1
|
Moshari-Nasirkandi A, Iaccarino N, Romano F, Graziani G, Alirezalu A, Alipour H, Amato J. Chemometrics-based analysis of the phytochemical profile and antioxidant activity of Salvia species from Iran. Sci Rep 2024; 14:17317. [PMID: 39068233 PMCID: PMC11283568 DOI: 10.1038/s41598-024-68421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
In recent years, the exploration of the therapeutic potential of Salvia has gained considerable attention, leading to a growing number of scientific studies emphasizing its pharmacological properties. Despite this, therapeutic applications of Salvia remain underexploited, requiring further investigation. Iran is a major center for sage diversity in Asia, boasting 60 Salvia species, 17 of which are unique to the area. This study aimed to comprehensively explore and compare the extracts of 102 Salvia samples belonging to 20 distinct Salvia species from Iran, providing a deeper understanding of their specific polyphenol content and, consequently, their antioxidant capabilities and potential therapeutic uses. All samples were analyzed to determine the contents of total phenolics, total flavonoids, total tannin, photosynthetic pigments, and ascorbic acid, along with their antioxidant activity. These data were then combined with the forty distinct chemical fingerprints identified by ultrafast high-pressure liquid chromatography coupled with high-resolution mass spectrometry. Multivariate data analysis was employed to find correlations and differences among the huge number of data obtained and to identify Salvia species with similar phytochemical and/or antioxidant properties. The results show that each Salvia species is characterized by a distinct class of polyphenols recognized for their antidiabetic, anti-inflammatory, cardioprotective and neuroprotective properties. Overall, our findings reveal the potential of some Salvia species for targeted therapeutic applications and provide a rational basis for the development of Salvia-derived nutraceuticals, ultimately improving the prospects for the use of Salvia in medicine.
Collapse
Affiliation(s)
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Abolfazl Alirezalu
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, Urmia, Iran.
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Ford ML, Cooley JM, Sripada V, Xu Z, Erickson JS, Bennett KP, Crawford DR. Eat4Genes: a bioinformatic rational gene targeting app and prototype model for improving human health. Front Nutr 2023; 10:1196520. [PMID: 37305078 PMCID: PMC10250663 DOI: 10.3389/fnut.2023.1196520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction and aims Dietary Rational Gene Targeting (DRGT) is a therapeutic dietary strategy that uses healthy dietary agents to modulate the expression of disease-causing genes back toward the normal. Here we use the DRGT approach to (1) identify human studies assessing gene expression after ingestion of healthy dietary agents with an emphasis on whole foods, and (2) use this data to construct an online dietary guide app prototype toward eventually aiding patients, healthcare providers, community and researchers in treating and preventing numerous health conditions. Methods We used the keywords "human", "gene expression" and separately, 51 different dietary agents with reported health benefits to search GEO, PubMed, Google Scholar, Clinical trials, Cochrane library, and EMBL-EBI databases for related studies. Studies meeting qualifying criteria were assessed for gene modulations. The R-Shiny platform was utilized to construct an interactive app called "Eat4Genes". Results Fifty-one human ingestion studies (37 whole food related) and 96 key risk genes were identified. Human gene expression studies were found for 18 of 41 searched whole foods or extracts. App construction included the option to select either specific conditions/diseases or genes followed by food guide suggestions, key target genes, data sources and links, dietary suggestion rankings, bar chart or bubble chart visualization, optional full report, and nutrient categories. We also present user scenarios from physician and researcher perspectives. Conclusion In conclusion, an interactive dietary guide app prototype has been constructed as a first step towards eventually translating our DRGT strategy into an innovative, low-cost, healthy, and readily translatable public resource to improve health.
Collapse
Affiliation(s)
- Morgan L. Ford
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica M. Cooley
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Veda Sripada
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Zhengwen Xu
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John S. Erickson
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Kristin P. Bennett
- Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer Institute for Data Exploration and Applications, Renssalaer Polytechnic Institute, Troy, NY, United States
| | - Dana R. Crawford
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
3
|
The Impact of Polyphenol on General Nutrient Metabolism in the Monogastric Gastrointestinal Tract. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5952834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyphenols are bioactive compounds occurring in plant foods, which are considered significant owing to their contribution to human health and the prevention of chronic diseases. Phenolic compounds mainly depend on plant food structure and the interaction with other food constituents, mostly proteins, lipids, and carbohydrates. The interaction with the food matrices can obstruct or enhance nutrient accessibility and availability and even impair others. Food digestion is a complex process where ingested foods are converted to nutrients via mechanical and enzymatic alterations. The absorption of nutrients predominantly occurs in the small and large intestine, respectively. The metabolised product, however, is the main bioactive component due to their ability to enter the systemic circulation and reach the targeted organs. There is limited knowledge on the cellular uptake, phenolic metabolite, and polyphenolic effect in the gastrointestinal ecosystem. Therefore, improved understanding of the biological properties and stages of dietary phenols is essential for the effective utilization of their therapeutic potentials. This review will explore, summarise, and collate current information on how polyphenols influence nutrient metabolism, bioavailability, and the biotransformation stages.
