1
|
Penny TR, Jenkin G, Miller SL, McDonald CA. Umbilical cord blood derived cell expansion: a potential neuroprotective therapy. Stem Cell Res Ther 2024; 15:234. [PMID: 39075614 PMCID: PMC11287950 DOI: 10.1186/s13287-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Umbilical cord blood (UCB) is a rich source of beneficial stem and progenitor cells with known angiogenic, neuroregenerative and immune-modulatory properties. Preclinical studies have highlighted the benefit of UCB for a broad range of conditions including haematological conditions, metabolic disorders and neurological conditions, however clinical translation of UCB therapies is lacking. One barrier for clinical translation is inadequate cell numbers in some samples meaning that often a therapeutic dose cannot be achieved. This is particularly important when treating adults or when administering repeat doses of cells. To overcome this, UCB cell expansion is being explored to increase cell numbers. The current focus of UCB cell expansion is CD34+ haematopoietic stem cells (HSCs) for which the main application is treatment of haematological conditions. Currently there are 36 registered clinical trials that are examining the efficacy of expanded UCB cells with 31 of these being for haematological malignancies. Early data from these trials suggest that expanded UCB cells are a safe and feasible treatment option and show greater engraftment potential than unexpanded UCB. Outside of the haematology research space, expanded UCB has been trialled as a therapy in only two preclinical studies, one for spinal cord injury and one for hind limb ischemia. Proteomic analysis of expanded UCB cells in these studies showed that the cells were neuroprotective, anti-inflammatory and angiogenic. These findings are also supported by in vitro studies where expanded UCB CD34+ cells showed increased gene expression of neurotrophic and angiogenic factors compared to unexpanded CD34+ cells. Preclinical evidence demonstrates that unexpanded CD34+ cells are a promising therapy for neurological conditions where they have been shown to improve multiple indices of injury in rodent models of stroke, Parkinson's disease and neonatal hypoxic ischemic brain injury. This review will highlight the current application of expanded UCB derived HSCs in transplant medicine, and also explore the potential use of expanded HSCs as a therapy for neurological conditions. It is proposed that expanded UCB derived CD34+ cells are an appropriate cellular therapy for a range of neurological conditions in children and adults.
Collapse
Affiliation(s)
- Tayla R Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia.
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney A McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
2
|
Puranik N, Arukha AP, Yadav SK, Yadav D, Jin JO. Exploring the Role of Stem Cell Therapy in Treating Neurodegenerative Diseases: Challenges and Current Perspectives. Curr Stem Cell Res Ther 2022; 17:113-125. [PMID: 35135462 DOI: 10.2174/1574888x16666210810103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022]
Abstract
:
Several human neurological disorders, such as Parkinson’s disease, Alzheimer’s disease,
amyotrophic lateral sclerosis, Huntington’s disease, spinal cord injury, multiple sclerosis, and brain
stroke, are caused by the injury to neurons or glial cells. The recent years have witnessed the successful
generation of neurons and glia cells driving efforts to develop stem-cell-based therapies for
patients to combat a broad spectrum of human neurological diseases. The inadequacy of suitable
cell types for cell replacement therapy in patients suffering from neurological disorders has hampered
the development of this promising therapeutic approach. Attempts are thus being made to reconstruct
viable neurons and glial cells from different stem cells, such as embryonic stem cells,
mesenchymal stem cells, and neural stem cells. Dedicated research to cultivate stem cell-based
brain transplantation therapies has been carried out. We aim at compiling the breakthroughs in the
field of stem cell-based therapy for the treatment of neurodegenerative maladies, emphasizing the
shortcomings faced, victories achieved, and the future prospects of the therapy in clinical settings.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Biological Science, Bharathiar University, Coimbatore, Tamil Nadu-641046, India
| | - Ananta Prasad Arukha
- Comparative Diagnostic
and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville- 32608, U.S.A
| | - Shiv Kumar Yadav
- Department of Botany, Government Lal Bahadur Shastri PG college, Sironj, Vidisha, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
| | - Jun O. Jin
- Department
of Medical Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
3
|
Nakanishi K, Higashi K, Toida T, Asai M. Characterization of chondroitin sulfate in stem cells derived from umbilical cord blood in rats. PLoS One 2022; 17:e0262854. [PMID: 35077481 PMCID: PMC8789104 DOI: 10.1371/journal.pone.0262854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022] Open
Abstract
Chondroitin sulfate (CS) and its isomeric variant, dermatan sulfate (DS), are complex glycosaminoglycans (GAGs) which are ubiquitous components of the extracellular matrix in various tissues including the brain. CS and/or DS are known to bind to a variety of growth factors and regulate many cellular events such as proliferation and differentiation. Although the biological activities of CS and/or DS towards neural stem/progenitor cells (NSPCs) have been well investigated, the CS and/or DS of hematopoietic stem cells (HSCs) have not been fully characterized. Here, we analyzed GAGs on mononuclear cells of rat umbilical cord blood cells (UCB-MNCs). CS was detected in vascular intima and media of rat umbilical cord at embryonic day 19 (E19) by immunohistochemistry. The stem-cell-enriched-UCBCs (SCE-UCBCs), which were expanded from rat UCB-MNCs, expressed CS. CS chains are composed of repeating disaccharide units, which are classified into several types such as O-, A-, B-, C-, D-, and E-unit according to the number and positions of sulfation. A disaccharide composition analysis revealed that CS and/or DS were abundant in rat UCB-MNCs as well as in their expanded SCE-UCBCs, while the amount of heparan sulfate (HS) was less. The degree of sulfation of CS/DS was relatively low and the major component in UCB-MNCs and SCE-UCBCs was the A-unit. A colony-forming cell assay revealed that the percentage of colony-forming cells decreased in culture with CS degradation enzyme. The CS and/or DS of UCBCs may be involved in biological activities such as stem cell proliferation and/or differentiation.
Collapse
Affiliation(s)
- Keiko Nakanishi
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
- * E-mail:
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Toshihiko Toida
- Center for Preventive Medical Sciences, Chiba University, Chuo-ku, Chiba, Japan
| | - Masato Asai
- Department of Disease Model, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| |
Collapse
|
4
|
Ray SK, Mukherjee S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine - Prodigious Promise for Imminent Times. Recent Pat Biotechnol 2021; 16:16-34. [PMID: 34702158 DOI: 10.2174/1872208315666211026103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. 0
| |
Collapse
|
5
|
Zhao Y, Zhu T, Li H, Zhao J, Li X. Transplantation of Lymphocytes Co-Cultured with Human Cord Blood-Derived Multipotent Stem Cells Attenuates Inflammasome Activity in Ischemic Stroke. Clin Interv Aging 2019; 14:2261-2271. [PMID: 31908436 PMCID: PMC6927491 DOI: 10.2147/cia.s223595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/11/2019] [Indexed: 01/25/2023] Open
Abstract
Background Manipulating the immune inflammatory response after cerebral ischemia has been a novel therapeutic strategy for ischemic stroke. This study attempted to investigate the effects of the transplantation of lymphocytes co-cultured with human cord blood-derived multipotent stem cells (HCB-SCs) on the inflammatory response in transient middle cerebral occlusion (tMCAO) rats. Methods The tMCAO rats were subjected to the transplantation of lymphocytes co-cultured with HCB-SCs through tail vein injection. Infarct size and neurological deficits were measured at 48 hrs after stroke. Neurological deficits were assessed using Bederson’s scoring system and tape removal test. Blood T cell flow cytometry was performed to measure the differentiation of regulatory T cells (Tregs). Western blot was used to detect the protein levels of inflammation-related molecules, apoptosis-related molecule, and signaling molecules in ischemic brain. TUNEL staining was performed to analyze cell apoptosis in ischemic cerebral cortex. Results The transplantation of lymphocytes co-cultured with HCB-SCs significantly improved the neurological defects, reduced ischemic brain damage, and increased the proportion of peripheral CD4+CD25+Foxp3+ Tregs. Meanwhile, the transplantation of co-cultured cells decreased the expression of NLRP3 inflammasome and associated factors, such as caspase-1 and IL-1β, and inhibited the activation of NF-κB, ERK and caspase-3 in ischemic brain. The co-cultured cells significantly decreased the number of tMCAO-induced cell apoptosis. Conclusion Lymphocytes co-cultured with HCB-SCs exhibit a neuroprotective effect after ischemic stroke by promoting Tregs differentiation and suppressing NLRP3 inflammasome activation and neuron apoptosis, and might be a promising therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yanxin Zhao
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Tianrui Zhu
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Heng Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Jing Zhao
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| | - Xiaohong Li
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, People's Republic of China
| |
Collapse
|
6
|
Jiang Y, Wei K, Zhang X, Feng H, Hu R. White matter repair and treatment strategy after intracerebral hemorrhage. CNS Neurosci Ther 2019; 25:1113-1125. [PMID: 31578825 PMCID: PMC6823871 DOI: 10.1111/cns.13226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The predilection site of intracerebral hemorrhage (ICH) is in the basal ganglia, which is rich in white matter (WM) fiber bundles, such as cerebrospinal tract in the internal capsule. ICH induced damage to this area can easily lead to severe neurological dysfunction and affects the prognosis and quality of life of patients. At present, the pathophysiological mechanisms of white matter injury (WMI) after ICH have attracted researchers' attention, but studies on the repair and recovery mechanisms and therapy strategies remain rare. In this review, we mainly summarized the WM recovery and treatment strategies after ICH by updating the WMI-related content by reviewing the latest researches and proposing the bottleneck of the current research.
