1
|
Abstract
In recent times Gallbladder cancer (GBC) incidences increased many folds in India and are being reported from arsenic hotspots identified in Bihar. The study aims to establish association between arsenic exposure and gallbladder carcinogenesis. In the present study, n = 200 were control volunteers and n = 152 confirmed gallbladder cancer cases. The studied GBC patient's biological samples-gallbladder tissue, gallbladder stone, bile, blood and hair samples were collected for arsenic estimation. Moreover, n = 512 gallbladder cancer patients blood samples were also evaluated for the presence of arsenic to understand exposure level in the population. A significantly high arsenic concentration (p < 0.05) was detected in the blood samples with maximum concentration 389 µg/L in GBC cases in comparison to control. Similarly, in the gallbladder cancer patients, there was significantly high arsenic concentration observed in gallbladder tissue with highest concentration of 2166 µg/kg, in gallbladder stones 635 µg/kg, in bile samples 483 µg/L and in hair samples 6980 µg/kg respectively. Moreover, the n = 512 gallbladder cancer patient's blood samples study revealed very significant arsenic concentration in the population of Bihar with maximum arsenic concentration as 746 µg/L. The raised arsenic concentration in the gallbladder cancer patients' biological samples-gallbladder tissue, gallbladder stone, bile, blood, and hair samples was significantly very high in the arsenic exposed area. The study denotes that the gallbladder disease burden is very high in the arsenic exposed area of Bihar. The findings do provide a strong link between arsenic contamination and increased gallbladder carcinogenesis.
Collapse
|
2
|
Lin S, Xu H, Qin L, Pang M, Wang Z, Gu M, Zhang L, Zhao C, Hao X, Zhang Z, Ding W, Ren J, Huang J. UHRF1/DNMT1–MZF1 axis-modulated intragenic site-specific CpGI methylation confers divergent expression and opposing functions of PRSS3 isoforms in lung cancer. Acta Pharm Sin B 2023; 13:2086-2106. [DOI: 10.1016/j.apsb.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/27/2022] [Accepted: 02/05/2023] [Indexed: 04/09/2023] Open
|
3
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
4
|
Lin S, Xu H, Pang M, Zhou X, Pan Y, Zhang L, Guan X, Wang X, Lin B, Tian R, Chen K, Zhang X, Yang Z, Ji F, Huang Y, Wei W, Gong W, Ren J, Wang JM, Guo M, Huang J. CpG Site-Specific Methylation-Modulated Divergent Expression of PRSS3 Transcript Variants Facilitates Nongenetic Intratumor Heterogeneity in Human Hepatocellular Carcinoma. Front Oncol 2022; 12:831268. [PMID: 35480112 PMCID: PMC9035874 DOI: 10.3389/fonc.2022.831268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 01/18/2023] Open
Abstract
BackgroundHepatocellular carcinoma (HCC) is one of the most lethal human tumors with extensive intratumor heterogeneity (ITH). Serine protease 3 (PRSS3) is an indispensable member of the trypsin family and has been implicated in the pathogenesis of several malignancies, including HCC. However, the paradoxical effects of PRSS3 on carcinogenesis due to an unclear molecular basis impede the utilization of its biomarker potential. We hereby explored the contribution of PRSS3 transcripts to tumor functional heterogeneity by systematically dissecting the expression of four known splice variants of PRSS3 (PRSS3-SVs, V1~V4) and their functional relevance to HCC.MethodsThe expression and DNA methylation of PRSS3 transcripts and their associated clinical relevance in HCC were analyzed using several publicly available datasets and validated using qPCR-based assays. Functional experiments were performed in gain- and loss-of-function cell models, in which PRSS3 transcript constructs were separately transfected after deleting PRSS3 expression by CRISPR/Cas9 editing.ResultsPRSS3 was aberrantly differentially expressed toward bipolarity from very low (PRSS3Low) to very high (PRSS3High) expression across HCC cell lines and tissues. This was attributable to the disruption of PRSS3-SVs, in which PRSS3-V2 and/or PRSS3-V1 were dominant transcripts leading to PRSS3 expression, whereas PRSS3-V3 and -V4 were rarely or minimally expressed. The expression of PRSS3-V2 or -V1 was inversely associated with site-specific CpG methylation at the PRSS3 promoter region that distinguished HCC cells and tissues phenotypically between hypermethylated low-expression (mPRSS3-SVLow) and hypomethylated high-expression (umPRSS3-SVHigh) groups. PRSS3-SVs displayed distinct functions from oncogenic PRSS3-V2 to tumor-suppressive PRSS3-V1, -V3 or PRSS3-V4 in HCC cells. Clinically, aberrant expression of PRSS3-SVs was translated into divergent relevance in patients with HCC, in which significant epigenetic downregulation of PRSS3-V2 was seen in early HCC and was associated with favorable patient outcome.ConclusionsThese results provide the first evidence for the transcriptional and functional characterization of PRSS3 transcripts in HCC. Aberrant expression of divergent PRSS3-SVs disrupted by site-specific CpG methylation may integrate the effects of oncogenic PRSS3-V2 and tumor-suppressive PRSS3-V1, resulting in the molecular diversity and functional plasticity of PRSS3 in HCC. Dysregulated expression of PRSS3-V2 by site-specific CpG methylation may have potential diagnostic value for patients with early HCC.
Collapse
Affiliation(s)
- Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Hanli Xu
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Mengdi Pang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaomeng Zhou
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lishu Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xin Guan
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Xiaoyue Wang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Bonan Lin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Rongmeng Tian
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Keqiang Chen
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Xiaochen Zhang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Zijiang Yang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Fengmin Ji
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Yingying Huang
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Jianke Ren
- Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Ming Wang
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese People’s Liberation Army of China (PLA) General Hospital, Beijing, China
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| | - Jiaqiang Huang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, China
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
- *Correspondence: Jiaqiang Huang, ; Mingzhou Guo,
| |
Collapse
|
5
|
McMurray H, Singaraju R. Three Primary Cancers in a Veteran With Agent Orange and Agent Blue Exposures. Fed Pract 2021; 38:S40-S45. [PMID: 34733094 DOI: 10.12788/fp.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Vietnam War veteran's exposures likely contributed to his cancer diagnoses, but these associations are confounded by his substance use, particularly cigarette smoking.