Collapse
|
4
|
Haldar S, Chia SC, Lee SH, Lim J, Leow MKS, Chan ECY, Henry CJ. Polyphenol-rich curry made with mixed spices and vegetables benefits glucose homeostasis in Chinese males (Polyspice Study): a dose-response randomized controlled crossover trial. Eur J Nutr 2017; 58:301-313. [PMID: 29236165 DOI: 10.1007/s00394-017-1594-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate acute effects of two doses of a polyphenol-rich curry made with seven different spices and four base vegetables, eaten with white rice, on 24 h glucose response, postprandial insulinemia, triglyceridemia and 24 h urinary total polyphenol excretion (TPE). METHODS Randomized, controlled, dose-response crossover trial in healthy, Chinese men [n = 20, mean ± standard deviation (SD) age 23.7 ± 2.30 years, BMI 23.0 ± 2.31 kg/m2] who consumed test meals matched for calories, macronutrients and total vegetables content, consisting either Dose 0 Control (D0C) or Dose 1 Curry (D1C) or Dose 2 Curry (D2C) meal. 24 h glucose concentration was measured using continuous glucose monitoring (CGM), together with postprandial plasma insulin and triglyceride for up to 7 h. Total polyphenol content (TPC) of test meals and urinary TPE were measured using the Folin-Ciocalteu assay. RESULTS TPC for D0C, D1C and D2C were 130 ± 18, 556 ± 19.7 and 1113 ± 211.6 mg gallic acid equivalent (GAE) per portion served, respectively (p < 0.0001). Compared with D0C meal, we found significant linear dose-response reductions in the 3-h postprandial incremental AUC (iAUC) for CGM glucose of 19% and 32% during D1C and D2C meals respectively (p < 0.05) and non-significant linear dose response reductions in iAUC of insulin (p = 0.089). Notably, we found significant dose-dependent increases in postprandial triglyceride with increasing curry doses (p < 0.01). Significant increases in TPE with increasing curry doses were also observed (p < 0.01). CONCLUSION Polyphenol-rich curry intake can improve postprandial glucose homeostasis. The longer term effects remain to be established.
Collapse
Affiliation(s)
- Sumanto Haldar
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Siok Ching Chia
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Sze Han Lee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Joseph Lim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore
| | - Melvin Khee-Shing Leow
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.,Division of Medicine, Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Eric Chun Yong Chan
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore.,Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, 117609, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Phan MAT, Paterson J, Bucknall M, Arcot J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit Rev Food Sci Nutr 2017; 58:1310-1329. [DOI: 10.1080/10408398.2016.1254595] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Minh Anh Thu Phan
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Janet Paterson
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| | - Martin Bucknall
- Mark Wainwright Analytical Centre, UNSW Australia, Sydney, Australia
| | - Jayashree Arcot
- Food Science and Technology, School of Chemical Engineering, UNSW Sydney, Sydney, Australia
| |
Collapse
|
6
|
Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, Oon CE, Abdul Majid AMS. Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways. Chin J Nat Med 2017; 15:505-514. [DOI: 10.1016/s1875-5364(17)30076-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Indexed: 12/12/2022]
|
7
|
Nieman DC, Ramamoorthy S, Kay CD, Goodman CL, Capps CR, Shue ZL, Heyl N, Grace MH, Lila MA. Influence of Ingesting a Flavonoid-Rich Supplement on the Metabolome and Concentration of Urine Phenolics in Overweight/Obese Women. J Proteome Res 2017. [PMID: 28631923 DOI: 10.1021/acs.jproteome.7b00196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study evaluated the effect of ingesting a flavonoid-rich supplement (329 mg/d) on total urine phenolics and shifts in plasma metabolites in overweight/obese female adults using untargeted metabolomics procedures. Participants (N = 103, 18-65 y, BMI ≥ 25 kg/m2) were randomized to flavonoid (F) or placebo (P) groups for 12 weeks with blood and 24 h urine samples collected prestudy and after 4 and 12 weeks in a parallel design. Supplements were prepared as chewable tablets and included vitamin C, wild bilberry fruit extract, green tea leaf extract, quercetin, caffeine, and omega 3 fatty acids. At 4 weeks, urine total phenolics increased 24% in F versus P with similar changes at 12 weeks (interaction effect, P = 0.041). Groups did not differ in markers of inflammation (IL-6, MCP-1, CRP) or oxidative stress (oxLDL, FRAP). Metabolomics data indicated shifts in 63 biochemicals in F versus P with 70% from the lipid and xenobiotics superpathways. The largest fold changes in F were measured for three gut-derived phenolics including 3-methoxycatechol sulfate, 3-(3-hydroxyphenyl)propanoic acid sulfate, and 1,2,3-benzenetriol sulfate (interaction effects, p ≤ 0.050). This randomized clinical trial of overweight/obese women showed that 12 weeks ingestion of a mixed flavonoid nutrient supplement was associated with a corresponding increase in urine total phenolics and gut-derived phenolic metabolites.
