1
|
Elexpuru-Zabaleta M, Lazzarini R, Tartaglione MF, Piva F, Ciarapica V, Marinelli Busilacchi E, Poloni A, Valentino M, Santarelli L, Bracci M. A 50 Hz magnetic field influences the viability of breast cancer cells 96 h after exposure. Mol Biol Rep 2023; 50:1005-1017. [PMID: 36378418 PMCID: PMC9889515 DOI: 10.1007/s11033-022-08069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The exposure of breast cancer to extremely low frequency magnetic fields (ELF-MFs) results in various biological responses. Some studies have suggested a possible cancer-enhancing effect, while others showed a possible therapeutic role. This study investigated the effects of in vitro exposure to 50 Hz ELF-MF for up to 24 h on the viability and cellular response of MDA-MB-231 and MCF-7 breast cancer cell lines and MCF-10A breast cell line. METHODS AND RESULTS The breast cell lines were exposed to 50 Hz ELF-MF at flux densities of 0.1 mT and 1.0 mT and were examined 96 h after the beginning of ELF-MF exposure. The duration of 50 Hz ELF-MF exposure influenced the cell viability and proliferation of both the tumor and nontumorigenic breast cell lines. In particular, short-term exposure (4-8 h, 0.1 mT and 1.0 mT) led to an increase in viability in breast cancer cells, while long and high exposure (24 h, 1.0 mT) led to a decrease in viability and proliferation in all cell lines. Cancer and normal breast cells exhibited different responses to ELF-MF. Mitochondrial membrane potential and reactive oxygen species (ROS) production were altered after ELF-MF exposure, suggesting that the mitochondria are a probable target of ELF-MF in breast cells. CONCLUSIONS The viability of breast cells in vitro is influenced by ELF-MF exposure at magnetic flux densities compatible with the limits for the general population and for workplace exposures. The effects are apparent after 96 h and are related to the ELF-MF exposure time.
Collapse
Affiliation(s)
- Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011, Santander, Spain
| | - Raffaella Lazzarini
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Maria Fiorella Tartaglione
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Veronica Ciarapica
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Elena Marinelli Busilacchi
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Antonella Poloni
- Section of Hematology, Department of Clinical and Molecular Science, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Matteo Valentino
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy
| | - Lory Santarelli
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy.
| | - Massimo Bracci
- Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy.
| |
Collapse
|
2
|
Yang J, Feng Y, Li Q, Zeng Y. Evidence of the static magnetic field effects on bone-related diseases and bone cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:168-180. [PMID: 36462638 DOI: 10.1016/j.pbiomolbio.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Static magnetic fields (SMFs), magnetic fields with constant intensity and orientation, have been extensively studied in the field of bone biology both fundamentally and clinically as a non-invasive physical factor. A large number of animal experiments and clinical studies have shown that SMFs have effective therapeutic effects on bone-related diseases such as non-healing fractures, bone non-union of bone implants, osteoporosis and osteoarthritis. The maintenance of bone health in adults depends on the basic functions of bone cells, such as bone formation by osteoblasts and bone resorption by osteoclasts. Numerous studies have revealed that SMFs can regulate the proliferation, differentiation, and function of bone tissue cells, including bone marrow mesenchymal stem cells (BMSCs), osteoblasts, bone marrow monocytes (BMMs), osteoclasts, and osteocytes. In this paper, the effects of SMFs on bone-related diseases and bone tissue cells are reviewed from both in vivo studies and in vitro studies, and the possible mechanisms are analyzed. In addition, some challenges that need to be further addressed in the research of SMF and bone are also discussed.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
3
|