Collapse
Affiliation(s)
- Haana McMurray
- is a Medical Student and is an Assistant Professor in the Department of Medicine, both at the Uniformed Services University of the Health Sciences in Bethesda, Maryland
| | - Raj Singaraju
- is a Medical Student and is an Assistant Professor in the Department of Medicine, both at the Uniformed Services University of the Health Sciences in Bethesda, Maryland
| |
Collapse
|
6
|
Mitra A, Chatterjee S, Gupta DK. Environmental Arsenic Exposure and Human Health Risk. ADVANCES IN WATER SECURITY 2020. [DOI: 10.1007/978-3-030-21258-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Lin B, Zhou X, Lin S, Wang X, Zhang M, Cao B, Dong Y, Yang S, Wang JM, Guo M, Huang J. Epigenetic silencing of PRSS3 provides growth and metastasis advantage for human hepatocellular carcinoma. J Mol Med (Berl) 2017; 95:1237-1249. [PMID: 28844099 PMCID: PMC8171496 DOI: 10.1007/s00109-017-1578-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Protease, serine, 3 (PRSS3), a member of the trypsin family of serine proteases, has been shown to be aberrantly expressed in several cancer types and to play important roles in tumor progression and metastasis. However, the expression and function of PRSS3 gene in hepatocellular carcinoma (HCC) remain unclear. Here we found that PRSS3 expression was decreased in human HCC cell lines and HCC surgical specimens. This was associated with intragenic methylation of PRSS3 gene. Treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor trichostatin A restored PRSS3 expression in HCC cell lines. Ectopic overexpression of PRSS3 gene in HCC cell lines significantly suppressed cell proliferation and colony formation and arrested cell cycle at G1/S phase, accompanied with downregulation of cyclin D1 (CCND1)/CDK4 and cyclin E1 (CCNE1)/CDK2 complexes. Moreover, PRSS3 overexpression in HCC cells inhibited HCC cell migration and invasion with downregulation of matrix metallopeptidase 2 (MMP2). Further study showed that PRSS3 overexpression diminished the phosphorylation of mitogen-activated protein kinase/extracellular-signal-regulated kinase signaling protein, mitogen-activated protein kinase kinase 1 (MEK1)/mitogen-activated protein kinase kinase 2 (MEK2) and extracellular-signal related kinase 1 (ERK1)/extracellular-signal related kinase 2 (ERK2), in HCC cells. In contrast, knockdown of PRSS3 by small interfering RNA resulted in opposite effects on an HCC cell line SNU-387 which constitutively expresses PRSS3. These results demonstrate that downregulation of PRSS3 by intragenic hypermethylation provides growth and metastasis advantage to HCC cells. The clinical relevance of PRSS3 to human HCC was shown by the intragenic methylation of PRSS3 in HCC specimens and its association with poor tumor differentiation in patients with HCC. Thus, PRSS3 is a potential prognostic biomarker and an epigenetic target for intervention of human HCC. KEY MESSAGES • PRSS3 is downregulated by intragenic hypermethylation in HCC. • Epigenetic silencing of PRSS3 facilitates growth, migration, and invasion of HCC. • PRSS3 intragenic methylation has implication in diagnosis of HCC.
Collapse
Affiliation(s)
- Bonan Lin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaomeng Zhou
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Shuye Lin
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoyue Wang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Meiying Zhang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baoping Cao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Dong
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuai Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jiaqiang Huang
- College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
8
|
Barrow TM, Klett H, Toth R, Böhm J, Gigic B, Habermann N, Scherer D, Schrotz-King P, Skender S, Abbenhardt-Martin C, Zielske L, Schneider M, Ulrich A, Schirmacher P, Herpel E, Brenner H, Busch H, Boerries M, Ulrich CM, Michels KB. Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare Study. J Pathol 2017; 243:366-375. [PMID: 28791728 DOI: 10.1002/path.4955] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 07/02/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
Smoking tobacco is a known risk factor for the development of colorectal cancer and for mortality associated with the disease. Smoking has been reported to be associated with changes in DNA methylation in blood and in lung tumour tissues, although there has been scant investigation of how epigenetic factors may be implicated in the increased risk of developing colorectal cancer. To identify epigenetic changes associated with smoking behaviours, we performed epigenome-wide analysis of DNA methylation in colorectal tumours from 36 never-smokers, 47 former smokers, and 13 active smokers, and in adjacent mucosa from 49 never-smokers, 64 former smokers, and 18 active smokers. Our analyses identified 15 CpG sites within the APC 1A promoter that were significantly hypermethylated and 14 CpG loci within the NFATC1 gene body that were significantly hypomethylated (pLIS < 1 × 10-5 ) in the tumours of active smokers. The APC 1A promoter was hypermethylated in 7 of 36 tumours from never-smokers (19%), 12 of 47 tumours from former smokers (26%), and 8 of 13 tumours from active smokers (62%). Promoter hypermethylation was positively associated with duration of smoking (Spearman rank correlation, ρ = 0.26, p = 0.03) and was confined to tumours, with hypermethylation never being observed in adjacent mucosa. Further analysis of adjacent mucosa revealed significant hypomethylation of four loci associated with the TNXB gene in tissue from active smokers. Our findings provide exploratory evidence for hypermethylation of the key tumour suppressor gene APC being implicated in smoking-associated colorectal carcinogenesis. Further work is required to establish the validity of our observations in independent cohorts. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy M Barrow
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hagen Klett
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Reka Toth
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Böhm
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Biljana Gigic
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Nina Habermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Scherer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Petra Schrotz-King
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Skender
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clare Abbenhardt-Martin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lin Zielske
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cornelia M Ulrich
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Karin B Michels
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
9
|
Association of Smoking, Alcohol Use, and Betel Quid Chewing with Epigenetic Aberrations in Cancers. Int J Mol Sci 2017; 18:ijms18061210. [PMID: 28587272 PMCID: PMC5486033 DOI: 10.3390/ijms18061210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/16/2022] Open
Abstract
Numerous environmental factors such as diet, alcohol use, stress, and environmental chemicals are known to elicit epigenetic changes, leading to increased rates of cancers and other diseases. The incidence of head and neck cancer, one of the most common cancers in Taiwanese males, is increasing: oral cancer and nasopharyngeal carcinoma are ranked fourth and tenth respectively, among the top ten cancers in this group, and a major cause of cancer-related deaths in Taiwanese males. Previous studies have identified smoking, alcohol use, and betel quid chewing as the three major causes of head and neck cancers; these three social habits are commonly observed in Taiwanese males, resulting in an increasing morbidity rate of head and neck cancers in this population. In this literature review, we discuss the association between specific components of betel quid, alcohol, and tobacco, and the occurrence of head and neck cancers, lung cancer, gastrointestinal cancers, and urethral cancer. We focus on regulatory mechanisms at the epigenetic level and their oncogenic effects. The review further discusses the application of FDA-approved epigenetic drugs as therapeutic strategies against cancer.