Collapse
Affiliation(s)
- David C Nieman
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | | | - Colin D Kay
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Courtney L Goodman
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Christopher R Capps
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Zack L Shue
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Nicole Heyl
- Human Performance Lab, Appalachian State University , North Carolina Research Campus, Kannapolis, North Carolina 28081, United States
| | - Mary H Grace
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Mary A Lila
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University , North Carolina Research Campus, 600 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
8
|
Wang HL, Sun ZO, Rehman RU, Wang H, Wang YF, Wang H. Rosemary Extract-Mediated Lifespan Extension and Attenuated Oxidative Damage inDrosophila melanogasterFed on High-Fat Diet. J Food Sci 2017; 82:1006-1011. [DOI: 10.1111/1750-3841.13656] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Hua-li Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Zhen-ou Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Rizwan-ur Rehman
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hong Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Yi-fei Wang
- College of Biological Engineering; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| | - Hao Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China; Tianjin Univ. of Science & Technology; Tianjin 300457 China
| |
Collapse
|
9
|
Zmijewski PA, Gao LY, Saxena AR, Chavannes NK, Hushmendy SF, Bhoiwala DL, Crawford DR. Fish oil improves gene targets of Down syndrome in C57BL and BALB/c mice. Nutr Res 2015; 35:440-8. [DOI: 10.1016/j.nutres.2015.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 01/26/2023]
|
10
|
Effects of black adzuki bean (Vigna angularis) extract on proliferation and differentiation of 3T3-L1 preadipocytes into mature adipocytes. Nutrients 2015; 7:277-92. [PMID: 25569623 PMCID: PMC4303839 DOI: 10.3390/nu7010277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
The aim of this work was to investigate the effects of black adzuki bean (BAB) extract on adipocytes, and to elucidate the cellular mechanisms. In order to examine the proliferation of preadipocytes and differentiating adipocytes, cell viability and DNA content were measured over a period of time. Lipid accumulation during cell differentiation and the molecular mechanisms underlying the effects of BAB on the transcriptional factors involved, with their anti-adipogenic effects, were also identified. We observed that BAB exhibits anti-adipogenic effects through the inhibition of proliferation, thereby lowering mRNA expression of C/EBPβ and suppressing adipogenesis during the early stage of differentiation. This, in turn, resulted in a reduction of TG accumulation in a dose- and time-dependent manner. Treating the cells with BAB not only suppressed the adipogenesis-associated key transcription factors PPARγ and C/EBPα but also significantly decreased the mRNA expression of GLUT4, FABP4, LPL and adiponectin. The expression of lipolytic genes like ATGL and HSL were higher in the treatment group than in the control. Overall, the black adzuki bean extract demonstrated an anti-adipogenic property, which makes it a potential dietary supplement for attenuation of obesity.