Dinčić M, Krstić DZ, Čolović MB, Nešović Ostojić J, Kovačević S, De Luka SR, Djordjević DM, Ćirković S, Brkić P, Todorović J. Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field. Int J Radiat Biol 2018; 94:1062-1071. [PMID: 30238840 DOI: 10.1080/09553002.2018.1518611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE It is considered that exposure to static magnetic fields (SMF) may have both detrimental and therapeutic effect, but the mechanism of SMF influence on the living organisms is not well understood. Since the adenosine triphosphatases (ATPases) and acetylcholinesterase (AChE) are involved in both physiological and pathological processes, the modulation of Na+/K+-ATPase, ecto-ATPases and AChE activities, as well as oxidative stress responses were followed in synaptosomes isolated from rats after chronic exposure toward differently oriented SMF. MATERIAL AND METHODS Wistar albino rats were randomly divided into three experimental groups (six animals per group): Up and Down group - exposed to upward and downward oriented SMF, respectively, and Control group. After 50 days, the rats were sacrificed, and synaptosomes were isolated from the whole rat brain and used for testing the enzyme activities and oxidative stress parameters. RESULTS Chronic exposure to 1 mT SMF significantly increased ATPases, AChE activities, and malondialdehyde (MDA) level in both exposed groups, compared to control values. The significant decrease in synaptosomal catalase activity (1.48 ± 0.17 U/mg protein) induced by exposure to the downward oriented field, compared to those obtained for Control group (2.60 ± 0.29 U/mg protein), and Up group (2.72 ± 0.21 U/mg protein). CONCLUSIONS It could be concluded that chronic exposure to differently oriented SMF increases ATPases and AChE activities in rat synaptosomes. Since brain ATPases and AChE have important roles in the pathogenesis of several neurological diseases, SMF influence on the activity of these enzymes may have potential therapeutic importance.
Collapse
Affiliation(s)
- Marko Dinčić
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Danijela Z Krstić
- b Institute of Medical Chemistry, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Mirjana B Čolović
- c Department of Physical Chemistry , Vinča Institute of Nuclear Sciences, University of Belgrade , Belgrade , Serbia
| | - Jelena Nešović Ostojić
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Sanjin Kovačević
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Silvio R De Luka
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Drago M Djordjević
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| | - Saša Ćirković
- d Institute of Physics , University of Belgrade , Belgrade , Serbia
| | - Predrag Brkić
- e Institute of Physiology, Faculty of Medicine , University of Belgrade , Serbia
| | - Jasna Todorović
- a Institute of Pathological Physiology, Faculty of Medicine , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
4
|
Prasad A, Teh DBL, Blasiak A, Chai C, Wu Y, Gharibani PM, Yang IH, Phan TT, Lim KL, Yang H, Liu X, All AH. Static Magnetic Field Stimulation Enhances Oligodendrocyte Differentiation and Secretion of Neurotrophic Factors. Sci Rep 2017; 7:6743. [PMID: 28751716 PMCID: PMC5532210 DOI: 10.1038/s41598-017-06331-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
The cellular-level effects of low/high frequency oscillating magnetic field on excitable cells such as neurons are well established. In contrast, the effects of a homogeneous, static magnetic field (SMF) on Central Nervous System (CNS) glial cells are less investigated. Here, we have developed an in vitro SMF stimulation set-up to investigate the genomic effects of SMF exposure on oligodendrocyte differentiation and neurotrophic factors secretion. Human oligodendrocytes precursor cells (OPCs) were stimulated with moderate intensity SMF (0.3 T) for a period of two weeks (two hours/day). The differential gene expression of cell activity marker (c-fos), early OPC (Olig1, Olig2. Sox10), and mature oligodendrocyte markers (CNP, MBP) were quantified. The enhanced myelination capacity of the SMF stimulated oligodendrocytes was validated in a dorsal root ganglion microfluidics chamber platform. Additionally, the effects of SMF on the gene expression and secretion of neurotrophic factors- BDNF and NT3 was quantified. We also report that SMF stimulation increases the intracellular calcium influx in OPCs as well as the gene expression of L-type channel subunits-CaV1.2 and CaV1.3. Our findings emphasize the ability of glial cells such as OPCs to positively respond to moderate intensity SMF stimulation by exhibiting enhanced differentiation, functionality as well as neurotrophic factor release.
