1
|
Thiriot J, Liang Y, Fisher J, Walker DH, Soong L. Host transcriptomic profiling of CD-1 outbred mice with severe clinical outcomes following infection with Orientia tsutsugamushi. PLoS Negl Trop Dis 2022; 16:e0010459. [PMID: 36417363 PMCID: PMC9683618 DOI: 10.1371/journal.pntd.0010459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
Orientia tsutsugamushi is an obligately intracellular bacterium with endothelial tropism and can cause mild to lethal scrub typhus in humans. No vaccine is available for this reemerging and severely neglected infection. Previous scrub typhus studies have utilized inbred mice, yet such models have intrinsic limitations. Thus, the development of suitable mouse models that better mimic human diseases is in great need for immunologic investigation and future vaccine studies. This study is aimed at establishing scrub typhus in outbred CD-1 mice and defining immune biomarkers related to disease severity. CD-1 mice received O. tsutsugamushi Karp strain via the i.v. route; major organs were harvested at 2-12 days post-infection for kinetic analyses. We found that for our given infection doses, CD-1 mice were significantly more susceptible (90-100% lethal) than were inbred C57BL/6 mice (0-10% lethal). Gross pathology of infected CD-1 mouse organs revealed features that mimicked human scrub typhus, including pulmonary edema, interstitial pneumonia, perivascular lymphocytic infiltrates, and vasculitis. Alteration in angiopoietin/receptor expression in inflamed lungs implied endothelial dysfunction. Lung immune gene profiling using NanoString analysis displayed a Th1/CD8-skewed, but Th2 repressed profile, including novel biomarkers not previously investigated in other scrub typhus models. Bio-plex analysis revealed a robust inflammatory response in CD-1 mice as evidenced by increased serum cytokine and chemokine levels, correlating with immune cell recruitment during the severe stages of the disease. This study provides an important framework indicating a value of CD-1 mice for delineating host susceptibility to O. tsutsugamushi, immune dysregulation, and disease pathogenesis. This preclinical model is particularly useful for future translational and vaccine studies for severe scrub typhus.
Collapse
Affiliation(s)
- Joseph Thiriot
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
2
|
Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection. Trop Med Infect Dis 2021; 6:tropicalmed6030121. [PMID: 34287349 PMCID: PMC8293330 DOI: 10.3390/tropicalmed6030121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
The antigenic diversity of Orientia tsutsugamushi as well as the interstrain difference(s) associated with virulence in mice impose the necessity to dissect the host immune response. In this study we compared the host response in lethal and non-lethal murine models of O. tsutsugamushi infection using the two strains, Karp (New Guinea) and Woods (Australia). The models included the lethal model: Karp intraperitoneal (IP) challenge; and the nonlethal models: Karp intradermal (ID), Woods IP, and Woods ID challenges. We monitored bacterial trafficking to the liver, lung, spleen, kidney, heart, and blood, and seroconversion during the 21-day challenge. Bacterial trafficking to all organs was observed in both the lethal and nonlethal models of infection, with significant increases in average bacterial loads observed in the livers and hearts of the lethal model. Multicolor flow cytometry was utilized to analyze the CD4+ and CD8+ T cell populations and their intracellular production of the cytokines IFNγ, TNF, and IL2 (single, double, and triple combinations) associated with both the lethal and nonlethal murine models of infection. The lethal model was defined by a cytokine signature of double- (IFNγ-IL2) and triple-producing (IL2-TNF-IFNγ) CD4+ T-cell populations; no multifunctional signature was identified in the CD8+ T-cell populations associated with the lethal model. In the nonlethal model, the cytokine signature was predominated by CD4+ and CD8+ T-cell populations associated with single (IL2) and/or double (IL2-TNF) populations of producers. The cytokine signatures associated with our lethal model will become depletion targets in future experiments; those signatures associated with our nonlethal model are hypothesized to be related to the protective nature of the nonlethal challenges.