Collapse
|
10
|
Epigenetic events in male common urogenital organs cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2016. [DOI: 10.1016/j.jcrpr.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Dai L, Ma C, Zhang Z, Zeng S, Liu A, Tang S, Ren Q, Sun Y, Xu C. DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0167228. [PMID: 27907054 PMCID: PMC5132202 DOI: 10.1371/journal.pone.0167228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Methylation of tumor suppressor gene promoter leads to transcription inactivation and is involved in tumorigenesis. Several studies demonstrate a potential association between the Death-Associated Protein Kinase (DAPK) gene promoter methylation and bladder cancer risk, tumor stage and histological grade. Due to inconsistent results of these studies, we performed this meta-analysis to ascertain the association. METHODS Studies were retrieved from the PubMed, Embase, Web of Science and the Cochrane Library databases. Study selection and data extraction were executed by two reviewers independently. Meta-analysis was performed using Stata 13.0 and Review Manager 5.3 software. RESULTS A total of 21 articles involving 15 case control and 8 case series studies were included in this meta-analysis. DAPK promoter methylation was associated with bladder cancer risk (OR: 5.81; 95%CI = 3.83-8.82, P<0.00001). The frequency of DAPK promoter methylation was equal in bladder cancer tissue and paired adjacent normal tissue (OR: 0.87; 95%CI = 0.31-2.48, P = 0.794). Furthermore, DAPK promoter methylation was associated with higher histological grade (OR: 1.52; 95%CI = 1.10-2.09, P = 0.011) but not associated with tumor stage (OR: 1.12; 95%CI = 0.67-1.87, P = 0.668). CONCLUSIONS The result suggests that DAPK promoter methylation is significantly increased in bladder cancer patients compared to normal controls. DAPK promoter methylation could serve as a biomarker for bladder cancer detection and management.
Collapse
Affiliation(s)
- Lihe Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chong Ma
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Anwei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shijie Tang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qian Ren
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
12
|
The Impact of External Factors on the Epigenome: In Utero and over Lifetime. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2568635. [PMID: 27294112 PMCID: PMC4887632 DOI: 10.1155/2016/2568635] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/12/2016] [Accepted: 04/26/2016] [Indexed: 01/07/2023]
Abstract
Epigenetic marks change during fetal development, adult life, and aging. Some changes play an important role in the establishment and regulation of gene programs, but others seem to occur without any apparent physiological role. An important future challenge in the field of epigenetics will be to describe how the environment affects both of these types of epigenetic change and to learn if interaction between them can determine healthy and disease phenotypes during lifetime. Here we discuss how chemical and physical environmental stressors, diet, life habits, and pharmacological treatments can affect the epigenome during lifetime and the possible impact of these epigenetic changes on pathophysiological processes.
Collapse
|
13
|
Lu S, Yang Y, Du Y, Cao LL, Li M, Shen C, Hou T, Zhao Y, Wang H, Deng D, Wang L, He Q, Zhu WG. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2. Oncotarget 2015; 6:34704-17. [PMID: 26430963 PMCID: PMC4741484 DOI: 10.18632/oncotarget.5474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter.
Collapse
Affiliation(s)
- Shaoli Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Yipeng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Lin-lin Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Meiting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Changchun Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Tianyun Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Dajun Deng
- Department of Etiology, Peking University School of Oncology and Beijing Cancer Hospital & Institute, Beijing 100142, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100871, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China
- Peking University-Tsinghua University Joint Center for Life Sciences, Beijing 100751, China
| |
Collapse
|
14
|
Landrigan PJ, Wright RO, Cordero JF, Eaton DL, Goldstein BD, Hennig B, Maier RM, Ozonoff DM, Smith MT, Tukey RH. The NIEHS Superfund Research Program: 25 Years of Translational Research for Public Health. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:909-18. [PMID: 25978799 PMCID: PMC4590764 DOI: 10.1289/ehp.1409247] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 05/12/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND The Superfund Research Program (SRP) is an academically based, multidisciplinary, translational research program that for 25 years has sought scientific solutions to health and environmental problems associated with hazardous waste sites. SRP is coordinated by the National Institute of Environmental Health Sciences (NIEHS). It supports multi-project grants, undergraduate and postdoctoral training programs, individual research grants, and Small Business Innovation Research (SBIR) and Technology Transfer Research (STTR) grants. RESULTS SRP has had many successes: discovery of arsenic's toxicity to the developing human central nervous system; documentation of benzene toxicity to hematologic progenitor cells in human bone marrow; development of novel analytic techniques such as the luciferase expression assay and laser fragmentation fluorescence spectroscopy; demonstration that PCBs can cause developmental neurotoxicity at low levels and alter the genomic characteristics of sentinel animals; elucidation of the neurodevelopmental toxicity of organophosphate insecticides; documentation of links between antimicrobial agents and alterations in hormone response; discovery of biological mechanisms through which environmental chemicals may contribute to obesity, atherosclerosis, diabetes, and cancer; tracking the health and environmental effects of the attacks on the World Trade Center and Hurricane Katrina; and development of novel biological and engineering techniques to facilitate more efficient and lower-cost remediation of hazardous waste sites. CONCLUSION SRP must continue to address the legacy of hazardous waste in the United States, respond to new issues caused by rapid advances in technology, and train the next generation of leaders in environmental health science while recognizing that most of the world's worst toxic hot spots are now located in low- and middle-income countries.