Collapse
Affiliation(s)
- Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Daniel B Loong Teh
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Agata Blasiak
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Chou Chai
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yang Wu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Payam M Gharibani
- Department of Biomedical Engineering, John Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD, 21205, USA
| | - In Hong Yang
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore.,Department of Biomedical Engineering, John Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD, 21205, USA
| | - Thang T Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Kah Leong Lim
- National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Department of Physiology, 2 Medical Drive, MD9, National University of Singapore, 117593, Singapore, Singapore.,Duke-NUS Medical School. 8 College Road, 169857, Singapore, Singapore
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Angelo H All
- Department of Biomedical Engineering, John Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD, 21205, USA. .,Department of Neurology, John Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Zhukova GV, Goroshinskaya IA, Shikhliarova AI, Kit OI, Kachesova PS, Polozhentsev OE. On the self-dependent effect of metal nanoparticles on malignant tumors. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916030234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Loja T, Stehlikova O, Palko L, Vrba K, Rampl I, Klabusay M. Influence of pulsed electromagnetic and pulsed vector magnetic potential field on the growth of tumor cells. Electromagn Biol Med 2013; 33:190-7. [PMID: 23781986 DOI: 10.3109/15368378.2013.800104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS AND BACKGROUND Tumor diseases cause 20% of deaths in Europe and they are the second most common cause of death and morbidity after cardiovascular diseases. Thus, tumor cells are target of many therapeutic strategies and tumor research is focused on searching more efficient and specific drugs as well as new therapeutic approaches. One of the areas of tumor research is an issue of external fields. In our work, we tested influence of a pulsed electromagnetic field (PEMF) and a hypothetic field of the pulsed vector magnetic potential (PVMP) on the growth of tumor cells; and further the possible growth inhibition effect of the PVMP. METHODS Both unipolar and bipolar PEMF fields of 5 mT and PVMP fields of 0 mT at frequencies of 15 Hz, 125 Hz and 625 Hz were tested on cancer cell lines derived from various types of tumors: CEM/C2 (acute lymphoblastic leukemia), SU-DHL-4 (B-cell lymphoma), COLO-320DM (colorectal adenocarcinoma), MDA-BM-468 (breast adenocarcinoma), and ZR-75-1 (ductal carcinoma). Cell morphology was observed, proliferation activity using WST assay was measured and simultaneous proportion of live, early apoptotic and dead cells was detected using flow cytometry. RESULTS A PEMF of 125 Hz and 625 Hz for 24 h-48 h increased proliferation activity in the 2 types of cancer cell lines used, i.e. COLO-320DM and ZR-75-1. In contrast, any of employed methods did not confirm a significant inhibitory effect of hypothetic PVMP field on tumor cells.
Collapse
Affiliation(s)
- Tomas Loja
- Masaryk Memorial Cancer Institute , Brno , Czech Republic
| | | | | | | | | | | |
Collapse
|
7
|
Shen LK, Huang HM, Yang PC, Huang YK, Wang PDY, Leung TK, Chen CJ, Chang WJ. A static magnetic field attenuates lipopolysaccharide-induced neuro-inflammatory response via IL-6-mediated pathway. Electromagn Biol Med 2013; 33:132-8. [PMID: 23781996 DOI: 10.3109/15368378.2013.794734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An effective method for controlling brain damage and neurodegeneration caused by inflammation remains elusive. Down-expression of the lipopolysaccharide (LPS)-induced inflammatory cytokines resulting in endotoxin tolerance is reported as an alternative anti-infection treatment. Nonetheless, because the dosage and action site are hard to control, endotoxin tolerance caused by low-dose LPS injection in brain tissue may induce side effects. The aim of this study was to test the hypothesis that static magnetic fields (SMF) stimulate endotoxin tolerance in brain tissue. In this study, survival rate and pathological changes in brain tissues of LPS-challenged mice were examined with and without SMF treatment. In addition, the effects of SMF exposure on growth rate and cytokine expression of LPS-challenged BV-2 microglia cells were monitored. Our results showed that SMF pre-exposure had positive effects on the survival rate and histological outcomes of LPS-treated mice. Furthermore, SMF exposure significantly decreased IL-6 expression in BV-2 cells (p < 0.05) by a phenomenon similar to endotoxin tolerance. We suggest that SMF has potential as an alternative simulation source for controlling LPS-induced excess neuro-inflammatory response.