Collapse
|
3
|
Sunyakumthorn P, Somponpun SJ, Im-erbsin R, Anantatat T, Jenjaroen K, Dunachie SJ, Lombardini ED, Burke RL, Blacksell SD, Jones JW, Mason CJ, Richards AL, Day NPJ, Paris DH. Characterization of the rhesus macaque (Macaca mulatta) scrub typhus model: Susceptibility to intradermal challenge with the human pathogen Orientia tsutsugamushi Karp. PLoS Negl Trop Dis 2018. [PMID: 29522521 PMCID: PMC5862536 DOI: 10.1371/journal.pntd.0006305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Scrub typhus is an important endemic disease in tropical Asia caused by Orientia tsutsugamushi for which no effective broadly protective vaccine is available. The successful evaluation of vaccine candidates requires well-characterized animal models and a better understanding of the immune response against O. tsutsugamushi. While many animal species have been used to study host immunity and vaccine responses in scrub typhus, only limited data exists in non-human primate (NHP) models. METHODOLOGY/PRINCIPLE FINDINGS In this study we evaluated a NHP scrub typhus disease model based on intradermal inoculation of O. tsutsugamushi Karp strain in rhesus macaques (n = 7). After an intradermal inoculation with 106 murine LD50 of O. tsutsugamushi at the anterior thigh (n = 4) or mock inoculum (n = 3), a series of time course investigations involving hematological, biochemical, molecular and immunological assays were performed, until day 28, when tissues were collected for pathology and immunohistochemistry. In all NHPs with O. tsutsugamushi inoculation, but not with mock inoculation, the development of a classic eschar with central necrosis, regional lymphadenopathy, and elevation of body temperature was observed on days 7-21 post inoculation (pi); bacteremia was detected by qPCR on days 6-18 pi; and alteration of liver enzyme function and increase of white blood cells on day 14 pi. Immune assays demonstrated raised serum levels of soluble cell adhesion molecules, anti-O. tsutsugamushi-specific antibody responses (IgM and IgG) and pathogen-specific cell-mediated immune responses in inoculated macaques. The qPCR assays detected O. tsutsugamushi in eschar, spleen, draining and non-draining lymph nodes, and immuno-double staining demonstrated intracellular O. tsutsugamushi in antigen presenting cells of eschars and lymph nodes. CONCLUSIONS/SIGNIFICANCE These data show the potential of using rhesus macaques as a scrub typhus model, for evaluation of correlates of protection in both natural and vaccine induced immunity, and support the evaluation of future vaccine candidates against scrub typhus.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Suwit J. Somponpun
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Rawiwan Im-erbsin
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Tippawan Anantatat
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Kemajittra Jenjaroen
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Susanna J. Dunachie
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eric D. Lombardini
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Robin L. Burke
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Stuart D. Blacksell
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - James W. Jones
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Carl J. Mason
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok, Thailand
| | - Allen L. Richards
- Viral & Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Preventive Medicine and Biostatistics Department, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Nicholas P. J. Day
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Daniel H. Paris
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
4
|
Choi S, Jeong HJ, Hwang KJ, Gill B, Ju YR, Lee YS, Lee J. A Recombinant 47-kDa Outer Membrane Protein Induces an Immune Response against Orientia tsutsugamushi Strain Boryong. Am J Trop Med Hyg 2017; 97:30-37. [PMID: 28719308 PMCID: PMC5508880 DOI: 10.4269/ajtmh.15-0771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/04/2016] [Indexed: 11/10/2022] Open
Abstract
We investigated the 47-kDa outer membrane protein (OMP), which is a periplasmic serine protease and an antigenic major surface protein of Orientia tsutsugamushi, as a vaccine candidate. We developed a conventional subunit vaccine expressing recombinant 47-kDa OMP (rec47) and a DNA vaccine (p47). In mouse immunization experiments, intranasal immunization with rec47 alone or with rec47 plus heat-labile enterotoxin B subunit from Escherichia coli or plus cholera toxin (CT) as adjuvants induced a higher amount of rec47-specific antibodies than intramuscular immunization with p47 alone or with p47 plus pBOOST2-samIRF7/3 (pB) as adjuvant. Moreover, the combination of rec47 and CT induced a strong cellular immune response to 47-kDa OMP, as demonstrated by a spleen cell proliferation assay, and also induced Th1- and Th2-type cytokine production, as demonstrated by a cytokine enzyme-linked immunosorbent assay. Intranasal immunization with rec47 plus CT was the most effective method for the induction of humoral and cell-mediated immune responses. Furthermore, relatively strong protection against homologous O. tsutsugamushi strain Boryong challenge was observed in mice immunized with rec47 plus CT. Therefore, 47-kDa OMP is an attractive candidate for developing a prophylactic vaccine against scrub typhus by O. tsutsugamushi infection.