Collapse
|
15
|
Ceccaroli C, Pulliero A, Geretto M, Izzotti A. Molecular fingerprints of environmental carcinogens in human cancer. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2015; 33:188-228. [PMID: 26023758 DOI: 10.1080/10590501.2015.1030491] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Identification of specific molecular changes (fingerprints) is important to identify cancer etiology. Exploitable biomarkers are related to DNA, epigenetics, and proteins. DNA adducts are the turning point between environmental exposures and biological damage. DNA mutational fingerprints are induced by carcinogens in tumor suppressor and oncogenes. In an epigenetic domain, methylation changes occurs in specific genes for arsenic, benzene, chromium, and cigarette smoke. Alteration of specific microRNA has been reported for environmental carcinogens. Benzo(a)pyrene, cadmium, coal, and wood dust hits specific heat-shock proteins and metalloproteases. The multiple analysis of these biomarkers provides information on the carcinogenic mechanisms activated by exposure to environmental carcinogens.
Collapse
Affiliation(s)
- C Ceccaroli
- a Department of Health Sciences, University of Genoa , Italy
| | | | | | | |
Collapse
|
16
|
Feki-Tounsi M, Olmedo P, Gil F, Mhiri MN, Rebai A, Hamza-Chaffai A. Trace metal quantification in bladder biopsies from tumoral lesions of Tunisian cancer and controls subjects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11433-11438. [PMID: 24903250 DOI: 10.1007/s11356-014-3099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
The incidence of bladder tumors has been dramatically increasing since the 1970s, possibly as a consequence of ongoing environmental pollution. Previous studies have provided some evidence of an association between cancer and exposure to carcinogenic metals. In order to examine the association between levels of toxic metals in patients with bladder tumors and controls, the amounts of arsenic, cadmium, chromium, and nickel were measured in tumoral lesions and adjacent normal part of the bladder mucosa excised for carcinoma and compared with those in the bladder mucosa of volunteer subjects operated for non-neoplastic diseases. The quantification of metals in tissue was assessed by atomic absorption spectroscopy. In tumoral tissues of the excised bladder mucosa, content of Cr and Ni was significantly low compared to that of adjacent normal tissues and control tissues while that of As and Cd in normal tissues adjacent to the tumor were significantly elevated compared to controls. Though the sample size was small, the present study shows that concentrations of metals such as Cd, Cr, As, and Ni in bladder tissue may be used as a biomarker of exposure. On the basis of the results obtained in this study, high amounts of As and Cd in adjacent normal parts of the bladders with carcinomas compared to controls would strongly suggest possible, individual or synergistic, effects of these pollutants on enzymatic systems, priming an oncogenic pathway.
Collapse
Affiliation(s)
- Molka Feki-Tounsi
- Unit of Marine and Environmental Toxicology, IPEIS, Sfax University, PB 805, 3018, Sfax, Tunisia,
| | | | | | | | | | | |
Collapse
|
17
|
Bariar B, Vestal CG, Richardson C. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents. J Environ Pathol Toxicol Oncol 2014; 32:307-27. [PMID: 24579784 DOI: 10.1615/jenvironpatholtoxicoloncol.2013007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.
Collapse
Affiliation(s)
- Bhawana Bariar
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | - C Greer Vestal
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | | |
Collapse
|
18
|
Unterberg M, Leffers L, Hübner F, Humpf HU, Lepikhov K, Walter J, Ebert F, Schwerdtle T. Toxicity of arsenite and thio-DMAV after long-term (21 days) incubation of human urothelial cells: cytotoxicity, genotoxicity and epigenetics. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00036f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study aims to further mechanistically understand toxic modes of action after chronic arsenic species exposure.
Collapse
Affiliation(s)
- Marlies Unterberg
- Graduate School of Chemistry
- WWU Muenster
- 48149 Muenster, Germany
- Institute of Nutritional Sciences
- University of Potsdam
| | - Larissa Leffers
- Graduate School of Chemistry
- WWU Muenster
- 48149 Muenster, Germany
| | - Florian Hübner
- Institute of Food Chemistry
- WWU Muenster
- 48149 Muenster, Germany
| | - Hans-Ulrich Humpf
- Graduate School of Chemistry
- WWU Muenster
- 48149 Muenster, Germany
- Institute of Food Chemistry
- WWU Muenster
| | - Konstantin Lepikhov
- Department of Genetics/Epigenetics
- Campus Saarbruecken
- Saarland University
- 66123 Saarbruecken, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics
- Campus Saarbruecken
- Saarland University
- 66123 Saarbruecken, Germany
| | - Franziska Ebert
- Institute of Nutritional Sciences
- University of Potsdam
- 14558 Nuthetal, Germany
| | - Tanja Schwerdtle
- Graduate School of Chemistry
- WWU Muenster
- 48149 Muenster, Germany
- Institute of Nutritional Sciences
- University of Potsdam
| |
Collapse
|
19
|
Yang TY, Hsu LI, Chiu AW, Pu YS, Wang SH, Liao YT, Wu MM, Wang YH, Chang CH, Lee TC, Chen CJ. Comparison of genome-wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure. ENVIRONMENTAL RESEARCH 2014; 128:57-63. [PMID: 24268366 DOI: 10.1016/j.envres.2013.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 09/28/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Arsenic is a well-documented carcinogen of human urothelial carcinoma (UC) with incompletely understood mechanisms. OBJECTIVES This study aimed to compare the genome-wide DNA methylation profiles of arsenic-induced UC (AsUC) and non-arsenic-induced UC (Non-AsUC), and to assess associations between site-specific methylation levels and cumulative arsenic exposure. METHODS Genome-wide DNA methylation profiles in 14 AsUC and 14 non-AsUC were analyzed by Illumina Infinium methylation27 BeadChip and validated by bisulfite pyrosequencing. Mean methylation levels (β¯) in AsUC and non-AsUC were compared by their ratio (β¯ ratio) and difference (Δβ¯). Associations between site-specific methylation levels in UC and cumulative arsenic exposure were examined. RESULTS Among 27,578 methylation sites analyzed, 231 sites had β¯ ratio >2 or <0.5 and 45 sites had Δβ¯ >0.2 or <-0.2. There were 13 sites showing statistically significant (q<0.05) differences in β¯ between AsUC and non-AsUC including 12 hypermethylation sites in AsUC and only one hypermethylation site in non-AsUC. Significant associations between cumulative arsenic exposure and DNA methylation levels of 28 patients were observed in nine CpG sites of nine gens including PDGFD (Spearman rank correlation, 0.54), CTNNA2 (0.48), KCNK17 (0.52), PCDHB2 (0.57), ZNF132 (0.48), DCDC2 (0.48), KLK7 (0.48), FBXO39 (0.49), and NPY2R (0.45). These associations remained statistically significant for CpG sites in CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 in 20 non-smoking women after adjustment for tumor stage and age. CONCLUSIONS Significant associations between cumulative arsenic exposure and methylation level of CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 were found in smoking-unrelated urothelial carcinoma. Arsenic exposure may cause urothelial carcinomas through the hypermethylation of genes involved in cell adhesion, proteolysis, transcriptional regulation, neuronal pathway, and ion transport. The findings of this study, which are limited by its small sample size and moderate dose-response relation, remain to be validated by further studies with large sample sizes.