Collapse
|
11
|
Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J Nutr Biochem 2014; 26:234-40. [PMID: 25488547 DOI: 10.1016/j.jnutbio.2014.10.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/24/2014] [Accepted: 10/16/2014] [Indexed: 01/22/2023]
Abstract
Bitter melon (BM; Momordica charantia) has been used as a treatment method for various diseases including cancer and diabetes. The objective of this study was to investigate whether BM has preventive effects against insulin resistance and diabetes and to identify the underlying mechanism by which BM ameliorates insulin resistance in obese and diabetic rats. The rats were separated into three groups as follows: (a) high-fat (HF) diet control, (b) HF diet and 1% BM and (c) HF diet and 3% BM. After 6 weeks of assigned treatments, body weight and food intake were not altered by BM administration. Bitter melon treatment significantly improved glucose tolerance and insulin sensitivity. The levels of proinflammatory cytokines were significantly down-regulated in liver, muscle and epididymal fats from BM-treated rats. The activation of nuclear factor-κB (NF-κB) in the liver and muscle was decreased by BM compared with HF controls. The 3% BM supplementation significantly increased the levels of phospho-insulin receptor substrate-1 (Tyr612) and phospho-Akt (Ser473). It also significantly decreased the levels of phospho-NF-κB (p65) (Ser536) and phospho-c-Jun N-terminal kinase (JNK) (Thr183/Tyr185) in liver, muscle and epididymal fats. The findings of this study indicate that BM exerted preventive effects against insulin resistance and diabetes through the modulation of NF-κB and JNK pathways. Therefore, BM may be useful in the prevention of insulin resistance and diabetes.
Collapse
|
12
|
Vivienne IN, Uchenna OA, Peace AN, Vivian AC. Anti-Nutrient, Phytochemical and Free Fatty Acid Composition of Dehulled and Undehulled Sweet Princess Watermelon (Citrullus lanatus) Seed Flour. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/pjn.2014.589.592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Falasca M, Casari I, Maffucci T. Cancer chemoprevention with nuts. J Natl Cancer Inst 2014; 106:dju238. [PMID: 25210199 DOI: 10.1093/jnci/dju238] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
It is well established that increased nut consumption is associated with a reduced risk of major chronic diseases, such as cardiovascular disease and type 2 diabetes mellitus. On the other hand, the association between nut consumption and cancer mortality is less clear. Recent studies have suggested that nut consumption is associated with reduced cancer mortality. This evidence reinforces the interest to investigate the chemopreventive properties of nuts, and it raises questions about the specific cancer type(s) and setting that can be more affected by nut consumption, as well as the cellular mechanisms involved in this protective effect. Here we discuss recent studies on the association of nut consumption and cancer, and we propose specific cellular mechanisms by which nut components can affect cancer progression.
Collapse
Affiliation(s)
- Marco Falasca
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group.
| | - Ilaria Casari
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group
| | - Tania Maffucci
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Inositide Signalling Group
| |
Collapse
|
14
|
Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P. The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 2014; 345:1181-4. [PMID: 25190796 DOI: 10.1126/science.1255274] [Citation(s) in RCA: 345] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Coffee is a valuable beverage crop due to its characteristic flavor, aroma, and the stimulating effects of caffeine. We generated a high-quality draft genome of the species Coffea canephora, which displays a conserved chromosomal gene order among asterid angiosperms. Although it shows no sign of the whole-genome triplication identified in Solanaceae species such as tomato, the genome includes several species-specific gene family expansions, among them N-methyltransferases (NMTs) involved in caffeine production, defense-related genes, and alkaloid and flavonoid enzymes involved in secondary compound synthesis. Comparative analyses of caffeine NMTs demonstrate that these genes expanded through sequential tandem duplications independently of genes from cacao and tea, suggesting that caffeine in eudicots is of polyphyletic origin.