Collapse
Affiliation(s)
- Sangho Choi
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Hang Jin Jeong
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kyu-Jam Hwang
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Byoungchul Gill
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Young Ran Ju
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Yeong Seon Lee
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jeongmin Lee
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
5
|
Paris DH, Chattopadhyay S, Jiang J, Nawtaisong P, Lee JS, Tan E, Dela Cruz E, Burgos J, Abalos R, Blacksell SD, Lombardini E, Turner GD, Day NPJ, Richards AL. A nonhuman primate scrub typhus model: protective immune responses induced by pKarp47 DNA vaccination in cynomolgus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:1702-16. [PMID: 25601925 PMCID: PMC4319312 DOI: 10.4049/jimmunol.1402244] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 12/15/2022]
Abstract
We developed an intradermal (ID) challenge cynomolgus macaque (Macaca fascicularis) model of scrub typhus, the leading cause of treatable undifferentiated febrile illness in tropical Asia, caused by the obligate intracellular bacterium, Orientia tsutsugamushi. A well-characterized animal model is required for the development of clinically relevant diagnostic assays and evaluation of therapeutic agents and candidate vaccines. We investigated scrub typhus disease pathophysiology and evaluated two O. tsutsugamushi 47-kDa, Ag-based candidate vaccines, a DNA plasmid vaccine (pKarp47), and a virus-vectored vaccine (Kp47/47-Venezuelan equine encephalitis virus replicon particle) for safety, immunogenicity, and efficacy against homologous ID challenge with O. tsutsugamushi Karp. Control cynomolgus macaques developed fever, classic eschars, lymphadenopathy, bacteremia, altered liver function, increased WBC counts, pathogen-specific Ab (IgM and IgG), and cell-mediated immune responses. Vaccinated macaques receiving the DNA plasmid pKarp47 vaccine had significantly increased O. tsutsugamushi-specific, IFN-γ-producing PBMCs (p = 0.04), reduced eschar frequency and bacteremia duration (p ≤ 0.01), delayed bacteremia onset (p < 0.05), reduced circulating bacterial biomass (p = 0.01), and greater reduction of liver transaminase levels (p < 0.03) than controls. This study demonstrates a vaccine-induced immune response capable of conferring sterile immunity against high-dose homologous ID challenge of O. tsutsugamushi in a nonhuman primate model, and it provides insight into cell-mediated immune control of O. tsutsugamushi and dissemination dynamics, highlights the importance of bacteremia indices for evaluation of both natural and vaccine-induced immune responses, and importantly, to our knowledge, has determined the first phenotypic correlates of immune protection in scrub typhus. We conclude that this model is suitable for detailed investigations into vaccine-induced immune responses and correlates of immunity for scrub typhus.