Collapse
Affiliation(s)
- Yi‐Bin Jiang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Kai‐Yan Wei
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Xu‐Yang Zhang
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hua Feng
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Rong Hu
- Department of NeurosurgerySouthwest HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
7
|
Srivastava AK, Prabhakara KS, Kota DJ, Bedi SS, Triolo F, Brown KS, Skiles ML, Brown HL, Cox CS, Olson SD. Human umbilical cord blood cells restore vascular integrity in injured rat brain and modulate inflammation in vitro. Regen Med 2019; 14:295-307. [PMID: 31074319 DOI: 10.2217/rme-2018-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.
Collapse
Affiliation(s)
- Amit K Srivastava
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Daniel J Kota
- Emory Personalized Immunotherapy Core Labs, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Supinder S Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | | | | | | | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
8
|
Yilmaz A, Topcu A, Erdogan C, Sahin B, Abban G, Coskun E, Ozkul A. The Effect of Vascular Graft and Human Umbilical Cord Blood-Derived CD34+ Stem Cell on Peripheral Nerve Healing. Open Access Maced J Med Sci 2018; 6:1946-1952. [PMID: 30559841 PMCID: PMC6290437 DOI: 10.3889/oamjms.2018.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 09/10/2018] [Accepted: 10/13/2018] [Indexed: 11/08/2022] Open
Abstract
AIM: There are many trials concerning peripheral nerve damage causes and treatment options. Unfortunately, nerve damage is still a major problem regarding health, social and economic issues. On this study, we used vascular graft and human cord blood derived stem cells to find an alternative treatment solution to this problem. MATERIAL AND METHODS: We used 21 female Wistar rats on our study. They were anesthetized with ketamine and we studied right hind limbs. On Group 1, we did a full layer cut on the right sciatic nerve. On Group 2, we did a full layer cut on the right sciatic nerve, and we covered synthetic vascular graft on cut area. On Group 3, we did a full layer cut on right sciatic nerve, and we covered the area with stem cell applied vascular graft. RESULTS: At the end of postoperative 8. weeks, we performed EMG on the rats. When we compared healthy and degenerated areas as a result of EMG, we found significant amplitude differences between the groups on healthy areas whereas there was no significant difference on degenerated areas between the groups. Then we re-opened the operated area again to reveal the sciatic nerve cut area, and we performed electron microscope evaluation. On the stem cell group, we observed that both the axon and the myelin sheet prevented degeneration. CONCLUSION: This study is a first on using synthetic vascular graft and cord blood derived CD34+ cells in peripheral nerve degeneration. On the tissues that were examined with electron microscope, we observed that CD34+ cells prevented both axonal and myelin sheath degeneration. Nerve tissue showed similar results to the control group, and the damage was minimal.
Collapse
Affiliation(s)
- Ali Yilmaz
- Adnan Menderes University, Neurosurgery Department, Aydın, Turkey
| | - Abdullah Topcu
- Adnan Menderes University, Neurosurgery Department, Aydın, Turkey
| | - Cagdas Erdogan
- Pamukkale University, Neurology Department, Denizli, Turkey
| | - Barbaros Sahin
- University Medicine Faculty, Animal Laboratory, Denizli, Turkey
| | - Gulcin Abban
- Pamukkale University Medicine Faculty, Histology and Embryology Department, Denizli, Turkey
| | - Erdal Coskun
- Pamukkale University, Medicine Faculty, Neurosurgery Department, Denizli, Turkey
| | - Ayca Ozkul
- Adnan Menderes University, Neurosurgery Department, Aydın, Turkey
| |
Collapse
|
9
|
Gincberg G, Shohami E, Lazarovici P, Elchalal U. Human Umbilical Cord Blood CD45 + Pan-Hematopoietic Cells Induced a Neurotherapeutic Effect in Mice with Traumatic Brain Injury: Immunophenotyping, Comparison of Maternal and Neonatal Parameters, and Immunomodulation. J Mol Neurosci 2017; 64:185-199. [PMID: 29249007 DOI: 10.1007/s12031-017-1008-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/24/2017] [Indexed: 11/24/2022]
Abstract
Human umbilical cord blood (HUCB) transplantation has become an alternative cell therapy for hematological and oncological malignancies in the clinic and is considered for neurological disorders. The heterogeneity in the content of the different stem and progenitor cells composing HUCB mononuclear cells (MNC) may influence their engraftment and neurotherapeutic effect. We hypothesized that CD45 pan-hematopoietic marker expression is heterogeneous in MNC, and therefore, CD45+ subpopulation enrichment for neurotherapy may provide a tool to overcome cellular variance in different HUCB units. We employed an immunomagnetic separation method to isolate and characterize HUCB CD45+ pan-hematopoietic subpopulation and to investigate whether the vaginal or cesarean deliveries influence their neurotherapeutic effect in a traumatic brain injury (TBI) mouse model. Adult C57BL/6J male mice were subjected to moderate TBI and intravenously xenotransplanted with 1 × 106 CD45+ cells derived from either vaginal or cesarean HUCB units. A large heterogeneity in the expression of CD45 marker in MNC, both in vaginal and cesarean HUCB units, was found, regardless of the number of live births. A higher expression of hematopoietic markers was found in the CD45+ subpopulation while low expressional levels of typical mesenchymal markers were detected. Neurotherapeutic effects, evaluated with an established neurological severity score and novel object recognition test, indicated improved functional motor and memory recovery and found independent of delivery type. Cytokine analysis in extracts of TBI brain cortices indicated an acute immunomodulatory effect by HUCB CD45+ subpopulation upon xenotransplantation. These results may provide insights to CD45 marker as a predictor of HUCB units' quality for neurotherapy in TBI.
Collapse
Affiliation(s)
- Galit Gincberg
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Shohami
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uriel Elchalal
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
10
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
11
|
Kargozar S, Lotfibakhshaiesh N, Ai J, Mozafari M, Brouki Milan P, Hamzehlou S, Barati M, Baino F, Hill RG, Joghataei MT. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomater 2017. [PMID: 28624656 DOI: 10.1016/j.actbio.2017.06.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Designing and developing new biomaterials to accelerate bone healing are currently under progress. In this study, we attempted to promote osteogenesis using strontium- and cobalt-substituted bioactive glasses (BGs) seeded with human umbilical cord perivascular cells (HUCPVCs) in a critical size defect in the distal femur of rabbit animal model. The BG particles were successfully synthesized in the form of granules using the melt-derived route. After being isolated, HUCPVCs were expanded and then characterized to use during in vitro and in vivo procedures. The in vitro effects of the synthesized glasses on the isolated HUCPVCs as well as on cell lines SaOS-2 (selected for screening the osteogenetic potential) and HUVEC (selected for screening the angiogenic potential) were assessed by analyzing cytotoxicity, cell attachment, bone-like nodule formation, and real time PCR. The results of in vitro tests indicated cytocompatibility of the synthesized BG particles. For in vivo study, the HUCPVCs-seeded BGs were implanted into the animal's body. Radiographic imaging, histology and immunohistology staining were performed on the harvested specimens at 4 and 12weeks post-surgery. The in vivo evaluation of the samples showed that all the cell/glass constructs accelerated bone healing process in comparison with blank controls. The best in vitro and in vivo results were associated to the BGs containing both strontium and cobalt ions. This group of bioactive glasses is able to promote both osteogenesis and angiogenesis and can therefore be highly suitable for the development of advanced functional bone substitutes. STATEMENT OF SIGNIFICANCE Bone regeneration is considered as an unmet clinical need. The most recent researches focused on incorporation of strontium (Sr2+) and cobalt (Co2+) ions into bioactive glasses structure. Strontium is an alkaline earth metal which is currently used in the treatment of osteoporosis. Also, cobalt is considered as another promising element in the bone regeneration field that may induce hypoxia-mediated angiogenesis. In this study, the osteogenic potential of the strontium- and cobalt-substituted bioactive glasses in granule form seeded with human umbilical cord perivascular cells (HUCPVCs) was evaluated in vitro and in vivo. Indeed, the main goal of this study was to improve the osteogenenic and angiogenic properties of bioactive glasses through the incorporation of strontium and cobalt ions in the glass composition. Although some researches have been conducted on this subject, the influence of the simultaneous use of strontium and cobalt ions on the improvement of bone healing in vivo has been not yet well understood and, therefore, deserves further investigation.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Lotfibakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Beheshti University of Medical Sciences, School of Pharmacy, Department of Pharmaceutical Biotechnology, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Torino, Italy
| | - Robert G Hill
- Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center (CMRC), Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Garbuzova-Davis S, Ehrhart J, Sanberg PR. Cord blood as a potential therapeutic for amyotrophic lateral sclerosis. Expert Opin Biol Ther 2017; 17:837-851. [DOI: 10.1080/14712598.2017.1323862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jared Ehrhart
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
- Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
13
|
Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats. Sci Rep 2017; 7:44111. [PMID: 28281676 PMCID: PMC5345001 DOI: 10.1038/srep44111] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic-ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells.
