1
|
Martins AF, Dias DM, Morfin JF, Lacerda S, Laurents DV, Tóth É, Geraldes CFGC. Interaction of PiB-Derivative Metal Complexes with Beta-Amyloid Peptides: Selective Recognition of the Aggregated Forms. Chemistry 2015; 21:5413-22. [DOI: 10.1002/chem.201406152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 01/03/2023]
|
2
|
Ansciaux E, Burtea C, Laurent S, Crombez D, Nonclercq D, Vander Elst L, Muller RN. In vitro and in vivo characterization of several functionalized ultrasmall particles of iron oxide, vectorized against amyloid plaques and potentially able to cross the blood-brain barrier: toward earlier diagnosis of Alzheimer's disease by molecular imag. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:211-24. [DOI: 10.1002/cmmi.1626] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/13/2014] [Accepted: 08/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Emilie Ansciaux
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
| | - Deborah Crombez
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
| | - Denis Nonclercq
- Laboratory of Histology; University of Mons; Pentagon - 1B, 6 Avenue du Champ de Mars B-7000 Mons Belgium
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
| | - Robert N. Muller
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory; University of Mons; Avenue Maistriau 19, Mendeleev Building B-7000 Mons Belgium
- Center for Microscopy and Molecular Imaging; 8, rue Adrienne Bolland 6041 Gosselies Belgium
| |
Collapse
|
3
|
Laurent S, Ejtehadi MR, Rezaei M, Kehoe PG, Mahmoudi M. Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease. RSC Adv 2012. [DOI: 10.1039/c2ra01374f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
4
|
Yang DJ, Shi S, Yao TM, Ji LN. The Impacts of Hg(II) Tightly Binding on the Alzheimer’s Tau Construct R3: Misfolding and Aggregation. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2011. [DOI: 10.1246/bcsj.20110133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
5
|
Effects of brain amyloid deposition and reduced glucose metabolism on the default mode of brain function in normal aging. J Neurosci 2011; 31:11193-9. [PMID: 21813680 DOI: 10.1523/jneurosci.2535-11.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brain β-amyloid (Aβ) deposition during normal aging is highlighted as an initial pathogenetic event in the development of Alzheimer's disease. Many recent brain imaging studies have focused on areas deactivated during cognitive tasks [the default mode network (DMN), i.e., medial frontal gyrus/anterior cingulate cortex and precuneus/posterior cingulate cortex], where the strength of functional coordination was more or less affected by cerebral Aβ deposits. In the present positron emission tomography study, to investigate whether regional glucose metabolic alterations and Aβ deposits seen in nondemented elderly human subjects (n = 22) are of pathophysiological importance in changes of brain hemodynamic coordination in DMN during normal aging, we measured cerebral glucose metabolism with [(18)F]FDG, Aβ deposits with [(11)C]PIB, and regional cerebral blood flow during control and working memory tasks by H(2)(15)O on the same day. Data were analyzed using both region of interest and statistical parametric mapping. Our results indicated that the amount of Aβ deposits was negatively correlated with hemodynamic similarity between medial frontal and medial posterior regions, and the lower similarity was associated with poorer working memory performance. In contrast, brain glucose metabolism was not related to this medial hemodynamic similarity. These findings suggest that traceable Aβ deposition, but not glucose hypometabolism, in the brain plays an important role in occurrence of neuronal discoordination in DMN along with poor working memory in healthy elderly people.
