1
|
Kaya Ş, Kaya MK. OCT Findings in Patients with Methamphetamine Use Disorder. J Pers Med 2023; 13:308. [PMID: 36836542 PMCID: PMC9967004 DOI: 10.3390/jpm13020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE In the present study, the purpose was to examine the results of optical coherence tomography (OCT) measurements in patients diagnosed with methamphetamine use disorder (MUD) by comparing them with healthy controls. MATERIALS AND METHODS A total of 114 eyes were evaluated in this study (27 patients and 30 control group participants). After detailed biomicroscopic examinations of all participants by the same ophthalmologist, both eyes were evaluated by OCT. The retinal nerve fiber layer thickness (RNFL) and macular thickness were calculated from OCT. RESULTS No statistically significant differences were detected between the demographic data of the patient and control groups (p > 0.05). When OCT findings were evaluated, macular thickness and volume were not different between the groups (p > 0.05). With respect to RNFL, the left eye superior, inferior, temporal, and nasal quadrants, as well as the left eye's total measurements were found to be thicker than those of controls (p < 0.05). In both eyes, the left eye nasal quadrant and APIS total score were negatively correlated, the total RNLF measurement of the right eye and APIS motivation subscale score were negatively correlated, central macular thickness and the APIS motivation subscale score were positively correlated, and the APIS substance use characteristics subscale score and left eye temporal quadrant RNLF measurement were positively correlated. CONCLUSION Our study is the first to evaluate addiction severity and OCT findings in MUD. However, this study needs to be supported by further studies so that OCT findings, which can be used as an effective method for demonstrating possible neurodegeneration in methamphetamine use disorder, gain importance.
Collapse
Affiliation(s)
- Şüheda Kaya
- Elazıg Mental Health Hospital, Elazig 23200, Turkey
| | - Mehmet Kaan Kaya
- Ophthalmology Clinic, Universal Göz Hospital, Elazig 23040, Turkey
| |
Collapse
|
2
|
Demir B, Ozsoy F, Kepenek I, Altindag A. Examination of optical coherence tomography findings in patients with methamphetamine use disorder. J Addict Dis 2021; 40:278-284. [PMID: 34747324 DOI: 10.1080/10550887.2021.1983294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE In our study, we aimed to examine Optical Coherence Tomography (OCT) findings in patients diagnosed with methamphetamine use disorder (MUD) by comparing them with healthy controls. METHODS Sixty-five people were included in our study and 130 eyes were evaluated; 33 cases were included in the patient group with MUD according to DSM-5 diagnostic criteria and 32 as the healthy control group. Detailed biomicroscopic examinations and then both eyes were evaluated through OCT by the same ophthalmologist. RESULTS There was no statistically significant difference between the patient and control groups in terms of gender and age (p > 0.05). When the OCT findings were evaluated, the measurements of the patients in any quadrant for retinal nerve fiber layer (RNFL) were not statistically different from the control group (p > 0.05). Macula and choroidal layer thickness did not differ between the groups (p > 0.05). Only right intraocular pressure was found to be decreased in the patient group (p = 0.026). CONCLUSIONS There are a limited number of studies examining OCT findings in patients with MUD. Visual symptoms and intraocular pressure should be considered when evaluating patients with MUD and planning their treatment. In addition; in order for OCT findings to gain importance, which can be used as an effective method to show the possible neurodegeneration that may occur in substance use disorder, it should be supported with further research.