Collapse
|
14
|
Peña ID, Borlongan CV. Translating G-CSF as an Adjunct Therapy to Stem Cell Transplantation for Stroke. Transl Stroke Res 2016; 6:421-9. [PMID: 26482176 DOI: 10.1007/s12975-015-0430-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/05/2015] [Accepted: 10/08/2015] [Indexed: 01/26/2023]
Abstract
Among recently investigated stroke therapies, stem cell treatment holds great promise by virtue of their putative ability to replace lost cells, promote endogenous neurogenesis,and produce behavioral and functional improvement through their "bystander effects." Translating stem cell in the clinic, however, presents a number of technical difficulties. A strategy suggested to enhance therapeutic utility of stem cells is combination therapy, i.e., co-transplantation of stem cells or adjunct treatment with pharmacological agents and substrates,which is assumed to produce more profound therapeutic benefits by circumventing limitations of individual treatments and facilitating complementary brain repair processes. We previously demonstrated enhanced functional effects of cotreatment with granulocyte-colony stimulating factor (GCSF)and human umbilical cord blood cell (hUCB) transplantation in animal models of traumatic brain injury (TBI). Here,we suggest that the aforementioned combination therapy may also produce synergistic effects in stroke. Accordingly, G-CSF treatment may reduce expression of pro-inflammatory cytokines and enhance neurogenesis rendering a receptive microenvironment for hUCB engraftment. Adjunct treatment of GCSF with hUCB may facilitate stemness maintenance and guide neural lineage commitment of hUCB cells. Moreover, regenerative mechanisms afforded by G-CSF-mobilized endogenous stem cells, secretion of growth factors by hUCB grafts and G-CSF-recruited endothelial progenitor cells(EPCs), as well as the potential graft–host integration that may promote synaptic circuitry re-establishment could altogether produce more pronounced functional improvement in stroked rats subjected to a combination G-CSF treatment and hUCB transplantation. Nevertheless, differences in pathology and repair processes underlying TBI and stroke deserve consideration when testing the effects of combinatorial G-CSF and hUCB cell transplantation for stroke treatment. Further studies are also required to determine the safety and efficacy of this intervention in both preclinical and clinical stroke studies.
Collapse
|
15
|
Corenblum MJ, Flores AJ, Badowski M, Harris DT, Madhavan L. Systemic human CD34(+) cells populate the brain and activate host mechanisms to counteract nigrostriatal degeneration. Regen Med 2016; 10:563-77. [PMID: 26237701 DOI: 10.2217/rme.15.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Here we investigated the neuroprotective potential of systemic CD34(+) human cord blood cells (hCBCs) in a 6-hydroxydopamine rat model of Parkinson's disease. METHODS Purified CD34(+) hCBCs were intravenously administered to rats subjected to 6-hydroxydopamine 24 h earlier, and behavioral and immunohistological analysis performed. RESULTS CD34(+) hCBC administration significantly prevented host nigrostriatal degeneration inducing behavioral recovery in treated rats. Although donor hCBCs did not differentiate into neural phenotypes, they stimulated the production of new neuroblasts and angiogenesis, and reduced gliosis in recipient animals. Importantly, surviving donor hCBCs were identified, and their tissue distribution pattern correlated with the observed therapeutic effects. CONCLUSION Peripherally applied CD34(+) hCBCs can migrate into brain tissues and elicit host-based protective mechanisms to support the survival of midbrain dopamine neurons.
Collapse
Affiliation(s)
- Mandi J Corenblum
- Department of Neurology, University of Arizona, 1501, N Campbell Ave., Tucson, AZ 85724, USA
| | - Andrew J Flores
- Department of Neurology, University of Arizona, 1501, N Campbell Ave., Tucson, AZ 85724, USA.,Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ 85724, USA
| | - Michael Badowski
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724-5221, USA
| | - David T Harris
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724-5221, USA
| | - Lalitha Madhavan
- Department of Neurology, University of Arizona, 1501, N Campbell Ave., Tucson, AZ 85724, USA
| |
Collapse
|
16
|
Chung HJ, Chung WH, Lee JH, Chung DJ, Yang WJ, Lee AJ, Choi CB, Chang HS, Kim DH, Suh HJ, Lee DH, Hwang SH, Do SH, Kim HY. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats. J Vet Sci 2016; 17:97-102. [PMID: 27051345 PMCID: PMC4808649 DOI: 10.4142/jvs.2016.17.1.97] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 07/02/2015] [Accepted: 08/22/2015] [Indexed: 01/29/2023] Open
Abstract
We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.
Collapse
Affiliation(s)
- Hyo-jin Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Wook-hun Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Jae-Hoon Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Dai-Jung Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Wo-Jong Yang
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - A-Jin Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Chi-Bong Choi
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hwa-Seok Chang
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Dae-Hyun Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hyun Jung Suh
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Soo-Han Hwang
- Seoul Cord Blood Bank, Histostem Co, Seoul 05372, Korea
| | - Sun Hee Do
- Department of Veterinary Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Ghaffaripour HA, Jalali M, Nikravesh MR, Seghatoleslam M, Sanchooli J. Neuronal cell reconstruction with umbilical cord blood cells in the brain hypoxia-ischemia. IRANIAN BIOMEDICAL JOURNAL 2015; 19:29-34. [PMID: 25605487 PMCID: PMC4322230 DOI: 10.6091/ibj.1376.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Brain hypoxia-ischemia is a human neonatal injury that is considered a candidate for stem cell therapy. Methods: The possible therapeutic potential of human umbilical cord blood (HUCB) stem cells was evaluated in 14-day-old rats subjected to the right common carotid occlusion, a model of neonatal brain hypoxia-ischemia. Seven days after hypoxia-ischemia, rats received either saline solution or 4 × 105 HUCB cells i.v. Rats in control group did not receive any injection. After two weeks, rats were assessed using two motor tests. Subsequently, rats were scarified for histological and immunohistochemical analyses. Results: Our immunohistochemical findings demonstrated selective migration of the injected HUCB cells to the ischemic area as well as reduction in infarct volume. Seven days after surgery, we found significant recovery in the behavioral performance in the test group (12.7 +/- 0.3) compared to the sham group (10.0 +/-0.05), a trend which continued to day 14 (15.3 ± 0.3 vs. 11.9 ± 0.5, P<0.05). Postural and motor asymmetries at days 7 and 14 in the test group showed a significant decrease in the percentage of right turns in comparison to the sham group (75% and 59% vs. 97% and 96%, P<0.05). Conclusion: The results show the potential of HUCB stem cells in reduction of neurologic deficits associated with neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
| | - Mehdi Jalali
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Nikravesh
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Seghatoleslam
- Dept. of Anatomy and Cell Biology, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Sanchooli
- Dept. of Biochemistry and Immunology, Medical School, Zabol Medical Science University, Zabol, Iran
| |
Collapse
|
18
|
Kim HJ, Kim JH, Song YJ, Seo YK, Park JK, Kim CW. Overexpressed Calponin3 by Subsonic Vibration Induces Neural Differentiation of hUC-MSCs by Regulating the Ionotropic Glutamate Receptor. Appl Biochem Biotechnol 2015; 177:48-62. [PMID: 26175098 DOI: 10.1007/s12010-015-1726-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
