1
|
Carbone D, Vestuto V, Ferraro MR, Ciaglia T, Pecoraro C, Sommella E, Cascioferro S, Salviati E, Novi S, Tecce MF, Amodio G, Iraci N, Cirrincione G, Campiglia P, Diana P, Bertamino A, Parrino B, Ostacolo C. Metabolomics-assisted discovery of a new anticancer GLS-1 inhibitor chemotype from a nortopsentin-inspired library: From phenotype screening to target identification. Eur J Med Chem 2022; 234:114233. [DOI: 10.1016/j.ejmech.2022.114233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
|
2
|
Wei X, Zhu Q, Liu N, Xu L, Wei S, Fan Z, Sun C, Zhao Y, Qiao M, Wu J, Hu D, Wang Y, Sun P. Neuroprotective Effects and Mechanisms of Zhenlong Xingnao Capsule in In Vivo and In Vitro Models of Hypoxia. Front Pharmacol 2019; 10:1096. [PMID: 31611791 PMCID: PMC6775503 DOI: 10.3389/fphar.2019.01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/26/2019] [Indexed: 12/26/2022] Open
Abstract
Zhenlong Xingnao Capsule (ZXC) is a Tibetan medicine used to treat ischemic stroke. In this study, we determined the in vitro and in vivo effects of ZXC on reactive oxygen species (ROS) in a mouse BV-2 microglial cell hypoxia-reoxygenation and rat middle cerebral artery occlusion infarction models. We aimed to clarify the role of ZXC in cerebral ischemia protection; reveal amino acid neurotransmitter changes in the frontal cortex after drug intervention; determine mRNA and protein expression changes in Bcl-2, Bax, caspase-3, P38, and nuclear factor (NF)-кB in the frontal cortex and changes in antioxidant indices in the brain; and elucidate the mechanisms underlying ZXC action. After hypoxia-reoxygenation, ROS levels were significantly increased in BV-2 cells, and their levels decreased after treatment with ZXC. ZXC had protective effects on ischemic/anoxic injury in vitro and in vivo by downregulating the expressions of caspase-3 and NF-кB mRNA during ischemia and reperfusion and that of p38 and caspase-3 during acute ischemia and reperfusion as well as the steady-state levels of excitatory amino acids/inhibitory amino acids and by improving the total antioxidant capacity and total superoxide dismutase activities during ischemia. These findings provide new molecular evidence for the mechanisms underlying ZXC action.
Collapse
Affiliation(s)
- Xia Wei
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Qingfen Zhu
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Na Liu
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Lihua Xu
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Zhiyun Fan
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Changhua Sun
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Yan Zhao
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Mingqi Qiao
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Jibiao Wu
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Defu Hu
- Department of Pharmacology and Toxicology, Shandong Institute for Food and Drug Control, Ji'nan, China
| | - Yang Wang
- Laboratory of Ethnopharmacology, Institute of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Sun
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
3
|
El-Ansary A, Al-Ghamdi M, Bhat RS, Al-Daihan S, Al-Ayadhi L. Potency of pre-post treatment of coenzyme Q10 and melatonin supplement in ameliorating the impaired fatty acid profile in rodent model of autism. Food Nutr Res 2016; 60:28127. [PMID: 26945230 PMCID: PMC4779327 DOI: 10.3402/fnr.v60.28127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 01/16/2016] [Accepted: 02/10/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Abnormalities in fatty acid metabolism and membrane fatty acid composition play a part in a wide range of neurodevelopmental and psychiatric disorders. Altered fatty acid homeostasis as a result of insufficient dietary supplementation, genetic defects, the function of enzymes involved in their metabolism, or mitochondrial dysfunction contributes to the development of autism. OBJECTIVE This study evaluates the association of altered brain lipid composition and neurotoxicity related to autism spectrum disorders in propionic acid (PA)-treated rats. DESIGN Forty-eight young male western albino rats were used in this study. They were grouped into six equal groups with eight rats in each. The first group received only phosphate buffered saline (control group). The second group received a neurotoxic dose of buffered PA (250 mg/kg body weight/day for 3 consecutive days). The third and fourth groups were intoxicated with PA as described above followed by treatment with either coenzyme Q (4.5 mg/kg body weight) or melatonin (10 mg/kg body weight) for 1 week (therapeutically treated groups). The fifth and sixth groups were administered both compounds for 1 week prior to PA (protected groups). Methyl esters of fatty acid were extracted with hexane, and the fatty acid composition of the extract was analyzed on a gas chromatography. RESULTS The obtained data proved that fatty acids are altered in brain tissue of PA-treated rats. All saturated fatty acids were increased while all unsaturated fatty acids were significantly decreased in the PA-treated group and relatively ameliorated in the pre-post melatonin and coenzyme Q groups. CONCLUSIONS Melatonin and coenzyme Q were effective in restoring normal level of most of the impaired fatty acids in PA-intoxicated rats which could help suggest both as supplements to ameliorate the autistic features induced in rat pups.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Mashael Al-Ghamdi