Collapse
Affiliation(s)
- Tse-Yen Yang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan; China Medical University, Taichung, Taiwan
| | - Ling-I Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Allen W Chiu
- College of Medicine, National Yang-Ming University Hospital, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsin Wang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Tang Liao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Meei-Maan Wu
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Division of General Surgery, Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Jen Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Surana R, Sikka S, Cai W, Shin EM, Warrier SR, Tan HJG, Arfuso F, Fox SA, Dharmarajan AM, Kumar AP. Secreted frizzled related proteins: Implications in cancers. Biochim Biophys Acta Rev Cancer 2013; 1845:53-65. [PMID: 24316024 DOI: 10.1016/j.bbcan.2013.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 12/31/2022]
Abstract
The Wnt (wingless-type) signaling pathway plays an important role in embryonic development, tissue homeostasis, and tumor progression becaluse of its effect on cell proliferation, migration, and differentiation. Secreted frizzled-related proteins (SFRPs) are extracellular inhibitors of Wnt signaling that act by binding directly to Wnt ligands or to Frizzled receptors. In recent years, aberrant expression of SFRPs has been reported to be associated with numerous cancers. As gene expression of SFRP members is often lost through promoter hypermethylation, inhibition of methylation through the use of epigenetic modifying agents could renew the expression of SFRP members and further antagonize deleterious Wnt signaling. Several reports have described epigenetic silencing of these Wnt signaling antagonists in various human cancers, suggesting their possible role as tumor suppressors. SFRP family members thus come across as potential tools in combating Wnt-driven tumorigenesis. However, little is known about SFRP family members and their role in different cancers. This review comprehensively covers all the available information on the role of SFRP molecules in various human cancers.
Collapse
Affiliation(s)
- Rohit Surana
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sakshi Sikka
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wanpei Cai
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eun Myoung Shin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Sudha R Warrier
- Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, India
| | - Hong Jie Gabriel Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Frank Arfuso
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia
| | - Simon A Fox
- Molecular Pharmacology Laboratory, School of Pharmacy, Western Australian Biomedical Research Institute & Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Arun M Dharmarajan
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, Australia; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia.
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, 6845 Western Australia, Australia; Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA.
| |
Collapse
|
21
|
Feki-Tounsi M, Olmedo P, Gil F, Khlifi R, Mhiri MN, Rebai A, Hamza-Chaffai A. Cadmium in blood of Tunisian men and risk of bladder cancer: interactions with arsenic exposure and smoking. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:7204-7213. [PMID: 23673919 DOI: 10.1007/s11356-013-1716-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Prior investigations identified an association between low-level blood arsenic (As) and bladder cancer risk among Tunisian men but questions remain regarding confounding by cadmium (Cd), a well-established bladder carcinogen. A case-control study of Tunisian men was re-examined to assess the levels of cadmium in blood and reparse the association between the simultaneous exposure to these metals and bladder cancer risk. Levels of blood Cd were significantly twice higher among cases than in controls (P<0.05) and were positively correlated with smoking and age. Additionally, analysis of metal levels among non-smokers according to the region of residence showed very high blood Cd and As levels for the coastal regions of Sfax and central Tunisia. After controlling for potential confounders, for low blood As levels (<0.67 μg/L), the OR for blood Cd was 4.10 (95 % CI 1.64-10.81), while for higher levels (>0.67 μg/L), it was reduced to 2.10 (CI, 1.06-4.17). Adjustment for Cd exposure did not alter the risk associated to As exposure. This study is the first to report the relationship between Cd exposure and risk of bladder cancer occurrence in interaction with smoking and As exposure. Smoking is shown to be the main exposure source to Cd in the Tunisian population but also environmental pollution seems to be responsible of Cd exposure among non-smokers. Exposure assessment studies encompassing a wider population are needed.
Collapse
Affiliation(s)
- Molka Feki-Tounsi
- Unit of Marine and Environmental Toxicology. IPEIS, University of Sfax, BP 805, 3018, Sfax, Tunisia,
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen LM, Nergard JC, Ni L, Rosser CJ, Chai KX. Long-term exposure to cigarette smoke extract induces hypomethylation at the RUNX3 and IGF2-H19 loci in immortalized human urothelial cells. PLoS One 2013; 8:e65513. [PMID: 23724145 PMCID: PMC3665628 DOI: 10.1371/journal.pone.0065513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Cigarette smoking is the single most important epidemiological risk factor for bladder cancer but it is not known whether exposure of urothelial cells to the systemic soluble contents of cigarette smoke is directly causative to bladder cancer and the associated epigenetic changes such as tumor suppressor gene hypermethylation. We undertook this study to investigate if long-term treatment of human urothelial cells with cigarette smoke extract (CSE) results in tumor suppressor gene hypermethylation, a phenotype that was previously associated with long-term constant CSE treatment of airway epithelial cells. We chronically treated an immortalized human urothelial cell line UROtsa with CSE using a cyclic daily regimen but the cells were cultured in CSE-free medium between daily treatments. Bisulfite sequencing and real-time PCR array-based methylation profiling were employed to evaluate methylation changes at tumor suppressor gene loci in the chronically CSE-treated cells versus the passage-matched untreated control cells. The RUNX3 tumor suppressor gene promoter was hypomethylated with a significant increase in proportion of the completely unmethylated haplotype after the long-term CSE treatment; whereas RUNX3 promoter hypermethylation was previously reported for bladder cancers of smokers. Hypomethylation induced by the long-term CSE treatment was also observed for the IGF2-H19 locus. The methylation status at the PRSS8/prostasin and 16 additional loci however, was unaffected by the chronic CSE treatment. Transient CSE treatment over 1 daily regimen resulted in transcriptional down-regulation of RUNX3 and H19, but only the H19 transcription was down-regulated in the chronically CSE-treated urothelial cells. Transcription of a key enzyme in one-carbon metabolism, dihydrofolate reductase (DHFR) was greatly reduced by the long-term CSE treatment, potentially serving as a mechanism for the hypomethylation phenotype via a reduced supply of methyl donor. In conclusion, chronic cyclic CSE treatment of urothelial cells induced hypomethylation rather than hypermethylation at specific loci.