In this study, we used proteomics to investigate the effects of sonic vibration (SV) on mesenchymal stem cells derived from human umbilical cords (hUC-MSCs) during neural differentiation to understand how SV enhances neural differentiation of hUC-MSCs. We investigated the levels of gene and protein related to neural differentiation after 3 or 5 days in a group treated with 40-Hz SV. In addition, protein expression patterns were compared between the control and the 40-Hz SV-treated hUC-MSC groups via a proteomic approach. Among these proteins, calponin3 (CNN3) was confirmed to have 299 % higher expression in the 40-Hz SV stimulated hUC-MSCs group than that in the control by Western blotting. Notably, overexpression of CNN3-GFP in Chinese hamster ovary (CHO)-K1 cells had positive effects on the stability and reorganization of F-actin compared with that in GFP-transfected cells. Moreover, CNN3 changed the morphology of the cells by making a neurite-like form. After being subjected to SV, messenger RNA (mRNA) levels of glutamate receptors such as PSD95, GluR1, and NR1 as well as intracellular calcium levels were upregulated. These results suggest that the activity of glutamate receptors increased because of CNN3 characteristics. Taken together, these results demonstrate that overexpressed CNN3 during SV increases expression of glutamate receptors and promotes functional neural differentiation of hUC-MSCs.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- College of Life of Life Sciences and Biotechnology, Korea University, 1-5, Anam Dong, Seongbuk-Gu, Seoul, 136-701, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Shuai H, Shi C, Lan J, Chen D, Luo X. Double labelling of human umbilical cord mesenchymal stem cells with Gd-DTPA and PKH26 and the influence on biological characteristics of hUCMSCs. Int J Exp Pathol 2015; 96:63-72. [PMID: 25649907 DOI: 10.1111/iep.12111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to determine whether double labelling of human umbilical cord mesenchymal stem cells (hUCMSCs) with gadolinium-diethylene triamine penta-acetic acid (Gd-DTPA) and PKH26 influences their biological characteristics. A tissue adherence technique was used to separate and purify the hUCMSCs and flow cytometry was performed to detect the surface markers expressed on them. Gd-DTPA and PKH26 were used to label the stem cells and MRI and fluorescence microscopy were used to detect the double-labelled hUCMSCs. A MTT assay was used to delineate the growth curve. Transmission electron microscopy (TEM) and atomic force microscopy were used to demonstrate the ultrastructural features of the hUCMSCs. Flow cytometry showed that hUCMSCs highly expressed CD29, CD90, CD44 and CD105. No expression of CD31, CD34 and CD45 was detected. Very low expression of HLA-DR and CD40 was detected. Atomic force microscopy showed these cells were long, spindle shaped, and the cytoplasm and nucleus had clear boundaries. After double labelling, TEM showed Gd particles aggregated in the cytoplasm in a cluster pattern. The proliferation activity, cell cycle, apoptosis and differentiation of the stem cells were not influenced by double labelling. Thus a tissue adherence technique is helpful to separate and purify hUCMSCs effectively; and Gd-DTPA and PKH26 are promising tracers in the investigation of migration and distribution of hUCMSCs in vivo.
Collapse
Affiliation(s)
- Hanlin Shuai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | | | | | | | | |
Collapse
|
20
|
De La Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant 2015; 24:447-57. [PMID: 25646620 DOI: 10.3727/096368915x686913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI), a major contributor to deaths and permanent disability worldwide, has been recently described as a progressive cell death process rather than an acute event. TBI pathophysiology is complicated and can be distinguished by the initial primary injury and the subsequent secondary injury that ensues days after the trauma. Therapeutic opportunities for TBI remain very limited with patients subjected to surgery or rehabilitation therapy. The efficacy of stem cell-based interventions, as well as neuroprotective agents in other neurological disorders of which pathologies overlap with TBI, indicates their potential as alternative TBI treatments. Furthermore, their therapeutic limitations may be augmented when combination therapy is pursued instead of using a single agent. Indeed, we demonstrated remarkable combined efficacy of human umbilical cord blood (hUCB) cell therapy and granulocyte-colony-stimulating factor (G-CSF) treatment in TBI models, providing essential evidence for the translation of this approach to treat TBI. Further studies are warranted to determine the mechanisms underlying therapeutic benefits exerted by hUCB + G-CSF in order to enhance its safety and efficacy in the clinic.
Collapse
Affiliation(s)
- Ike De La Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
21
|
Jaing TH. Umbilical cord blood: a trustworthy source of multipotent stem cells for regenerative medicine. Cell Transplant 2015; 23:493-6. [PMID: 24816446 DOI: 10.3727/096368914x678300] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is conservatively estimated that one in three individuals in the US might benefit from regenerative medicine therapy. However, the relation of embryonic stem cells (ESCs) to human blastocysts always stirs ethical, political, moral, and emotional debate over their use in research. Thus, for the reasonably foreseeable future, the march of regenerative medicine to the clinic will depend upon the development of non-ESC therapies. Current sources of non-ESCs easily available in large numbers can be found in the bone marrow, adipose tissue, and umbilical cord blood (UCB). UCB provides an immune-compatible source of stem cells for regenerative medicine. Owing to inconsistent results, it is certainly an important and clinically relevant question whether UCB will prove to be therapeutically effective. This review will show that UCB contains multiple populations of multipotent stem cells, capable of giving rise to hematopoietic, epithelial, endothelial, and neural tissues both in vitro and in vivo. Here we raise the possibility that due to unique immunological properties of both the stem cell and non-stem cell components of cord blood, it may be possible to utilize allogeneic cells for regenerative applications without needing to influence or compromise the recipient immune system.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Jung IS, Kim HJ, Noh R, Kim SC, Kim CW. Effects of extremely low frequency magnetic fields on NGF induced neuronal differentiation of PC12 cells. Bioelectromagnetics 2014; 35:459-69. [DOI: 10.1002/bem.21861] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022]
Affiliation(s)
- In-Soo Jung
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Hyun-Jung Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Ran Noh
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Soo-Chan Kim
- Department of Electrical Electronic and Control Engineering; Hankyong National University; Anseong-si Kyonggi-do Korea
| | - Chan-Wha Kim
- College of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
23
|
Jang HR, Park JH, Kwon GY, Lee JE, Huh W, Jin HJ, Choi SJ, Oh W, Oh HY, Kim YG. Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 2014; 307:F1149-61. [PMID: 25143451 DOI: 10.1152/ajprenal.00555.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs) have been studied in several models of immune-mediated disease because of their unique immunomodulatory properties. We hypothesized that HUCB-MSCs could suppress the inflammatory response in postischemic kidneys and attenuate early renal injury. In 8- to 10-wk-old male C57BL/6 mice, bilateral ischemia-reperfusion injury (IRI) surgery was performed, and 1 × 10(6) HUCB-MSCs were injected intraperitoneally 24 h before surgery and during reperfusion. Renal functional and histological changes, HUCB-MSC trafficking, leukocyte infiltration, and cytokine expression were analyzed. Renal functional decline and tubular injury after IRI were attenuated by HUCB-MSC treatment. PKH-26-labeled HUCB-MSCs trafficked into the postischemic kidney. Although numbers of CD45-positive leukocytes in the postischemic kidney were comparable between groups, the expression of interferon-γ in the postischemic kidney was suppressed by HUCB-MSC treatment. The rapid decrease in intrarenal VEGF after IRI was markedly mitigated by HUCB-MSC treatment. In inflammatory conditions simulated in a cell culture experiment, VEGF secretion from HUCB-MSCs was substantially enhanced. VEGF inhibitor abolished the renoprotective effect of HUCB-MSCs after IRI. Flow cytometry analysis revealed the decreased infiltration of natural killer T cells and increased number of regulatory T cells in postischemic kidneys. In addition, these effects of HUCB-MSCs on kidney infiltrating mononuclear cells after IRI were attenuated by VEGF inhibitor. HUCB-MSCs attenuated renal injury in mice in the early injury phase after IRI, mainly by humoral effects and secretion of VEGF. Our results suggest a promising role for HUCB-MSCs in the treatment of renal IRI.