Collapse
Affiliation(s)
- Bahadir Demir
- Faculty of Medicine, Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | - Filiz Ozsoy
- Clinic of Psychiatry, Tokat State Hospital, Tokat, Turkey
| | - Idris Kepenek
- 25 December State Hospital, Clinic of Ophthalmology, Gaziantep, Turkey
| | - Abdurrahman Altindag
- Department of Psychiatry, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| |
Collapse
|
3
|
Chakraborty A, Anstice NS, Jacobs RJ, LaGasse LL, Lester BM, Wouldes TA, Thompson B. Prenatal exposure to recreational drugs affects global motion perception in preschool children. Sci Rep 2015; 5:16921. [PMID: 26581958 PMCID: PMC4652269 DOI: 10.1038/srep16921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023] Open
Abstract
Prenatal exposure to recreational drugs impairs motor and cognitive development; however it is currently unknown whether visual brain areas are affected. To address this question, we investigated the effect of prenatal drug exposure on global motion perception, a behavioural measure of processing within the dorsal extrastriate visual cortex that is thought to be particularly vulnerable to abnormal neurodevelopment. Global motion perception was measured in one hundred and forty-five 4.5-year-old children who had been exposed to different combinations of methamphetamine, alcohol, nicotine and marijuana prior to birth and 25 unexposed children. Self-reported drug use by the mothers was verified by meconium analysis. We found that global motion perception was impaired by prenatal exposure to alcohol and improved significantly by exposure to marijuana. Exposure to both drugs prenatally had no effect. Other visual functions such as habitual visual acuity and stereoacuity were not affected by drug exposure. Prenatal exposure to methamphetamine did not influence visual function. Our results demonstrate that prenatal drug exposure can influence a behavioural measure of visual development, but that the effects are dependent on the specific drugs used during pregnancy.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Nicola S Anstice
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Robert J Jacobs
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Linda L LaGasse
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, 101 Dudley Street, Providence, RI 02905, USA
| | - Trecia A Wouldes
- Department of Psychological Medicine, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 Columbia Street West, Waterloo, Ontario, ON N2L, Canada
| |
Collapse
|
4
|
Madgula RM, Groshkova T, Mayet S. Illicit drug use in pregnancy: effects and management. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.54] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Roussotte F, Soderberg L, Sowell E. Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: evidence from neuroimaging. Neuropsychol Rev 2010; 20:376-97. [PMID: 20978945 PMCID: PMC2988996 DOI: 10.1007/s11065-010-9150-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 12/28/2022]
Abstract
Prenatal exposure to alcohol and stimulants negatively affects the developing trajectory of the central nervous system in many ways. Recent advances in neuroimaging methods have allowed researchers to study the structural, metabolic, and functional abnormalities resulting from prenatal exposure to drugs of abuse in living human subjects. Here we review the neuroimaging literature of prenatal exposure to alcohol, cocaine, and methamphetamine. Neuroimaging studies of prenatal alcohol exposure have reported differences in the structure and metabolism of many brain systems, including in frontal, parietal, and temporal regions, in the cerebellum and basal ganglia, as well as in the white matter tracts that connect these brain regions. Functional imaging studies have identified significant differences in brain activation related to various cognitive domains as a result of prenatal alcohol exposure. The published literature of prenatal exposure to cocaine and methamphetamine is much smaller, but evidence is beginning to emerge suggesting that exposure to stimulant drugs in utero may be particularly toxic to dopamine-rich basal ganglia regions. Although the interpretation of such findings is somewhat limited by the problem of polysubstance abuse and by the difficulty of obtaining precise exposure histories in retrospective studies, such investigations provide important insights into the effects of drugs of abuse on the structure, function, and metabolism of the developing human brain. These insights may ultimately help clinicians develop better diagnostic tools and devise appropriate therapeutic interventions to improve the condition of children with prenatal exposure to drugs of abuse.
Collapse
Affiliation(s)
- Florence Roussotte
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
| | - Lindsay Soderberg
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
| | - Elizabeth Sowell
- Developmental Cognitive Neuroimaging Group, Department of Neurology, University of California, Los Angeles, CA USA
- Interdepartmental Ph.D. Program for Neuroscience, University of California, Los Angeles, CA USA
- Developmental Cognitive Neuroimaging Group, Laboratory of Neuro Imaging, University of California, Los Angeles, 710 Westwood Plaza, Room 1-138, Los Angeles, CA 90095-7332 USA
| |
Collapse
|
6
|
Lai H, Zeng H, Zhang C, Wang L, Tso MOM, Lai S. Toxic effect of methamphetamine on the retina of CD1 mice. Curr Eye Res 2009; 34:785-90. [PMID: 19839872 DOI: 10.1080/02713680903079641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether systemic administration of methamphetamine (METH) induces retinal damage in CD1 mice. MATERIALS AND METHODS Eighteen male CD1 mice were randomly assigned to three groups, six mice per group: Group 1 receiving a single dose of 40 mg/kg METH, Group 2 receiving four doses of 10 mg/kg METH, and Group 3 (control) receiving 40 mg/kg 0.9% NaCl solution. METH and NaCl were administered by intraperitoneal injection. Immunostaining of glial fibrillary acidic protein (GFAP), S-100 for astrocytes and Muller cells, CD11b for microglia, and tyrosine hydroxylase (TH) and TUNEL labeling for apoptotic cell death were performed on the retinal sections on day 1 and day 7 post-exposure. RESULTS GFAP and S-100 immunoreactivity was observed in Group 1 mice. CD11b+ cells in Group 1 mice showed more intensely stained shorter and thicker cellular processes than Groups 2 and 3, indicating activated microglia in the mice exposed to large-dose METH. No significant difference in TH level was seen among the three groups. TUNEL labeling did not reveal positive cells in the retinas of any of the 18 CD1 mice. CONCLUSIONS A single large dose of METH induces an increase in short-term protein expression of GFAP and S-100 and in microglial activation. The results suggest that METH has a neurotoxic effect on CD1 mouse retina.