Collapse
Affiliation(s)
- Li-Mei Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | | | | | | | | |
Collapse
|
23
|
Brait M, Munari E, LeBron C, Noordhuis MG, Begum S, Michailidi C, Gonzalez-Roibon N, Maldonado L, Sen T, Guerrero-Preston R, Cope L, Parrella P, Fazio VM, Ha PK, Netto GJ, Sidransky D, Hoque MO. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle 2013; 12:1058-70. [PMID: 23435205 PMCID: PMC3646862 DOI: 10.4161/cc.24050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 12/14/2022] Open
Abstract
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood. To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.
Collapse
Affiliation(s)
- Mariana Brait
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Clinical Research Coordination; Instituto Nacional de Câncer (INCA)-Brazilian National Cancer Institute; Rio de Janeiro, Brazil
| | - Enrico Munari
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - Cynthia LeBron
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Maartje G. Noordhuis
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
- Department of Gynecologic Oncology; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Shahnaz Begum
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - Christina Michailidi
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | | | - Leonel Maldonado
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Tanusree Sen
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Leslie Cope
- Oncology Center-Biostatistics/Bioinformatics; University Medical Center Groningen; University of Groningen; Groningen, The Netherlands
| | - Paola Parrella
- Oncology Research Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo, Foggia, Italy
| | - Vito Michele Fazio
- Oncology Research Laboratory; IRCCS Casa Sollievo della Sofferenza; San Giovanni Rotondo, Foggia, Italy
- Laboratory of Molecular Medicine and Biotechnology; CIR; University Campus BioMedico; Rome, Italy
| | - Patrick K. Ha
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - George J. Netto
- Department of Pathology; Johns Hopkins Medical Institutions; Baltimore, MD USA
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| | - Mohammad O. Hoque
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore, MD USA
| |
Collapse
|
24
|
Nriagu J, Lin TS, Mazumder DG, Chatterjee D. E-cadherin polymorphisms and susceptibility to arsenic-related skin lesions in West Bengal, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 420:65-72. [PMID: 22330421 DOI: 10.1016/j.scitotenv.2012.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Although suppression of E-cadherin gene (CDH1) expression and exposure to arsenic have separately been associated with skin lesions, the combined effects of this "gene-environment" interaction have not been explored previously. STUDY DESIGN A population-based cross-sectional survey. METHOD This study involved 100 cases with skin lesions and 100 controls who were family members with no lesions. The subjects were recruited from villages and hamlets in northern Nadia Province, West Bengal. Each participant was required to undergo a detailed face-to-face interview; provide spot urine sample; provide saliva sample; and sign a consent form. The type and severity of skin lesions were assessed during a general medical examination of each participant in the field. The following 16 single nucleotide polymorphisms (SNPs) of the CDH1 were measured using DNA extracted from saliva samples: rs16260, rs5030625, rs155364, rs155808, rs155807, rs2303646, rs2059254, rs9925923, rs12919719, rs7188750, rs9989407, rs7196495, rs7196661, rs13689, rs12599393, and rs1862748. RESULTS The main effects of SNPs on the risk for skin lesions were borderline for rs7196661 (p-value=0.092), rs7196495 (p-value=0.090), and rs12919719 (p-value=0.065); the strongest association was found for rs9989407 (p-value=0.058). Several SNPs, however, showed that the T>T genotype carriers are at higher relative risk for skin lesions compared to carriers of the C>C or C>T genotypes; these results need to be confirmed in a larger study. The main effects of some of the SNPs and genotype frequencies on the severity of skin lesions were found to be relatively weak. CONCLUSIONS This is the first study that indicates that CDH1 polymorphisms can contribute to the etiology of premalignant skin lesions in people chronically exposed to arsenic in drinking water, and that this gene may be a factor in individual susceptibility to cutaneous diseases.
Collapse
Affiliation(s)
- Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
25
|
Su LJ, Mahabir S, Ellison GL, McGuinn LA, Reid BC. Epigenetic Contributions to the Relationship between Cancer and Dietary Intake of Nutrients, Bioactive Food Components, and Environmental Toxicants. Front Genet 2012; 2:91. [PMID: 22303385 PMCID: PMC3266615 DOI: 10.3389/fgene.2011.00091] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without a change in DNA sequence. Cancer is a multistep process derived from combinational crosstalk between genetic alterations and epigenetic influences through various environmental factors. The observation that epigenetic changes are reversible makes them an attractive target for cancer prevention. Until recently, there have been difficulties studying epigenetic mechanisms in interactions between dietary factors and environmental toxicants. The development of the field of cancer epigenetics during the past decade has been advanced rapidly by genome-wide technologies - which initially employed microarrays but increasingly are using high-throughput sequencing - which helped to improve the quality of the analysis, increase the capacity of sample throughput, and reduce the cost of assays. It is particularly true for applications of cancer epigenetics in epidemiologic studies that examine the relationship among diet, epigenetics, and cancer because of the issues of tissue heterogeneity, the often limiting amount of DNA samples, and the significant cost of the analyses. This review offers an overview of the state of the science in nutrition, environmental toxicants, epigenetics, and cancer to stimulate further exploration of this important and developing area of science. Additional epidemiologic research is needed to clarify the relationship between these complex epigenetic mechanisms and cancer.