Collapse
Affiliation(s)
- Hye Ryoun Jang
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hyeon Park
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ghee Young Kwon
- Department of Pathology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea; and
| | - Jung Eun Lee
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Wooseong Huh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Company Limited, Seoul, Korea
| | - Ha Young Oh
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoon-Goo Kim
- Nephrology Division, Department of Medicine, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea;
| |
Collapse
|
24
|
Yan T, Venkat P, Ye X, Chopp M, Zacharek A, Ning R, Cui Y, Roberts C, Kuzmin-Nichols N, Sanberg CD, Chen J. HUCBCs increase angiopoietin 1 and induce neurorestorative effects after stroke in T1DM rats. CNS Neurosci Ther 2014; 20:935-44. [PMID: 25042092 DOI: 10.1111/cns.12307] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE We investigated the neurorestorative effects and underlying mechanisms of stroke treatment with human umbilical cord blood cells (HUCBCs) in Type one diabetes mellitus (T1DM) rats. METHODS Type one diabetes mellitus rats were subjected to middle cerebral artery occlusion (MCAo) and 24 h later were treated with: (1) phosphate-buffered-saline; (2) HUCBCs. Brain endothelial cells (MBECs) were cultured and capillary tube formation was measured. RESULTS Human umbilical cord blood cells treatment significantly improved functional outcome and promoted white matter (WM) remodeling, as identified by Bielschowsky silver, Luxol fast blue and SMI-31 expression, increased oligodendrocyte progenitor cell and oligodendrocyte density after stroke in T1DM rats. HUCBC also promoted vascular remodeling, evident from enhanced vascular and arterial density and increased artery diameter, and decreased blood-brain barrier leakage. HUCBC treatment also increased Angiopoietin-1 and decreased receptor for advanced glycation end-products (RAGE) expression compared to T1DM-MCAo control. In vitro analysis of MBECs demonstrated that Ang1 inversely regulated RAGE expression. HUCBC and Ang1 significantly increased capillary tube formation and decreased inflammatory factor expression, while anti-Ang1 attenuated HUCBC-induced tube formation and antiinflammatory effects. CONCLUSION Human umbilical cord blood cells is an effective neurorestorative therapy in T1DM-MCAo rats and the enhanced vascular and WM remodeling and associated functional recovery after stroke may be attributed to increasing Angiopoietin-1 and decreasing RAGE.
Collapse
Affiliation(s)
- Tao Yan
- Neurology, Henry Ford Hospital, Detroit, MI, USA; Tianjin Neurological Institute, Neurology of Tianjin Medical University General Hospital, Tianjin, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu LH, Bai X, Zhang N, Wang SY, Li W, Jiang L. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage. Brain Res 2014; 1563:13-21. [DOI: 10.1016/j.brainres.2014.03.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/06/2014] [Accepted: 03/19/2014] [Indexed: 01/11/2023]
|
26
|
3D microenvironment of collagen hydrogel enhances the release of neurotrophic factors from human umbilical cord blood cells and stimulates the neurite outgrowth of human neural precursor cells. Biochem Biophys Res Commun 2014; 447:400-6. [PMID: 24727454 DOI: 10.1016/j.bbrc.2014.03.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/13/2022]
Abstract
The umbilical cord blood (UCB) cells have been reported to secrete therapeutic signals, including a series of neurotrophic factors. This suggests the cell source provides suitable therapeutic environments for nerve regeneration that ultimately finds a possible cell therapy for nerve tissue. In this study, we observe a collagen hydrogel provides human UCB cells a proper 3D environment that stimulates the release of various neurotrophic factors. When compared to 2D culture, the 3D hydrogel culture significantly enhanced the expression of a series of neurotrophic factors, including neurotrophins, nerve growth factor, brain-derived neurotrophic factor, and ciliary neurotrophic factor as verified by the gene and protein analysis. To confirm the effects of neurotrophic factors secretion, we allowed an indirect interaction of the UCB-environment with human neural precursor cells (hNPCs). Results showed significantly enhanced neurite outgrowth of hNPCs. Collectively, our findings demonstrate that the collagen-based 3D hydrogel provides excellent environment for UCB-derived cells to release neurotrophic factors that will be ultimately useful for the neural repair and regeneration purposes.
Collapse
|
27
|
Biazar E. Use of umbilical cord and cord blood-derived stem cells for tissue repair and regeneration. Expert Opin Biol Ther 2014; 14:301-10. [PMID: 24456082 DOI: 10.1517/14712598.2014.867943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Potential use of umbilical cord (UC) is one of the most exciting frontiers in medicine for repairing damaged tissues. UC and cord blood-derived stem cells are the world's largest potential sources of stem cells. UC contains a mixture of stem and progenitor cells at different lineage commitment stages and UC has been verified as a candidate for cell-based therapies and tissue engineering applications due to the capability of these cells for extensive self-renewal and multi-lineage character in differentiation potential. AREAS COVERED UC-based repair or regeneration of organs (i.e., heart, nerve, skin, etc.) is a high-priority research worldwide. EXPERT OPINION The aim of this review is to summarize the knowledge about UC with main focus on its applications for tissue repair and regeneration.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Islamic Azad University, Department of Biomedical Engineering, Tonekabon Branch , Tonekabon , Iran +00981924271105 ;
| |
Collapse
|
28
|
Chen M, Xiang Z, Cai J. The anti-apoptotic and neuro-protective effects of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) on acute optic nerve injury is transient. Brain Res 2013; 1532:63-75. [PMID: 23933426 DOI: 10.1016/j.brainres.2013.07.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 07/11/2013] [Accepted: 07/22/2013] [Indexed: 12/29/2022]
Abstract
Progressive death of retinal ganglion cells (RGCs) is a major cause of irreversible visual impairment after optic nerve injury. Clinically, there are still no effective treatments for recovering the visual function at present. The probable approaches to maintain the vision and RGCs function involve in preventing RGCs from death and/or promoting the regeneration of damaged RGCs. Previous studies have shown that mesenchymal stem cells (MSCs) take neuroprotective effects on ischemia-induced cortical and spinal cord injury, however, whether MSCs have a beneficial effect on the optical nerve injury is not clearly determined. In present study, we transplanted MSCs derived from human umbilical cord blood (hUCB-MSCs) into the vitreous cavity of adult rats and investigated the probable capacity of anti-apoptosis and pro-neuroprotective effects on RGCs. RGCs were retrogradely traced by fluorescent gold particles (FG); cellular apoptosis was investigated by caspase-3 immunohistochemistry and terminal dUTP nick end labeling (TUNEL) staining. Hematoxylin-eosin (HE) staining was used to observe the morphological changes of the retina. Growth associated protein 43 (GAP-43), an established marker for axonal regeneration, was used to visualize the regenerative process over time. Expression of P2X7 receptors (P2X7R), which are responsible for inflammatory and immune responses, was also monitored in our experiments. We found that the hUCB-MSC transplantation significantly decreased cellular apoptosis and promoted the survival of RGCs in early phase. However, this protection was transient and the RGCs could not be protected from death in the end. Consistent with apoptosis detection, P2X7R was also significantly decreased in hUCB-MSC transplanted rats in the early time but without obvious difference to the rats from control group in the end. Thus, our results imply that hUCB-MSCs take anti-apoptotic, pro-neuroregenerative and anti-inflammatory effects in the early time for acute optic nerve injury in adult rats but could not prevent RGCs from death eventually.
Collapse
Affiliation(s)
- Meilan Chen
- Department of Ophthalmology of Shanghai Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | |
Collapse
|
29
|
Alvarez-Gonzalez C, Duggleby R, Vagaska B, Querol S, Gomez SG, Ferretti P, Madrigal A. Cord blood Lin(-)CD45(-) embryonic-like stem cells are a heterogeneous population that lack self-renewal capacity. PLoS One 2013; 8:e67968. [PMID: 23840798 PMCID: PMC3695943 DOI: 10.1371/journal.pone.0067968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/24/2013] [Indexed: 02/02/2023] Open
Abstract
Human umbilical cord blood (hUCB) has been proposed to contain not only haematopoietic stem cells, but also a rare pluripotent embryonic-like stem cell (ELSc) population that is negative for hematopoietic markers (Lin−CD45−) and expresses markers typical of pluripotent cells. The aim of this work was to isolate, characterise and expand this ELSc fraction from hUCB, as it may provide a valuable cell source for regenerative medicine applications. We found that we could indeed isolate a Lin−CD45− population of small cells (3–10 µm diameter) with a high nucleus to cytoplasm ratio that expressed the stem cell markers CD34 and CXCR4. However, in contrast to some previous reports, this fraction was not positive for CD133. Furthermore, although these cells expressed transcripts typical of pluripotent cells, such as SOX2, OCT3/4, and NANOG, they were not able to proliferate in any of the culture media known to support stem cell growth that we tested. Further analysis of the Lin−CD45− population by flow cytometry showed the presence of a Lin−CD45−Nestin+ population that were also positive for CD34 (20%) but negative for CXCR4. These data suggest that the Lin−CD45− stem cell fraction present in the cord blood represents a small heterogeneous population with phenotypic characteristics of stem cells, including a Lin−CD45−Nestin+ population not previously described. This study also suggests that heterogeneity within the Lin−CD45− cell fraction is the likely explanation for differences in the hUCB cell populations described by different groups that were isolated using different methods. These populations have been widely called “embryonic-like stem cell” on the basis of their phenotypical similarity to embryonic stem cells. However, the fact they do not seem to be able to self-renew casts some doubt on their identity, and warns against defining them as “embryonic-like stem cell” at this stage.