Collapse
|
6
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
7
|
Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J. Proteomic research in psychiatry. J Psychopharmacol 2011; 25:151-96. [PMID: 20142298 DOI: 10.1177/0269881109106931] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychiatric disorders such as Alzheimer's disease, schizophrenia and mood disorders are severe and disabling conditions of largely unknown origin and poorly understood pathophysiology. An accurate diagnosis and treatment of these disorders is often complicated by their aetiological and clinical heterogeneity. In recent years proteomic technologies based on mass spectrometry have been increasingly used, especially in the search for diagnostic and prognostic biomarkers in neuropsychiatric disorders. Proteomics enable an automated high-throughput protein determination revealing expression levels, post-translational modifications and complex protein-interaction networks. In contrast to other methods such as molecular genetics, proteomics provide the opportunity to determine modifications at the protein level thereby possibly being more closely related to pathophysiological processes underlying the clinical phenomenology of specific psychiatric conditions. In this article we review the theoretical background of proteomics and its most commonly utilized techniques. Furthermore the current impact of proteomic research on diverse psychiatric diseases, such as Alzheimer's disease, schizophrenia, mood and anxiety disorders, drug abuse and autism, is discussed. Proteomic methods are expected to gain crucial significance in psychiatric research and neuropharmacology over the coming decade.
Collapse
Affiliation(s)
- Regina Taurines
- Academic Unit of Psychiatry, The School of Medicine, Institute of Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Palmer J, Love S. Endothelin receptor antagonists: potential in Alzheimer's disease. Pharmacol Res 2010; 63:525-31. [PMID: 21193044 DOI: 10.1016/j.phrs.2010.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is believed to be initiated by the accumulation of neurotoxic forms of Aβ peptide within the brain. AD patients show reduction of cerebral blood flow (CBF), the extent of the reduction correlating with the impairment of cognition. There is evidence that cerebral hypoperfusion precedes and may even trigger the onset of dementia in AD. Cerebral hypoperfusion impairs neuronal function, reduces the clearance of Aβ peptide and other toxic metabolites from the brain, and upregulates Aβ production. Studies in animal models of AD have shown the reduction in CBF to be more than would be expected for the reduction in neuronal metabolic activity. Aβ may contribute to the reduction in CBF in AD, as both Aβ₁₋₄₀ and Aβ₁₋₄₂ induce cerebrovascular dysfunction. Aβ₁₋₄₀ acts directly on cerebral arteries to cause cerebral smooth muscle cell contraction. Aβ₁₋₄₂ causes increased neuronal production and release of endothelin-1 (ET-1), a potent vasoconstrictor, and upregulation of endothelin-converting enzyme-2 (ECE-2), the enzyme which cleaves ET-1 from its inactive precursor. ET-1 and ECE-2 are also elevated in AD, making it likely that upregulation of the ECE-2-ET-1 axis by Aβ₁₋₄₂ contributes to the chronic reduction of CBF in AD. At present, only a few symptomatic treatment options exist for AD. The involvement of ET-1 in the pathogenesis of endothelial dysfunction associated with elevated Aβ indicates the potential for endothelin receptor antagonists in the treatment of AD. It has already been demonstrated that the endothelin receptor antagonist bosentan, preserves aortic and carotid endothelial function in Tg2576 mice, and our findings suggest that endothelin receptor antagonists may be beneficial in maintaining CBF in AD.
Collapse
Affiliation(s)
- Jennifer Palmer
- Dementia Research Group, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Bristol BS16 1LE, United Kingdom.
| | | |
Collapse
|
9
|
Yang DJ, Shi S, Zheng LF, Yao TM, Ji LN. Mercury(II) promotes the in vitro aggregation of tau fragment corresponding to the second repeat of microtubule-binding domain: Coordination and conformational transition. Biopolymers 2010; 93:1100-7. [PMID: 20665688 DOI: 10.1002/bip.21527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The loss of metal homeostasis and the toxic effect of metal ion are important events in neurodegenerative and age-related diseases, such as Alzheimer's disease (AD). For the first time, we investigated the impacts of mercury(II) ions on the folding and aggregation of Alzheimer's tau fragment R2 (residues 275-305: VQIIN KKLDL SNVQS KCGSK DNIKH VPGGGS), corresponding to the second repeat unit of the microtubule-binding domain, which was believed to be pivotal to the biochemical properties of full tau protein. By ThS fluorescence assay and electron microscopy, we found that mercury(II) dramatically promoted heparin-induced aggregation of R2 at an optimum molar ratio of 1: 2 (metal: protein), and the resulting R2 filaments became smaller. Isothermal titration calorimetry (ITC) experiment revealed that the strong coordination of mercury(II) with R2 was an enthalpy-controlled, entropy-decreased thermodynamic process. The exceptionally large magnitude of heat release (ΔH₁ = -34.8 Kcal mol⁻¹) suggested that the most possible coordinating site on the R2 peptide chain was the thiol group of cysteine residue (Cys291), and this was further confirmed by a control experiment using Cys291 mutated R2. Circular dichroism spectrum demonstrated that this peptide underwent a significant conformational change from random coil to β-turn structure upon its binding to mercury(II) ion. This study was undertaken to better understand the mechanism of tau aggregation, and evaluate the possible role of mercury(II) in the pathogenesis of AD.