Collapse
Affiliation(s)
- L. Joseph Su
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Somdat Mahabir
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Gary L. Ellison
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Laura A. McGuinn
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| | - Britt C. Reid
- Modifiable Risk Factors Branch, Division of Cancer Control and Population Sciences, National Cancer InstituteBethesda, MD, USA
| |
Collapse
|
26
|
Kim M, Bae M, Na H, Yang M. Environmental toxicants--induced epigenetic alterations and their reversers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:323-367. [PMID: 23167630 DOI: 10.1080/10590501.2012.731959] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Epigenetics has been emphasized in the postgenome era to clarify obscure health risks of environmental toxicants including endocrine disrupting chemicals (EDCs). In addition, mixed exposure in real life can modify health consequences of the toxicants. Particularly, some nutritional and dietary materials modify individual susceptibility through changes in the epigenome. Therefore, we focused on some environmental toxicants that induce epigenetic alterations, and introduced chemopreventive materials to reverse the toxicants-induced epigenetic alterations. Methodologically, we used global and specific DNA methylation as epigenetic end points and searched epigenetic modulators in food. We reviewed various epigenetic end points induced by environmental toxicants including alcohol, asbestos, nanomaterials, benzene, EDCs, metals, and ionizing radiation. The epigenetic end points can be summarized into global hypomethylation and specific hypermethylation at diverse tumor suppress genes. Exposure timing, dose, sex, or organ specificity should be considered to use the epigenetic end points as biomarkers for exposure to the epimutagenic toxicants. Particularly, neonatal exposure to the epimutagens can influence their future adult health because of characteristics of the epimutagens, which disrupt epigenetic regulation in imprinting, organogenesis, development, etc. Considering interaction between epimutagenic toxicants and their reversers in food, we suggest that multiple exposures to them can alleviate or mask epigenetic toxicity in real life. Our present review provides useful information to find new end points of environmental toxicants and to prevention from environment-related diseases.
Collapse
Affiliation(s)
- Minju Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Yongsan-gu, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
27
|
Martinez VD, Vucic EA, Becker-Santos DD, Gil L, Lam WL. Arsenic exposure and the induction of human cancers. J Toxicol 2011; 2011:431287. [PMID: 22174709 PMCID: PMC3235889 DOI: 10.1155/2011/431287] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/25/2011] [Accepted: 08/25/2011] [Indexed: 12/21/2022] Open
Abstract
Arsenic is a metalloid, that is, considered to be a human carcinogen. Millions of individuals worldwide are chronically exposed through drinking water, with consequences ranging from acute toxicities to development of malignancies, such as skin and lung cancer. Despite well-known arsenic-related health effects, the molecular mechanisms involved are not fully understood; however, the arsenic biotransformation process, which includes methylation changes, is thought to play a key role. This paper explores the relationship of arsenic exposure with cancer development and summarizes current knowledge of the potential mechanisms that may contribute to the neoplastic processes observed in arsenic exposed human populations.
Collapse
Affiliation(s)
- Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Emily A. Vucic
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Daiana D. Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | - Lionel Gil
- Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia 1027, 8380453 Santiago, Chile
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| |
Collapse
|
28
|
Increased frequency of CpG island methylator phenotype and CDH1 methylation in a gastric cancer high-risk region of china. Transl Oncol 2011; 1:28-35. [PMID: 18607505 DOI: 10.1593/tlo.07103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 07/02/2007] [Accepted: 07/23/2007] [Indexed: 12/13/2022] Open
Abstract
This study aimed to profile the methylation statuses of CDH1/E-cadherin and five CpG island methylator phenotype (CIMP)-associated genes (p16, hMLH1, MINT1, MINT2, and MINT31) in gastric specimens of 47 Dalian long-term residents with and 31 without gastric cancers (GCs). CIMP patterns were classified as CIMP-H with over three methylated genes, CIMP-L with one to two methylated genes, and CIMP-N without methylation. Of 47 GC cases, 24 (51.1%) were CIMP-H, 18 (38.3%) were CIMP-L, and 5 (10.6%) were CIMP-N, whereas 5 of 21 (23.8%) premalignant lesions were CIMP-H and 15 (71.4%) were CIMP-L. CIMP-L was found in 75% (12/16) of GC-adjacent mucosa and in 38.7% (12/31) of mucosa from GC-free patients. CDH1 methylation occurred in 48.9% (23/47) of cancer, in 23.8% (5/21) of premalignant, and in 25% (4/16) of noncancerous tissues and was correlated with patients' age (P = .01), lymph node metastasis, and CIMP severity (P = .000-.028). Our results demonstrated that the frequencies of CIMP-H in Dalian GCs, CIMP-L, and p16 methylation in GC-adjacent tissues and in GC-free mucosa were much higher than those reported previously, indicating the elevated methylation pressure in this GC high-risk region. The close correlation between CDH1 methylation and CIMP severity suggests the necessity of their combination in GC prevention and earlier diagnosis.
Collapse
|
29
|
Yang M. A current global view of environmental and occupational cancers. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2011; 29:223-249. [PMID: 21929381 DOI: 10.1080/10590501.2011.601848] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This review is focused on current information of avoidable environmental pollution and occupational exposure as causes of cancer. Approximately 2% to 8% of all cancers are thought to be due to occupation. In addition, occupational and environmental cancers have their own characteristics, e.g., specific chemicals and cancers, multiple factors, multiple causation and interaction, or latency period. Concerning carcinogens, asbestos/silica/wood dust, soot/polycyclic aromatic hydrocarbons [benzo(a) pyrene], heavy metals (arsenic, chromium, nickel), aromatic amines (4-aminobiphenyl, benzidine), organic solvents (benzene or vinyl chloride), radiation/radon, or indoor pollutants (formaldehyde, tobacco smoking) are mentioned with their specific cancers, e.g., lung, skin, and bladder cancers, mesothelioma or leukemia, and exposure routes, rubber or pigment manufacturing, textile, painting, insulation, mining, and so on. In addition, nanoparticles, electromagnetic waves, and climate changes are suspected as future carcinogenic sources. Moreover, the aspects of environmental and occupational cancers are quite different between developing and developed countries. The recent follow-up of occupational cancers in Nordic countries shows a good example for developed countries. On the other hand, newly industrializing countries face an increased burden of occupational and environmental cancers. Developing countries are particularly suffering from preventable cancers in mining, agriculture, or industries without proper implication of safety regulations. Therefore, industrialized countries are expected to educate and provide support for developing countries. In addition, citizens can encounter new environmental and occupational carcinogen nominators such as nanomaterials, electromagnetic wave, and climate exchanges. As their carcinogenicity or involvement in carcinogenesis is not clearly unknown, proper consideration for them should be taken into account. For these purposes, new technologies with a balance of environment and gene are required. Currently, various approaches with advanced technologies--genomics, exposomics, etc.--have accelerated development of new biomarkers for biological monitoring of occupational and environmental carcinogens. These advanced approaches are promising to improve quality of life and to prevent occupational and environmental cancers.