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia; ;
| | - Sooad Al-Daihan
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, Riyadh, Saudi Arabia
- Shaik AL-Amodi Autism Research Chair, King Saud University, Riyadh, Saudi Arabia
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 978] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Starkov AA. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci 2012; 55:13-6. [PMID: 22820180 DOI: 10.1016/j.mcn.2012.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/22/2012] [Accepted: 07/10/2012] [Indexed: 01/06/2023] Open
Abstract
The activity of mitochondrial alpha-ketoglutarate dehydrogenase complex (KGDHC) is severely reduced in human pathologies where oxidative stress is traditionally thought to play an important role, such as familial and sporadic forms of Alzheimer's disease and other age-related neurodegenerative diseases. This minireview is focused on substantial data that were accumulated over the last 2 decades to support the concept that KGDHC can be a primary mitochondrial target of oxidative stress and at the same time a key contributor to it by producing reactive oxygen species. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Anatoly A Starkov
- Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
6
|
Gibson GE, Shi Q. A mitocentric view of Alzheimer's disease suggests multi-faceted treatments. J Alzheimers Dis 2010; 20 Suppl 2:S591-607. [PMID: 20463407 DOI: 10.3233/jad-2010-100336] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Alzheimer's disease (AD) is defined by senile plaques made of amyloid-beta peptide (Abeta), neurofibrillary tangles made of hyperphosphorylated tau proteins, and memory deficits. Thus, the events initiating the cascade leading to these end points may be more effective therapeutic targets than treating each facet individually. In the small percentage of cases of AD that are genetic (or animal models that reflect this form of AD), the factor initiating AD is clear (e.g., genetic mutations lead to high Abeta1-42 or hyperphosphorylated tau proteins). In the vast majority of AD cases, the cause is unknown. Substantial evidence now suggests that abnormalities in glucose metabolism/mitochondrial function/oxidative stress (GMO) are an invariant feature of AD and occur at an early stage of the disease process in both genetic and non-genetic forms of AD. Indeed, decreases in brain glucose utilization are diagnostic for AD. Changes in calcium homeostasis also precede clinical manifestations of AD. Abnormal GMO can lead to plaques, tangles, and the calcium abnormalities that accompany AD. Abnormalities in GMO diminish the ability of the brain to adapt. Therapies targeting mitochondria may ameliorate abnormalities in plaques, tangles, calcium homeostasis, and cognition that comprise AD.
Collapse
Affiliation(s)
- Gary E Gibson
- Weill Cornell Medical College/Burke Medical Research Institute, White Plains, NY, USA.
| | | |
Collapse
|
7
|
Gibson GE, Starkov A, Blass JP, Ratan RR, Beal MF. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2009; 1802:122-34. [PMID: 19715758 DOI: 10.1016/j.bbadis.2009.08.010] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 12/31/2022]
Abstract
Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sublethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post-transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the alpha-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhances ROS production in Alzheimer's Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington's Disease (HD), a movement disorder with cognitive features distinct form AD, complex II+III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium-activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a crosslinking enzymes that can modulate transcription, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic approaches in age-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Gary E Gibson
- Department of Neurology and Neuroscience, Weill Cornell Medical College of Cornell University at Burke Medical Research Institute, 785 Mamaroneck Avenue, White Plains, NY 10605, USA.
| | | | | | | | | |
Collapse
|