Collapse
Affiliation(s)
- France Denoeud
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France
| | - Lorenzo Carretero-Paulet
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA
| | - Alexis Dereeper
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Gaëtan Droc
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Romain Guyot
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Marco Pietrella
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Adriana Alberti
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - François Anthony
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Giuseppe Aprea
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Stéphanie Bocs
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Claudine Campa
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alberto Cenci
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France. Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Marie-Christine Combes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France
| | - Dominique Crouzillat
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | | | - Fabien De Bellis
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Stéphane Dussert
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Olivier Garsmeur
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Thomas Gayraud
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Valentin Guignon
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Katharina Jahn
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada. Center for Biotechnology, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany. AG Genominformatik, Technische Fakultät, Universität Bielefeld, 33594 Bielefeld, Germany
| | - Véronique Jamilloux
- Institut National de la Recherche Agronomique (INRA), Unité de Recherches en Génomique-Info (UR INRA 1164), Centre de Recherche de Versailles, 78026 Versailles Cedex, France
| | - Thierry Joët
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Tianying Lan
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA. Department of Biology, Chongqing University of Science and Technology, 4000042 Chongqing, China
| | - Julie Leclercq
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Maud Lepelley
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Thierry Leroy
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Lei-Ting Li
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pablo Librado
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | | | - Adriana Muñoz
- Department of Mathematics, University of Maryland, Mathematics Building 084, University of Maryland, College Park, MD 20742, USA. School of Electrical Engineering and Computer Science, University of Ottawa, 800 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin Noel
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | | | - Valérie Poncet
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - David Pot
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Priyono
- Indonesian Coffee and Cocoa Institute, Jember, East Java, Indonesia
| | - Michel Rigoreau
- Nestlé Research and Development Centre, 101 Avenue Gustave Eiffel, Notre-Dame-d'Oé, BP 49716, 37097 Tours Cedex 2, France
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier Cedex 5, France
| | - Julio Rozas
- Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, Barcelona 08028, Spain
| | - Christine Tranchant-Dubreuil
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Robert VanBuren
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Qiong Zhang
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Alan C Andrade
- Laboratório de Genética Molecular, Núcleo de Biotecnologia (NTBio), Embrapa Recursos Genéticos e Biotecnologia, Final Av. W/5 Norte, Parque Estação Biológia, Brasília-DF 70770-917, Brazil
| | - Xavier Argout
- CIRAD, UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales (AGAP), F-34398 Montpellier, France
| | - Benoît Bertrand
- CIRAD, UMR RPB (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Alexandre de Kochko
- IRD, UMR Diversité Adaptation et Développement des Plantes (CIRAD, IRD, UM2), BP 64501, 34394 Montpellier Cedex 5, France
| | - Giorgio Graziosi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy. DNA Analytica Srl, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, Australia
| | - Jayarama
- Central Coffee Research Institute, Coffee Board, Coffee Research Station (Post) - 577 117 Chikmagalur District, Karnataka State, India
| | - Ray Ming
- Department of Plant Biology, 148 Edward R. Madigan Laboratory, MC-051, 1201 West Gregory Drive, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chifumi Nagai
- Hawaii Agriculture Research Center, Post Office Box 100, Kunia, HI 96759-0100, USA
| | - Steve Rounsley
- BIO5 Institute, University of Arizona, 1657 Helen Street, Tucson, AZ 85721, USA
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA) Casaccia Research Center, Via Anguillarese 301, 00123 Roma, Italy
| | - Victor A Albert
- Department of Biological Sciences, 109 Cooke Hall, University at Buffalo (State University of New York), Buffalo, NY 14260, USA.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique, Genoscope, Institut de Génomique, BP5706, 91057 Evry, France. CNRS, UMR 8030, CP5706, Evry, France. Université d'Evry, UMR 8030, CP5706, Evry, France.
| | - Philippe Lashermes
- Institut de Recherche pour le Développement (IRD), UMR Résistance des Plantes aux Bioagresseurs (RPB) [Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), IRD, UM2)], BP 64501, 34394 Montpellier Cedex 5, France.
| |
Collapse
|
15
|
Phytochemical constituents, antioxidant properties and p-coumaric acid analysis in some seagrasses. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.01.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Knab AM, Nieman DC, Gillitt ND, Shanely RA, Cialdella-Kam L, Henson D, Sha W, Meaney MP. Effects of a freeze-dried juice blend powder on exercise-induced inflammation, oxidative stress, and immune function in cyclists. Appl Physiol Nutr Metab 2013; 39:381-5. [PMID: 24552382 DOI: 10.1139/apnm-2013-0338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A freeze-dried fruit and vegetable juice powder (JUICE) was investigated as a countermeasure nutritional strategy to exercise-induced inflammation, oxidative stress, and immune perturbations in trained cyclists. Thirty-four cyclists (25 male, 9 female) were randomized to control (nonJUICE) or JUICE for 17 days. JUICE provided 230 mg·day(-1) of flavonoids, doubling the typical adult daily intake. During a 3-d period of intensified exercise (days 15-17), subjects cycled at 70%-75% V̇O2max for 2.25 h per day, followed by a 15-min time trial. Blood samples were collected presupplementation, post supplementation (pre-exercise), and immediately and 14-h post exercise on the third day of exercise. Samples were analyzed for inflammation (interleukin (IL)-6, IL-8; tumor necrosis factor alpha (TNFα); monocyte chemoattractant protein-1 (MCP-1)), oxidative stress (oxygen radical absorbance capacity (ORAC), ferric reducing ability of plasma (FRAP), reduced and oxidized glutathione, protein carbonyls), and innate immune function (granulocyte (G-PHAG) and monocyte (M-PHAG) phagocytosis and oxidative burst activity). A 2 (group) × 4 (time points) repeated measures ANOVA revealed significant time effects due to 3 days of exercise for IL-6 (396% increase), IL-8 (78% increase), TNFα (12% increase), MCP-1 (30% increase), G-PHAG (38% increase), M-PHAG (36% increase), FRAP (12.6% increase), ORAC (11% decrease at 14 h post exercise), and protein carbonyls (82% increase at 14 h post exercise) (p < 0.01). No significant interaction effects were found for any of the physiological measures. Although providing 695 gallic acid equivalents of polyphenols per day, JUICE treatment for 17 days did not change exercise-induced alterations in inflammation and oxidative stress or immune function in trained cyclists after a 3-day period of overreaching.