Collapse
Affiliation(s)
- Daniel H Paris
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom;
| | - Suchismita Chattopadhyay
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Ju Jiang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910
| | - Pruksa Nawtaisong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - John S Lee
- Division of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Esterlina Tan
- Leonard Wood Memorial Institute, Cebu 6000, Philippines
| | | | - Jasmin Burgos
- Leonard Wood Memorial Institute, Cebu 6000, Philippines
| | | | - Stuart D Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Eric Lombardini
- Veterinary Medicine Department, Armed Forces Medical Research Institute of Science, Thanon Yothi, 10400 Bangkok; and
| | - Gareth D Turner
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Allen L Richards
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD 20910; Preventive Medicine and Biometrics Department, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
6
|
Jiang J, Paris DH, Blacksell SD, Aukkanit N, Newton PN, Phetsouvanh R, Izzard L, Stenos J, Graves SR, Day NPJ, Richards AL. Diversity of the 47-kD HtrA nucleic acid and translated amino acid sequences from 17 recent human isolates of Orientia. Vector Borne Zoonotic Dis 2013; 13:367-75. [PMID: 23590326 DOI: 10.1089/vbz.2012.1112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Orientia tsutsugamushi, the etiologic agent of potentially fatal scrub typhus, is characterized by a high antigenic diversity, which complicates the development of a broadly protective vaccine. Efficacy studies in murine and nonhuman primate models demonstrated the DNA vaccine candidate pKarp47, based upon the O. tsutsugamushi Karp 47-kD HtrA protein gene, to be a successful immunoprophylactic against scrub typhus. To characterize 47-kD HtrA protein diversity among human isolates of Orientia, we sequenced the full open reading frame (ORF) of the 47-kD HtrA gene and analyzed the translated amino acid sequences of 17 patient isolates from Thailand (n=13), Laos (n=2), Australia (n=1), and the United Arab Emirates (UAE) (n=1) and 9 reference strains: Karp (New Guinea), Kato (Japan), Ikeda (Japan), Gilliam (Burma), Boryong (Korea), TA763, TH1811 and TH1817 (Thailand), and MAK243 (China). The percentage identity (similarity) of translated amino acid sequences between 16 new isolates and 9 reference strains of O. tsutsugamushi ranged from 96.4% to 100% (97.4% to 100%). However, inclusion of the recently identified Orientia chuto sp. nov. reduced identity (similarity) values to 82.2% to 83.3% (90.4% to 91.4%). These results demonstrate the diversity of Orientia 47-kD HtrA among isolates encountered by humans and therefore provide support for the necessity of developing a broadly protective scrub typhus vaccine that takes this diversity into account.
Collapse
Affiliation(s)
- Ju Jiang
- Naval Medical Research Center , Silver Spring, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sunyakumthorn P, Paris DH, Chan TC, Jones M, Luce-Fedrow A, Chattopadhyay S, Jiang J, Anantatat T, Turner GDH, Day NPJ, Richards AL. An intradermal inoculation model of scrub typhus in Swiss CD-1 mice demonstrates more rapid dissemination of virulent strains of Orientia tsutsugamushi. PLoS One 2013; 8:e54570. [PMID: 23342173 PMCID: PMC3546997 DOI: 10.1371/journal.pone.0054570] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/12/2012] [Indexed: 01/23/2023] Open
Abstract
Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant organ dissemination after low-dose intradermal injection with O. tsutsugamushi.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, Maryland, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Im EJ, Hanke T. Short communication: preclinical evaluation of candidate HIV type 1 vaccines in inbred strains and an outbred stock of mice. AIDS Res Hum Retroviruses 2007; 23:857-62. [PMID: 17678467 DOI: 10.1089/aid.2007.0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Outstanding animal immunogenicity is a prerequisite for progression of novel vaccines to clinical trials. The measurement of vaccine immunogenicity is critically dependent on the specificity, accuracy, sensitivity, and precision of the employed assays. This has been greatly aided by the generation of isogenic mouse strains. Here, we identified three novel H-2(d) -restricted CD8+ T cell epitopes derived from the human immunodeficiency virus type 1 and demonstrated a fine evaluation of the vaccine-elicited T cell responses in an inbred mouse strain. However, unlike inbred mice, outbred mouse stock indicated preferential induction of CD4+ T cell responses by a heterologous DNA-prime-recombinant modified vaccinia virus Ankara boost regimen and induction of dominant responses to the env-derived vaccine component, i.e., observations reminiscent of human data. Thus, an outbred mouse stock may provide more rigorous and realistic tests for candidate vaccine evaluation in addition to sensitive assays in a selected, well-responding inbred strain.
Collapse
Affiliation(s)
- Eung-Jun Im
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, The John Radcliffe, Oxford OX3 9DS, United Kingdom
| | | |
Collapse
|