Collapse
Affiliation(s)
- Li-Kuo Shen
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University , New Taipei City , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gene expression profile analysis in cultured human neuronal cells after static magnetic stimulation. BIOCHIP JOURNAL 2012. [DOI: 10.1007/s13206-012-6308-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Nichols TW. Mitochondria of mice and men: Moderate magnetic fields in obesity and fatty liver. Med Hypotheses 2012; 79:287-93. [DOI: 10.1016/j.mehy.2012.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 04/05/2012] [Accepted: 05/02/2012] [Indexed: 01/11/2023]
|
10
|
Polidori E, Zeppa S, Potenza L, Martinelli C, Colombo E, Casadei L, Agostini D, Sestili P, Stocchi V. Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field. Bioelectromagnetics 2011; 33:65-74. [PMID: 21755520 DOI: 10.1002/bem.20686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 04/27/2011] [Indexed: 01/28/2023]
Abstract
In a previous investigation we reported that exposure to a moderate (300 mT) static magnetic field (SMF) causes transient DNA damage and promotes mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs). To better understand the response of HUVECs to the 300 mT SMF, a high-quality subtracted cDNA library representative of genes induced in cells after 4 h of static magnetic exposure was constructed. The global gene expression profile showed that several genes were induced after the SMF exposure. The characterized clones are involved in cell metabolism, energy, cell growth/division, transcription, protein synthesis, destination and storage, membrane injury, DNA damage/repair, and oxidative stress response. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed at 4 and 24 h on four selected genes. Their expression profiles suggest that HUVEC's response to SMF exposure is transient. Furthermore, compared to control cells, an up-regulation of several genes involved in cell growth and division was observed. This up-regulation is likely to be the cause of the slight, but significant, increase in cell proliferation at 12 h post-treatment. These results provide additional support to the notion that SMFs may be harmless to human health, and could support the rationale for their possible use in medical treatments.
Collapse
Affiliation(s)
- Emanuela Polidori
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cerella C, Cordisco S, Albertini MC, Accorsi A, Diederich M, Ghibelli L. Magnetic fields promote a pro-survival non-capacitative Ca2+ entry via phospholipase C signaling. Int J Biochem Cell Biol 2010; 43:393-400. [PMID: 21095240 DOI: 10.1016/j.biocel.2010.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 11/28/2022]
Abstract
The ability of magnetic fields (MFs) to promote/increase Ca(2+) influx into cells is widely recognized, but the underlying mechanisms remain obscure. Here we analyze how static MFs of 6 mT modulates thapsigargin-induced Ca(2+) movements in non-excitable U937 monocytes, and how this relates to the anti-apoptotic effect of MFs. Magnetic fields do not affect thapsigargin-induced Ca(2+) mobilization from endoplasmic reticulum, but significantly increase the resulting Ca(2+) influx; this increase requires intracellular signal transduction actors including G protein, phospholipase C, diacylglycerol lipase and nitric oxide synthase, and behaves as a non-capacitative Ca(2+) entry (NCCE), a type of influx with an inherent signaling function, rather than a capacitative Ca(2+) entry (CCE). All treatments abrogating the extra Ca(2+) influx also abrogate the anti-apoptotic effect of MFs, demonstrating that MF-induced NCCE elicits an anti-apoptotic survival pathway.