Collapse
Affiliation(s)
- Cesar Alvarez-Gonzalez
- Anthony Nolan Research Institute, London, United Kingdom
- Cancer Institute, University College London, London, United Kingdom
| | | | - Barbora Vagaska
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Sergio Querol
- Anthony Nolan Research Institute, London, United Kingdom
- Banc de Sang i Teixits, Barcelona, Spain
| | - Susana G. Gomez
- Anthony Nolan Research Institute, London, United Kingdom
- Anthony Nolan Cell Therapy Centre, Nottingham, United Kingdom
| | - Patrizia Ferretti
- Development Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | |
Collapse
|
30
|
Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells. Mol Biol Rep 2013; 40:4429-37. [DOI: 10.1007/s11033-013-2533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 04/29/2013] [Indexed: 01/02/2023]
|
31
|
Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR. Stem Cell Research and Health Education. AMERICAN JOURNAL OF HEALTH EDUCATION 2013. [DOI: 10.1080/19325037.2008.10599033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- David J. Eve
- a Center of Excellence for Aging and Brain Repair , University of South Florida College of Medicin, Department of Neurosurgery , 12901 Bruce B. Downs Blvd. (MDC 078), Tampa , FL , 33612
| | - Phillip J. Marty
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | - Robert J. McDermott
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | | | - Paul R. Sanberg
- d Center of Excellence for Aging and Brain Repair , University of South Florida
| |
Collapse
|
32
|
Darlington D, Deng J, Giunta B, Hou H, Sanberg CD, Kuzmin-Nichols N, Zhou HD, Mori T, Ehrhart J, Sanberg PR, Tan J. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev 2012; 22:412-21. [PMID: 22816379 DOI: 10.1089/scd.2012.0345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of β-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-β (Aβ) levels/β-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/μL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aβ levels/β-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.
Collapse
Affiliation(s)
- Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Intravenous administration of human umbilical cord blood-mononuclear cells dose-dependently relieve neurologic deficits in rat intracerebral hemorrhage model. Ann Anat 2012; 195:39-49. [PMID: 22770555 DOI: 10.1016/j.aanat.2012.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 01/01/2023]
Abstract
Human umbilical cord blood (HUCB) is now considered as a valuable source for stem cell-based therapies. Previous studies showed that intravascular injection of the HUCB significantly improves neurological functional recovery in a model of intracerebral hemorrhage (ICH). To extend these findings, we examined the behavioral recovery and injured volume in the presence of increasing doses of human umbilical cord blood derived mononuclear cells (HUC-MCs) after intracerebral hemorrhage in rats. The experimental ICH was induced by intrastriatal administration of bacterial collagenase IV in adult rats. One day after the surgery, the rats were randomly divided into 4 groups to receive intravenously either BrdU positive human UC-MCs (4 × 10(6), 8 × 10(6) and 16 × 10(6) cells in 1 ml saline, n=10, respectively) as treated groups or the same amount of saline as lesion group (n=10). There was also one group (control n=10) that received only the vehicle solution of collagenase. The animals were evaluated for 14 days with modified limb placing and corner turn tests. The transplanted human UC-MCs were also detected by immunohistochemistry with labeling of BrdU. Two weeks after infusion, there was a significant recovery in the behavioral performance when 4 × 10(6) or more UC-MCs were delivered (P<0.05-0.001). Injured volume measurements disclosed an inverse relationship between UC-MCs dose and damage reaching significance at the higher UC-MCs doses. Moreover, human UC-MCs were localized by immunohistochemistry only in the injured area. Intravenously transplanted UC-MCs can accelerate the neurological function recovery of ICH rat and diminish the striatum lesion size by demonstrating a dose relationship between them.
Collapse
|
34
|
Ponce-Regalado MD, Ortuño-Sahagún D, Zarate CB, Gudiño-Cabrera G. Ensheathing cell-conditioned medium directs the differentiation of human umbilical cord blood cells into aldynoglial phenotype cells. Hum Cell 2012; 25:51-60. [PMID: 22529032 DOI: 10.1007/s13577-012-0044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
Despite their similarities to bone marrow precursor cells (PC), human umbilical cord blood (HUCB) PCs are more immature and, thus, they exhibit greater plasticity. This plasticity is evident by their ability to proliferate and spontaneously differentiate into almost any cell type, depending on their environment. Moreover, HUCB-PCs yield an accessible cell population that can be grown in culture and differentiated into glial, neuronal and other cell phenotypes. HUCB-PCs offer many potential therapeutic benefits, particularly in the area of neural replacement. We sought to induce the differentiation of HUCB-PCs into glial cells, known as aldynoglia. These cells can promote neuronal regeneration after lesion and they can be transplanted into areas affected by several pathologies, which represents an important therapeutic strategy to treat central nervous system damage. To induce differentiation to the aldynoglia phenotype, HUCB-PCs were exposed to different culture media. Mononuclear cells from HUCB were isolated and purified by identification of CD34 and CD133 antigens, and after 12 days in culture, differentiation of CD34+ HUCB-PCs to an aldynoglia phenotypic, but not that of CD133+ cells, was induced in ensheathing cell (EC)-conditioned medium. Thus, we demonstrate that the differentiation of HUCB-PCs into aldynoglia cells in EC-conditioned medium can provide a new source of aldynoglial cells for use in transplants to treat injuries or neurodegenerative diseases.
Collapse
Affiliation(s)
- María Dolores Ponce-Regalado
- Laboratorio de Desarrollo y Regeneración Neural, Departamento de Biología Celular y Molecular, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Apdo. Postal 52-126, 45021, Guadalajara, Jalisco, Mexico
| | | | | | | |
Collapse
|
35
|
Dalous J, Larghero J, Baud O. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives. Pediatr Res 2012; 71:482-90. [PMID: 22430384 DOI: 10.1038/pr.2011.67] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.
Collapse
Affiliation(s)
- Jérémie Dalous
- INSERM UMR 676, Université Paris Diderot, Hôpital Robert Debré, APHP, Paris, France
| | | | | |
Collapse
|
36
|
Human umbilical cord blood-derived mesenchymal stem cell therapy promotes functional recovery of contused rat spinal cord through enhancement of endogenous cell proliferation and oligogenesis. J Biomed Biotechnol 2012; 2012:362473. [PMID: 22500090 PMCID: PMC3304690 DOI: 10.1155/2012/362473] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/29/2011] [Indexed: 12/22/2022] Open
Abstract
Numerous studies have shown the benefits of mesenchymal stem cells (MSCs) on the repair of spinal cord injury (SCI) model and on behavioral improvement, but the underlying mechanisms remain unclear. In this study, to investigate possible mechanisms by which MSCs contribute to the alleviation of neurologic deficits, we examined the potential effect of human umbilical cord blood-derived MSCs (hUCB-MSCs) on the endogenous cell proliferation and oligogenesis after SCI. SCI was injured by contusion using a weight-drop impactor and hUCB-MSCs were transplanted into the boundary zone of the injured site. Animals received a daily injection of bromodeoxyuridine (BrdU) for 7 days after treatment to identity newly synthesized cells of ependymal and periependymal cells that immunohistochemically resembled stem/progenitor cells was evident. Behavior analysis revealed that locomotor functions of hUCB-MSCs group were restored significantly and the cavity volume was smaller in the MSCs-transplanted rats compared to the control group. In MSCs-transplanted group, TUNEL-positive cells were decreased and BrdU-positive cells were significantly increased rats compared with control group. In addition, more of BrdU-positive cells expressed neural stem/progenitor cell nestin and oligo-lineage cell such as NG2, CNPase, MBP and glial fibrillary acidic protein typical of astrocytes in the MSC-transplanted rats. Thus, endogenous cell proliferation and oligogenesis contribute to MSC-promoted functional recovery following SCI.