Collapse
Affiliation(s)
- Hong Lai
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
7
|
DeMaman AS, Melo P, Homem JM, Tavares MA, Lachat JJ. Effectiveness of iron repletion in the diet for the optic nerve development of anaemic rats. Eye (Lond) 2009; 24:901-8. [DOI: 10.1038/eye.2009.205] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
8
|
Chang L, Cloak C, Jiang CS, Farnham S, Tokeshi B, Buchthal S, Hedemark B, Smith LM, Ernst T. Altered neurometabolites and motor integration in children exposed to methamphetamine in utero. Neuroimage 2009; 48:391-7. [PMID: 19576287 DOI: 10.1016/j.neuroimage.2009.06.062] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 06/17/2009] [Accepted: 06/18/2009] [Indexed: 11/16/2022] Open
Abstract
Methamphetamine (METH) is a neurotoxic drug. This study aimed to evaluate brain metabolite levels and cognitive function in young children with prenatal METH exposure. 101 children ages 3-4 years were evaluated with neuropsychological tests and underwent proton magnetic resonance spectroscopy ((1)H-MRS) without sedation. Complete datasets from 49 METH-exposed and 49 controls who completed the neuropsychological test battery, and 38 METH-exposed and 37 controls with high-quality MR spectra are reported here. Despite similar physical characteristics (including head circumference), global cognitive function (on Stanford-Binet), parental education, intelligence, mood, and socioeconomic status, METH-exposed children had higher total creatine (tCr: +7%, p=0.003), N-acetyl compounds (NA: +4.3%, p=0.004) and glutamate+glutamine (GLX: +9.6%, p=0.02) concentrations in the frontal white matter, but lower myoinositol (MI: -7%, p=0.01) and MI/tCr (-7.5%, p=0.03) in the thalamus, than control children. The higher frontal white matter NA in the METH-exposed children was due to the higher NA in the METH-exposed girls (+10.2%, p=0.003), but not the boys (+0.8%) compared to sex-matched controls. Furthermore, the METH-exposed children had poorer performance on a visual motor integration (VMI) task, which correlated with lower MI in the thalamus (r=0.26, p=0.03). The higher NA, tCr and GLX concentrations suggest higher neuronal density or cellular compactness in the white matter, especially in the girls, whereas the lower MI suggests lower glial content in the thalamus of these METH-expose children. These findings combined with their poorer performance on VMI also suggest accelerated but aberrant neuronal and glial development in these brain regions.
Collapse
Affiliation(s)
- L Chang
- Division of Neurology, Department of Medicine, John A. Burns School of Medicine, Queen's University Tower, 1356 Lusitana Street, Honolulu, HI 96813, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thompson BL, Levitt P, Stanwood GD. Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat Rev Neurosci 2009; 10:303-12. [PMID: 19277053 PMCID: PMC2777887 DOI: 10.1038/nrn2598] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effects of prenatal exposure to drugs on brain development are complex and are modulated by the timing, dose and route of drug exposure. It is difficult to assess these effects in clinical cohorts as these are beset with problems such as multiple exposures and difficulties in documenting use patterns. This can lead to misinterpretation of research findings by the general public, the media and policy makers, who may mistakenly assume that the legal status of a drug correlates with its biological impact on fetal brain development and long-term clinical outcomes. It is important to close the gap between what science tells us about the impact of prenatal drug exposure on the fetus and the mother and what we do programmatically with regard to at-risk populations.