Collapse
Affiliation(s)
- Claudia Cerella
- Dipartimento di Biologia, Universita' degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica snc, 00133 Roma, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Wang Z, Che PL, Du J, Ha B, Yarema KJ. Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385. PLoS One 2010; 5:e13883. [PMID: 21079735 PMCID: PMC2975637 DOI: 10.1371/journal.pone.0013883] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Accepted: 10/18/2010] [Indexed: 12/20/2022] Open
Abstract
Background This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A2A receptor (A2AR) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD). Methodology and Principal Findings SMF reproduced several responses elicited by ZM241385, a selective A2AR antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A2AR agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A2AR, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth. Conclusions and Significance When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Pao-Lin Che
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jian Du
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Barbara Ha
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
It is becoming evident that failure in the removal of dying cells causes and/or promotes the onset of chronic diseases. Impairment of phagocytosis of apoptotic cells can be due not only to genetic or molecular malfunctioning but also to external/environmental factors. Two of these environmental factors have been recently reported to down regulate the clearance of apoptotic cells: cigarette smoke and static magnetic fields. Cigarette smoke contains highly reactive carbonyls that modify proteins which directly/indirectly affects cellular function. Human macrophages interacting with carbonyl or cigarette smoke modified extracellular matrix (ECM) proteins dramatically down regulated their ability to phagocytose apoptotic neutrophils. It was postulated that changes in the ECM environment as a result of cigarette smoke affect the ability of macrophages to remove apoptotic cells. This decreased phagocytic activity was as a result of sequestration of receptors involved in the uptake of apoptotic cells towards that of recognition of carbonyl adducts on the modified ECM proteins leading to increased macrophage adhesion. Downregulation of the phagocytosis of apoptotic cells was also described when performed in presence of static magnetic fields (SMFs) of moderate intensity. SMFs have been reported to perturb distribution of membrane proteins and glycoproteins, receptors, cytoskeleton and trans-membrane fluxes of different ions, especially calcium [Ca(2+)]i, that in turn, interfere with many different physiological activities, including phagocytosis. The effects of cigarette smoke and SMF on the phagocytosis of dying cells will be here discussed.
Collapse
Affiliation(s)
- Luciana Dini
- Department Biological and Environmental Science and Technology, University of the Salento, Lecce, Italy.
| |
Collapse
|
14
|
Mechanisms of geomagnetic field influence on gene expression using influenza as a model system: basics of physical epidemiology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:938-65. [PMID: 20617011 PMCID: PMC2872305 DOI: 10.3390/ijerph7030938] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/14/2010] [Accepted: 02/22/2010] [Indexed: 11/16/2022]
Abstract
Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF). Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY) are "epigenetic sensors" of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-kappaB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-kappaB, hormones and other biological regulators. Notably, NF-kappaB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example-geomagnetic field), MF-mediated regulation may have epidemiological and other consequences.
Collapse
|
15
|
Wang Z, Sarje A, Che PL, Yarema KJ. Moderate strength (0.23-0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 2009; 10:356. [PMID: 19653909 PMCID: PMC2907690 DOI: 10.1186/1471-2164-10-356] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 08/04/2009] [Indexed: 12/18/2022] Open
Abstract
Background Compelling evidence exists that magnetic fields modulate living systems. To date, however, rigorous studies have focused on identifying the molecular-level biosensor (e.g., radical ion pairs or membranes) or on the behavior of whole animals leaving a gap in understanding how molecular effects are translated into tissue-wide and organism-level responses. This study begins to bridge this gulf by investigating static magnetic fields (SMF) through global mRNA profiling in human embryonic cells coupled with software analysis to identify the affected signaling pathways. Results Software analysis of gene expression in cells exposed to 0.23–0.28 T SMF showed that nine signaling networks responded to SMF; of these, detailed biochemical validation was performed for the network linked to the inflammatory cytokine IL-6. We found the short-term (<24 h) activation of IL-6 involved the coordinate up-regulation of toll-like receptor-4 (TLR4) with complementary changes to NEU3 and ST3GAL5 that reduced ganglioside GM3 in a manner that augmented the activation of TLR4 and IL-6. Loss of GM3 also provided a plausible mechanism for the attenuation of cellular responses to SMF that occurred over longer exposure periods. Finally, SMF-mediated responses were manifest at the cellular level as morphological changes and biochemical markers indicative of pre-oligodendrocyte differentiation. Conclusion This study provides a framework describing how magnetic exposure is transduced from a plausible molecular biosensor (lipid membranes) to cell-level responses that include differentiation toward neural lineages. In addition, SMF provided a stimulus that uncovered new relationships – that exist even in the absence of magnetic fields – between gangliosides, the time-dependent regulation of IL-6 signaling by these glycosphingolipids, and the fate of embryonic cells.
Collapse
Affiliation(s)
- Zhiyun Wang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| | | | | | | |
Collapse
|