Collapse
|
37
|
Garbuzova-Davis S, Rodrigues MCO, Mirtyl S, Turner S, Mitha S, Sodhi J, Suthakaran S, Eve DJ, Sanberg CD, Kuzmin-Nichols N, Sanberg PR. Multiple intravenous administrations of human umbilical cord blood cells benefit in a mouse model of ALS. PLoS One 2012; 7:e31254. [PMID: 22319620 PMCID: PMC3272008 DOI: 10.1371/journal.pone.0031254] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/04/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25 × 10⁶ cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. METHODOLOGY/PRINCIPAL FINDINGS Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10⁶ or 2.5 × 10⁶ cells from 13 weeks of age. A third, pre-symptomatic, group received 10⁶ cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10⁶ cells pre-symptomatically or 2.5 × 10⁶ cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. CONCLUSIONS/SIGNIFICANCE These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- Center of Excellence for Aging and Brain Repair, University of South Florida, College of Medicine, Tampa, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nikravesh MR, Jalali M, Ghafaripoor HA, Sanchooli J, Hamidi D, Mohammadi S, Seghatoleslam M. Therapeutic potential of umbilical cord blood stem cells on brain damage of a model of stroke. J Cardiovasc Thorac Res 2011; 3:117-22. [PMID: 24250968 DOI: 10.5681/jcvtr.2011.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/09/2011] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Human cord blood-derived stem cells are a rich source of stem cells as well as precursors. With regard to the researchers have focused on the therapeutic potential of stem cell in the neurological disease such as stroke, the aim of this study was the investiga-tion of the therapeutic effects of human cord blood-derived stem cells in cerebral ischemia on rat. METHODS This study was carried out on young rats. Firstly, to create a laboratory model of ischemic stroke, carotid artery of animals was occluded for 30 minutes. Then, umbilical cord blood cells were isolated and labeled using bromodeoxyuridine and 2×10(5) cells were injected into the experimental group via the tail vein. Rats with hypoxic condi-tions were used as a sham group. A group of animals did not receive any injection or sur-geries were used as a control. RESULTS Obtained results were evaluated based on behavioral responses and immunohistochemistry, with emphasis on areas of putamen and caudate nucleus in the control, sham and experimental groups. Our results indicated that behavioral recovery was observed in the experimental group compared to the either the sham or the control group. However, histological studies demonstrated a low percent of tissue injury in the experimental group in comparison with the sham group. CONCLUSION Stem cell transplantation is beneficial for the brain tissue reparation after hypoxic ischemic cell death.
Collapse
Affiliation(s)
- Mohammad Reza Nikravesh
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | |
Collapse
|
39
|
Chen FM, Zhao YM, Jin Y, Shi S. Prospects for translational regenerative medicine. Biotechnol Adv 2011; 30:658-72. [PMID: 22138411 DOI: 10.1016/j.biotechadv.2011.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/12/2011] [Accepted: 11/15/2011] [Indexed: 02/06/2023]
Abstract
Translational medicine is an evolutional concept that encompasses the rapid translation of basic research for use in clinical disease diagnosis, prevention and treatment. It follows the idea "from bench to bedside and back", and hence relies on cooperation between laboratory research and clinical care. In the past decade, translational medicine has received unprecedented attention from scientists and clinicians and its fundamental principles have penetrated throughout biomedicine, offering a sign post that guides modern medical research toward a patient-centered focus. Translational regenerative medicine is still in its infancy, and significant basic research investment has not yet achieved satisfactory clinical outcomes for patients. In particular, there are many challenges associated with the use of cell- and tissue-based products for clinical therapies. This review summarizes the transformation and global progress in translational medicine over the past decade. The current obstacles and opportunities in translational regenerative medicine are outlined in the context of stem cell therapy and tissue engineering for the safe and effective regeneration of functional tissue. This review highlights the requirement for multi-disciplinary and inter-disciplinary cooperation to ensure the development of the best possible regenerative therapies within the shortest timeframe possible for the greatest patient benefit.
Collapse
Affiliation(s)
- Fa-Ming Chen
- Department of Periodontology & Oral Medicine, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi, PR China.
| | | | | | | |
Collapse
|
40
|
Boltze J, Reich DM, Hau S, Reymann KG, Strassburger M, Lobsien D, Wagner DC, Kamprad M, Stahl T. Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo. Cell Transplant 2011; 21:723-37. [PMID: 21929866 DOI: 10.3727/096368911x586783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Experimental transplantation of human umbilical cord blood (hUCB) mononuclear cells (MNCs) in rodent stroke models revealed the therapeutic potential of these cells. However, effective cells within the heterogeneous MNC population and their modes of action are still under discussion. MNCs and MNC fractions enriched (CD34(+)) or depleted (CD34(-)) for CD34-expressing stem/progenitor cells were isolated from hUCB. Cells were transplanted intravenously following middle cerebral artery occlusion in spontaneously hypertensive rats and directly or indirectly cocultivated with hippocampal slices previously subjected to oxygen and glucose deprivation. Application of saline solution or a human T-cell line served as controls. In vivo, MNCs, CD34(+) and CD34(-) cells reduced neurofunctional deficits and diminished lesion volume as determined by magnetic resonance imaging. MNCs were superior to other fractions. However, human cells could not be identified in brain tissue 29 days after stroke induction. Following direct application on postischemic hippocampal slices, MNCs reduced neural damage throughout a 3-day observation period. CD34(+) cells provided transient protection for 2 days. The CD34(-) fraction, in contrast to in vivo results, failed to reduce neural damage. Direct cocultivation of MNCs was superior to indirect cocultivation of equal cell numbers. Indirect application of up to 10-fold MNC concentrations enhanced neuroprotection to a level comparable to direct cocultivation. After direct application, MNCs migrated into the slices. Flow cytometric analysis of migrated cells revealed that the CD34(+) cells within MNCs were preferably attracted by damaged hippocampal tissue. Our study suggests that MNCs provide the most prominent neuroprotective effect, with CD34(+) cells seeming to be particularly involved in the protective action of MNCs. CD34(+) cells preferentially home to neural tissue in vitro, but are not superior concerning the overall effect, implying that there is another, still undiscovered, protective cell population. Furthermore, MNCs did not survive in the ischemic brain for longer periods without immunosuppression.
Collapse
Affiliation(s)
- Johannes Boltze
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Azari H, Osborne GW, Yasuda T, Golmohammadi MG, Rahman M, Deleyrolle LP, Esfandiari E, Adams DJ, Scheffler B, Steindler DA, Reynolds BA. Purification of immature neuronal cells from neural stem cell progeny. PLoS One 2011; 6:e20941. [PMID: 21687800 PMCID: PMC3109004 DOI: 10.1371/journal.pone.0020941] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 05/16/2011] [Indexed: 01/01/2023] Open
Abstract
Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system.
Collapse
Affiliation(s)
- Hassan Azari
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Laboratory for Stem Cell Research, Department of Anatomical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, McKnight Brain Institute, The University of Florida, Gainesville, Florida, United States of America
| | - Geoffrey W. Osborne
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Takahiro Yasuda
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | - Mohammad G. Golmohammadi
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Department of Anatomical Sciences, Ardebil University of Medical Sciences, Ardebil, Iran
| | - Maryam Rahman
- Department of Neurosurgery, McKnight Brain Institute, The University of Florida, Gainesville, Florida, United States of America
| | - Loic P. Deleyrolle
- Department of Neurosurgery, McKnight Brain Institute, The University of Florida, Gainesville, Florida, United States of America
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - David J. Adams
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | - Bjorn Scheffler
- Institute of Reconstructive Neurobiology, University of Bonn, Bonn, Germany
| | - Dennis A. Steindler
- Department of Neurosurgery, McKnight Brain Institute, The University of Florida, Gainesville, Florida, United States of America
| | - Brent A. Reynolds
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
- Department of Neurosurgery, McKnight Brain Institute, The University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
AbstractThe young human brain is highly plastic and thus early brain lesions can lead to aberrant development of connectivity and mapping of functions. This is why initially in cerebral palsy only subtle changes in spontaneous movements are seen after the time of lesion, followed by a progressive evolution of a movement disorder over many months and years. Thus we propose that interventions to treat cerebral palsy should be initiated as soon as possible in order to restore the nervous system to the correct developmental trajectory. One such treatment might be autologous stem cell transplantation either intracerebrally or intravenously. All babies come with an accessible supply of stem cells, the umbilical cord, which can supply cells that could theoretically replace missing neural cell types, or act indirectly by supplying trophic support or modulating inflammatory responses to hypoxia/ischaemia. However, for such radical treatment to be proposed, it is necessary to be able to detect and accurately predict the outcomes of brain injury from a very early age. This article reviews our current understanding of perinatal injuries that lead to cerebral palsy, how well modern imaging might predict outcomes, what stem cells are yielded from umbilical cord blood and experimental models of brain repair using stem cells.