Collapse
Affiliation(s)
- Mihi Yang
- College of Pharmacy, Sookmyung Women's University, Chungpa-Dong, Yongsan-Gu, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 2011; 31:363-73. [PMID: 21256208 DOI: 10.1016/j.reprotox.2010.12.055] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 11/24/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
This review summarizes recent evidence that prenatal exposure to diverse environmental chemicals dysregulates the fetal epigenome, with potential consequences for subsequent developmental disorders and disease manifesting in childhood, over the lifecourse, or even transgenerationally. The primordial germ cells, embryo, and fetus are highly susceptible to epigenetic dysregulation by environmental chemicals, which can thereby exert multiple adverse effects. The data reviewed here on environmental contaminants have potential implications for risk assessment although more data are needed on individual susceptibility to epigenetic alterations and their persistence before this information can be used in formal risk assessments. The findings discussed indicate that identification of environmental chemicals that dysregulate the prenatal epigenome should be a priority in health research and disease prevention.
Collapse
Affiliation(s)
- Frederica Perera
- Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States.
| | | |
Collapse
|
31
|
Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:11-9. [PMID: 20682481 PMCID: PMC3018488 DOI: 10.1289/ehp.1002114] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/02/2010] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. OBJECTIVE We examined the evidence supporting the roles of the three major epigenetic mechanisms-DNA methylation, histone modification, and microRNA (miRNA) expression-in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. DATA SOURCES AND SYNTHESIS We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. CONCLUSIONS Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements.
Collapse
Affiliation(s)
- Xuefeng Ren
- Division of Environmental Health Sciences, School of Public Health, University of California–Berkeley, Berkeley, California 94720, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Rossman TG, Klein CB. Genetic and epigenetic effects of environmental arsenicals. Metallomics 2011; 3:1135-41. [DOI: 10.1039/c1mt00074h] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
34
|
Vlaanderen J, Moore LE, Smith MT, Lan Q, Zhang L, Skibola CF, Rothman N, Vermeulen R. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occup Environ Med 2009; 67:136-43. [PMID: 19933307 DOI: 10.1136/oem.2008.042788] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OMICS technologies are relatively new biomarker discovery tools that can be applied to study large sets of biological molecules. Their application in human observational studies (HOS) has become feasible in recent years due to a spectacular increase in the sensitivity, resolution and throughput of OMICS-based assays. Although, the number of OMICS techniques is ever expanding, the five most developed OMICS technologies are genotyping, transcriptomics, epigenomics, proteomics and metabolomics. These techniques have been applied in HOS to various extents. However, their application in occupational environmental health (OEH) research has been limited. Here, we will discuss the opportunities these new techniques provide for OEH research. In addition we will address difficulties and limitations to the interpretation of the data that is generated by OMICS technologies. To illustrate the current status of the application of OMICS in OEH research, we will provide examples of studies that used OMICS technologies to investigate human health effects of two well-known toxicants, benzene and arsenic.
Collapse
Affiliation(s)
- J Vlaanderen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, University Utrecht, Po Box 80178, 3508 TD, Utrecht, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Schuhmacher–Wolz U, Dieter HH, Klein D, Schneider K. Oral exposure to inorganic arsenic: evaluation of its carcinogenic and non-carcinogenic effects. Crit Rev Toxicol 2009; 39:271-98. [DOI: 10.1080/10408440802291505] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Abstract
RASSF1A (Ras association domain family 1 isoform A) is a recently discovered tumor suppressor whose inactivation is implicated in the development of many human cancers. Although it can be inactivated by gene deletion or point mutations, the most common contributor to loss or reduction of RASSF1A function is transcriptional silencing of the gene by inappropriate promoter methylation. This epigenetic mechanism can inactivate numerous tumor suppressors and is now recognized as a major contributor to the development of cancer. RASSF1A lacks apparent enzymatic activity but contains a Ras association (RA) domain and is potentially an effector of the Ras oncoprotein. RASSF1A modulates multiple apoptotic and cell cycle checkpoint pathways. Current evidence supports the hypothesis that it serves as a scaffold for the assembly of multiple tumor suppressor complexes and may relay pro-apoptotic signaling by K-Ras.
Collapse
Affiliation(s)
- Howard Donninger
- Molecular Targets Group, Department of Medicine, J. G. Brown Cancer Center, University of Louisville, 119C Baxter Boulevard, 580 S. Preston Street, Louisville, KY 40202, USA
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Meredith Tennis
- Veterans Administration Medical Center, Denver, Colorado, USA
| | | | | |
Collapse
|
38
|
van der Weyden L, Adams DJ. The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta Rev Cancer 2007; 1776:58-85. [PMID: 17692468 PMCID: PMC2586335 DOI: 10.1016/j.bbcan.2007.06.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 06/26/2007] [Accepted: 06/26/2007] [Indexed: 12/13/2022]
Abstract
Ras proteins play a direct causal role in human cancer with activating mutations in Ras occurring in approximately 30% of tumours. Ras effectors also contribute to cancer, as mutations occur in Ras effectors, notably B-Raf and PI3-K, and drugs blocking elements of these pathways are in clinical development. In 2000, a new Ras effector was identified, RAS-association domain family 1 (RASSF1), and expression of the RASSF1A isoform of this gene is silenced in tumours by methylation of its promoter. Since methylation is reversible and demethylating agents are currently being used in clinical trials, detection of RASSF1A silencing by promoter hypermethylation has potential clinical uses in cancer diagnosis, prognosis and treatment. RASSF1A belongs to a new family of RAS effectors, of which there are currently 8 members (RASSF1-8). RASSF1-6 each contain a variable N-terminal segment followed by a Ras-association (RA) domain of the Ral-GDS/AF6 type, and a specialised coiled-coil structure known as a SARAH domain extending to the C-terminus. RASSF7-8 contain an N-terminal RA domain and a variable C-terminus. Members of the RASSF family are thought to function as tumour suppressors by regulating the cell cycle and apoptosis. This review will summarise our current knowledge of each member of the RASSF family and in particular what role they play in tumourigenesis, with a special focus on RASSF1A, whose promoter methylation is one of the most frequent alterations found in human tumours.
Collapse
Affiliation(s)
- Louise van der Weyden
- Experimental Cancer Genetics Laboratory, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK.
| | | |
Collapse
|