Collapse
Affiliation(s)
- Dan-Jing Yang
- Department of Chemistry, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
10
|
Inouye H, Gleason KA, Zhang D, Decatur SM, Kirschner DA. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2). Proteins 2010; 78:2306-21. [PMID: 20544966 DOI: 10.1002/prot.22743] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation.
Collapse
Affiliation(s)
- Hideyo Inouye
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
11
|
Han LJ, Shi S, Zheng LF, Yang DJ, Yao TM, Ji LN. Flavonoids Inhibit Heparin-Induced Aggregation of the Third Repeat (R3) of Microtubule-Binding Domain of Alzheimer’s Tau Protein. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Montalto MC, Cartwright G. From the incandescent light bulb to digital pathology: corporate innovation as an engine for change. Arch Pathol Lab Med 2009; 133:550-2. [PMID: 19391649 DOI: 10.5858/133.4.550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 11/06/2022]
|
13
|
Silvestri R. Boom in the development of non-peptidic β-secretase (BACE1) inhibitors for the treatment of Alzheimer's disease. Med Res Rev 2009; 29:295-338. [DOI: 10.1002/med.20132] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
14
|
Verhoeff NPLG. Amyloid imagingin vivo: implications for Alzheimer's disease management. ACTA ACUST UNITED AC 2007; 1:337-49. [DOI: 10.1517/17530059.1.3.337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN. Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau fragment corresponding to the third repeat of microtubule-binding domain. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1774:1414-21. [PMID: 17920001 DOI: 10.1016/j.bbapap.2007.08.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 08/10/2007] [Accepted: 08/15/2007] [Indexed: 11/26/2022]
Abstract
Environmental exposure to some heavy metals such as cadmium appears to be a risk factor for Alzheimer's disease (AD), however, definite mechanism of their toxicity in AD remains to be elucidated. Previous studies largely focused on the metal ions binding to beta-amyloid, however, very few papers concerned the interaction between tau and metal ions. For the first time, we investigated the impacts of Cd(II) on the conformation and self-aggregation of Alzheimer's tau peptide R3, corresponding to the third repeat of microtubule-binding domain. The initial state of R3 was proven to be dimeric linked by intermolecular disulfide bond, in the non-reducing buffer (Tris-HCl buffer pH7.5, containing no reducing reagent). In this paper, we show that Cd(II) can accelerate heparin-induced aggregation of R3 or independently induce the aggregation of R3, as monitored by ThS fluorescence. In the presence of Cd(II), the resulting R3 filaments became much smaller, as revealed by electron microscopy. Binding to the Cd(II) ion, the dimeric R3 partially lost its random coil, and converted to alpha-helix structure, as revealed by CD and Raman spectrum. Stoichiometric analysis of CD signal against the ratio of [Cd(II)]/[R3] suggested that the coordination intermediate consisted of two R3 dimers binding to a central cadmium ion. As the seed, the coordination intermediate could extensively accelerate the self-aggregation of R3 via promoting the nucleation step. On the other hand, gain in alpha-helix structure on the peptide chain, by coordinating with Cd(II), could be a critical role to promote self-aggregation, as revealed by Raman spectrum. These results provide a further insight into the mechanism of tau filament formation and emphasize the possible involvement of Cd(II) in the pathogenesis of AD.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- Department of Chemistry, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|