Collapse
|
43
|
Rowe DD, Leonardo CC, Hall AA, Shahaduzzaman MD, Collier LA, Willing AE, Pennypacker KR. Cord blood administration induces oligodendrocyte survival through alterations in gene expression. Brain Res 2010; 1366:172-88. [PMID: 20883670 DOI: 10.1016/j.brainres.2010.09.078] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes (OLs), the predominant cell type found in cerebral white matter, are essential for structural integrity and proper neural signaling. Very little is known concerning stroke-induced OL dysfunction. Our laboratory has shown that infusion of human umbilical cord blood (HUCB) cells protects striatal white matter tracts in vivo and directly protects mature primary OL cultures from oxygen glucose deprivation (OGD). Microarray studies of RNA prepared from OL cultures subjected to OGD and treated with HUCB cells showed an increase in the expression of 33 genes associated with OL proliferation, survival, and repair functions, such as myelination. The microarray results were verified using quantitative RT-PCR for the following eight genes: U2AF homology motif kinase 1 (Uhmk1), insulin-induced gene 1 (Insig1), metallothionein 3 (Mt3), tetraspanin 2 (Tspan2), peroxiredoxin 4 (Prdx4), stathmin-like 2 (Stmn2), myelin oligodendrocyte glycoprotein (MOG), and versican (Vcan). Immunohistochemistry showed that MOG, Prdx4, Uhmk1, Insig1, and Mt3 protein expression were upregulated in the ipsilateral white matter tracts of rats infused with HUCB cells 48h after middle cerebral artery occlusion (MCAO). Furthermore, promoter region analysis of these genes revealed common transcription factor binding sites, providing insight into the shared signal transduction pathways activated by HUCB cells to enhance transcription of these genes. These results show expression of genes induced by HUCB cell therapy that could confer oligoprotection from ischemia.
Collapse
Affiliation(s)
- D D Rowe
- Department of Molecular Pharmacology and Physiology, School of Basic Biomedical Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Pimentel-Coelho PM, Magalhães ES, Lopes LM, deAzevedo LC, Santiago MF, Mendez-Otero R. Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 2010; 19:351-8. [PMID: 19296724 DOI: 10.1089/scd.2009.0049] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human umbilical cord blood mononuclear cells (HUCB) have been shown to have a therapeutic role in different models of central nervous system (CNS) damage, including stroke. We evaluated the possible therapeutic potential of HUCB in P7 rats submitted to the Rice-Vannucci model of neonatal hypoxic-ischemic (HI) brain damage. Our results demonstrated that intraperitoneal transplantation of HUCB, 3 h after the HI insult, resulted in better performance in two developmental sensorimotor reflexes, in the first week after the injury. We also showed a neuroprotective effect in the striatum, and a decrease in the number of activated microglial cells in the cerebral cortex of treated animals. We suggest that HUCB transplantation might rescue striatal neurons from cell death after a neonatal HI injury resulting in better functional recovery.
Collapse
Affiliation(s)
- Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Instituto de Ciências Biomédicas and Programa de Terapia Celular, UFRJ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Kim JY, Jeon HB, Yang YS, Oh W, Chang JW. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells 2010; 2:34-8. [PMID: 21607114 PMCID: PMC3097922 DOI: 10.4252/wjsc.v2.i2.34] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/28/2010] [Accepted: 02/04/2010] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are regarded as an alternative source of bone marrow-derived mesenchymal stem cells because collection of cord blood is less invasive than that of bone marrow. hUCB-MSCs have recently been studied for evaluation of their potential as a source of cell therapy. In this review, the general characteristics of hUCB-MSCs and their therapeutic effects on various diseases in vitro and in vivo will be discussed.
Collapse
Affiliation(s)
- Ju-Yeon Kim
- Ju-Yeon Kim, Hong Bae Jeon, Yoon Sun Yang, Wonil Oh, Jong Wook Chang, Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874, South Korea
| | | | | | | | | |
Collapse
|
46
|
Huang H, Chen L, Sanberg P. Cell Therapy From Bench to Bedside Translation in CNS Neurorestoratology Era. CELL MEDICINE 2010; 1:15-46. [PMID: 21359168 DOI: 10.3727/215517910x516673] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in cell biology, neural injury and repair, and the progress towards development of neurorestorative interventions are the basis for increased optimism. Based on the complexity of the processes of demyelination and remyelination, degeneration and regeneration, damage and repair, functional loss and recovery, it would be expected that effective therapeutic approaches will require a combination of strategies encompassing neuroplasticity, immunomodulation, neuroprotection, neurorepair, neuroreplacement, and neuromodulation. Cell-based restorative treatment has become a new trend, and increasing data worldwide have strongly proven that it has a pivotal therapeutic value in CNS disease. Moreover, functional neurorestoration has been achieved to a certain extent in the CNS clinically. Up to now, the cells successfully used in preclinical experiments and/or clinical trial/treatment include fetal/embryonic brain and spinal cord tissue, stem cells (embryonic stem cells, neural stem/progenitor cells, hematopoietic stem cells, adipose-derived adult stem/precursor cells, skin-derived precursor, induced pluripotent stem cells), glial cells (Schwann cells, oligodendrocyte, olfactory ensheathing cells, astrocytes, microglia, tanycytes), neuronal cells (various phenotypic neurons and Purkinje cells), mesenchymal stromal cells originating from bone marrow, umbilical cord, and umbilical cord blood, epithelial cells derived from the layer of retina and amnion, menstrual blood-derived stem cells, Sertoli cells, and active macrophages, etc. Proof-of-concept indicates that we have now entered a new era in neurorestoratology.
Collapse
Affiliation(s)
- Hongyun Huang
- Center for Neurorestoratology, Beijing Rehabilitation Center, Beijing, P.R. China
| | | | | |
Collapse
|
47
|
Seres K, Hollands P. Cord blood: the future of regenerative medicine? Reprod Biomed Online 2010; 20:98-102. [DOI: 10.1016/j.rbmo.2009.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/08/2009] [Accepted: 10/08/2009] [Indexed: 01/01/2023]
|
48
|
Fitzpatrick KM, Raschke J, Emborg ME. Cell-based therapies for Parkinson's disease: past, present, and future. Antioxid Redox Signal 2009; 11:2189-208. [PMID: 19485712 PMCID: PMC2861536 DOI: 10.1089/ars.2009.2654] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) researchers have pioneered the use of cell-based therapies (CBTs) in the central nervous system. CBTs for PD were originally envisioned as a way to replace the dopaminergic nigral neurons lost with the disease. Several sources of catecholaminergic cells, including autografts of adrenal medulla and allografts or xenografts of mesencephalic fetal tissue, were successfully assessed in animal models, but their clinical translation has yielded poor results and much controversy. Recent breakthroughs on cell biology are helping to develop novel cell lines that could be used for regenerative medicine. Their future successful clinical application depends on identifying and solving the problems encountered in previous CBTs trials. In this review, we critically analyze past CBTs' clinical translation, the impact of the host in graft survival, and the role of preclinical studies and emerging new cell lines. We propose that the prediction of clinical results from preclinical studies requires experimental designs that allow blind data acquisition and statistical analysis, assessment of the therapy in models that parallel clinical conditions, looking for sources of complications or side effects, and limiting optimism bias when reporting outcomes.
Collapse
Affiliation(s)
- Kathleen M Fitzpatrick
- Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin 53715, USA
| | | | | |
Collapse
|
49
|
Abstract
Myocardial infarction (MI) and stroke are the first and third leading causes of death in the U.S.A. accounting for more than 1 in 3 deaths per annum. Despite interventional and pharmaceutical advances, the number of people diagnosed with heart disease is on the rise. Therefore, new clinical strategies are needed. Cell-based therapy holds great promise for treatment of these diseases and is currently under extensive preclinical as well as clinical trials. The source and types of stem cells for these clinical applications are questions of great interest. Human umbilical cord blood (hUCB) appears to be a logical candidate as a source of cells. hUCB is readily available, and presents little ethical challenges. Stem cells derived from hUCB are multipotent and immunologically naive. Here is a critical literature review of the beneficial effects of hUCB cell therapy in preclinical trials.
Collapse
Affiliation(s)
| | | | - Mohamed A Gaballa
- Center for Cardiovascular Research, Sun Health Research Institute, Sun City, Arizona; Section Chief of Basic Science, Cardiology Section, Banner GoodSam Medical Center, Phoenix, Arizona
| |
Collapse
|
50
|
Emerging molecular approaches in stem cell biology. Biotechniques 2009; 46:367-71. [PMID: 19480634 DOI: 10.2144/000113144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.
Collapse
|