Collapse
Affiliation(s)
- Barbara L Thompson
- Department of Pharmacology, Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
10
|
Hazin R, Cadet JL, Kahook MY, Saed D. Ocular Manifestations of Crystal Methamphetamine Use. Neurotox Res 2009; 15:187-91. [DOI: 10.1007/s12640-009-9019-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/12/2008] [Accepted: 07/22/2008] [Indexed: 11/29/2022]
|
11
|
Pometlová M, Hrubá L, Slamberová R, Rokyta R. Cross-fostering effect on postnatal development of rat pups exposed to methamphetamine during gestation and preweaning periods. Int J Dev Neurosci 2008; 27:149-55. [PMID: 19103275 DOI: 10.1016/j.ijdevneu.2008.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/10/2008] [Accepted: 11/26/2008] [Indexed: 11/26/2022] Open
Abstract
There are studies showing that drug abuse during pregnancy may have a long-term effect on progeny of drug-abusing mothers. Our previous work demonstrated that prenatal and/or postnatal methamphetamine injections impair maternal behavior. The purpose of the present study was to assess the effect of prenatal methamphetamine or stress exposure and postnatal breeding on postnatal development of rat pups. Female rats were injected with methamphetamine (5 mg/kg daily) or physiological saline prior, during and after gestation. Absolute controls did not receive any injections. On postnatal day 1, pups were cross-fostered so that each mother received some of her own and some of the pups from the mothers with the other two treatments. Pups were weighted daily for the entire lactation period. Postural motor reaction development was examined daily by righting reflex between postnatal day 1 and 12. On postnatal day 15 homing test examining pups' nest-seeking behavior was performed. On postnatal day 23 rotarod and bar-holding tests were used to investigate sensorimotor coordination of pups. We demonstrated that prenatal methamphetamine exposure impairs performance of sensorimotor tests (righting reflex on surface and rotarod test). Moreover, the effect of methamphetamine as well as the effect of prenatal stress induced by saline injections was affected by postnatal breeding conditions in sensorimotor tests as well as in the test of homing. Our results support the hypothesis that the variation in rat maternal care could serve as a mechanism for a nongenomic behavioral mode of transmission of traits.
Collapse
Affiliation(s)
- Marie Pometlová
- Charles University in Prague, Third Faculty of Medicine, Department of Normal, Pathological and Clinical Physiology, Prague, Czech Republic
| | | | | | | |
Collapse
|
12
|
Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine. Brain Res 2008; 1222:61-8. [PMID: 18585694 DOI: 10.1016/j.brainres.2008.05.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/30/2007] [Accepted: 05/19/2008] [Indexed: 11/24/2022]
Abstract
The abuse of methamphetamine (MA) and other psychostimulants is a social and medical problem. In particular, the use of these drugs by pregnant women results in an increased number of children exposed prenatally to psychostimulants. Our previous work has demonstrated that prenatal exposure to MA affects the normal development of the rat visual system due to alterations of biochemical mechanisms and oxidative stress. It was also demonstrated that prenatal exposure to MA affects the dopaminergic system of the rat retina and optic nerve (ON) myelination. The present work was conducted to evaluate the effects of prenatal exposure to MA on the development of the ON in terms of axon growth and the myelin sheath. Pregnant female rats were given 5 mg/kg/day MA, subcutaneously (s.c.), in 0.9% saline from gestational day (GD) 8 to 22. The pair-fed control group was injected s.c. with an isovolumetric dose of 0.9% saline. Qualitative analysis was performed using representative electron ultramicrographs. Quantitative analysis was performed at an electron microscopic level on ON cross sections; parameters measured included myelinated/unmyelinated ratio, outer axon mean area, inner axon mean area, myelin mean area, myelin occupancy and distribution of axons by size. The ON of prenatally MA-exposed rats presented a higher rate of deformed axons and slighter lamellar separation. At PND 21, the average outer axon area of MA-treated males was significantly reduced. The average inner axon area only showed a significant difference between MA and control males for axons with an area of less than 0.3 microm(2). The average myelin area of MA-treated males was significantly reduced, and in MA-treated females was only significantly reduced in axons with an area of less than 0.3 microm(2). The percentage of myelin occupancy was significantly affected in MA-treated males, and in MA-treated females in the group of axons with an area of more than 0.3 microm(2). At PND 14 no significant differences were found between MA and control groups. The spectrum of ON myelinated axon size of MA-treated animals was shifted to the left at PND 14 and PND 21 for both genders. These results are in agreement with previous animal studies of prenatal and perinatal exposure to drugs of abuse. Taken together, these data indicate that the ON is vulnerable to early exposure to MA which causes developmental changes and may interfere with the functioning of the visual system.
Collapse
|