists a means to understand the multifactorial disease in humans, to identify new drug targets, and to test new therapies.
Collapse
Affiliation(s)
- Krishnaswamy Kannan
- Department of Internal Medicine, Division of Rheumatology and Immunology, University of Virginia Health System, P.O. Box 800412, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|