Collapse
Affiliation(s)
- Amy M Knab
- a Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, 600 Laureate Way, Kannapolis, NC 28081, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abaza MS, Al-Attiyah R, Bhardwaj R, Abbadi G, Koyippally M, Afzal M. Syringic acid from Tamarix aucheriana possesses antimitogenic and chemo-sensitizing activities in human colorectal cancer cells. PHARMACEUTICAL BIOLOGY 2013; 51:1110-1124. [PMID: 23745612 DOI: 10.3109/13880209.2013.781194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
CONTEXT For its variety of biological activities, Tamarix aucheriana (Decne.) Baum. (Tamaricaceae) has an extensive history as a traditional Arab medicine. OBJECTIVES Antimitogenic and chemo-sensitizing activities of syringic acid (SA) were studied against human colorectal cancer. MATERIALS AND METHODS Chromatographic and spectral data were used for the isolation and identification of SA. MTT, flow cytometry, in vitro invasion and angiogenesis assays, fluoremetry, ELISA and Real Time qPCR were used to test antimitogenic and chemo-sensitizing activities of SA, cell cycle, apoptosis, proteasome and NFκB-DNA-binding activities, cancer cell invasion and angiogenesis, and expression of cell cycle/apoptosis-related genes. RESULTS SA showed a time- and dose-dependent (IC₅₀ = 0.95-1.2 mg mL⁻¹) antimitogenic effect against cancer cells with little cytotoxicity on normal fibroblasts (≤20%). SA-altered cell cycle (S/G2-M or G1/G2-M phases) in a time-dependent manner, induced apoptosis, inhibited DNA-binding activity of NFκB (p ≤ 0.0001), chymotrypsin-like/PGPH (peptidyl-glutamyl peptide-hydrolyzing) (p ≤ 0.0001) and the trypsin-like (p ≤ 0.002) activities of 26S proteasome and angiogenesis. SA also differentially sensitized cancer cells to standard chemotherapies with a marked increase in their sensitivity to camptothecin (500-fold), 5FU (20,000-fold), doxorubicin (210-fold), taxol (3134-fold), vinblastine (1000-fold), vincristine (130-fold) and amsacrine (107-fold) compared to standard drugs alone. DISCUSSION SA exerted its chemotherapeutic and chemo-sensitizing effects through an array of mechanisms including cell-cycle arrest, apoptosis induction, inhibition of cell proliferation, cell migration, angiogenesis, NFκB DNA-binding and proteasome activities. CONCLUSION These results demonstrate the potential of SA as an antimitogenic and chemo-sensitizing agent for human colorectal cancer.
Collapse
Affiliation(s)
- Mohamed-Salah Abaza
- Department of Biological Sciences, Faculty of Science, Faculty of Medicine, Kuwait University, Safat, Kuwait.
| | | | | | | | | | | |
Collapse
|
18
|
Supercritical rosemary extracts, their antioxidant activity and effect on hepatic tumor progression. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ryan EP, Heuberger AL, Broeckling CD, Borresen EC, Tillotson C, Prenni JE. Advances in Nutritional Metabolomics. ACTA ACUST UNITED AC 2013; 1:109-120. [PMID: 29682447 DOI: 10.2174/2213235x11301020001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Metabolomics is maturing as an experimental approach in nutrition science, and it is a useful analysis for revealing systems biology outcomes associated with changes in diet. A major goal of this review is to present the rapidly evolving body of scientific literature that seeks to reveal connections between an individual's metabolic profile and experimentally manipulated or naturally varied dietary intakes. Metabolite profiles in tissue, serum, urine, or stool reflect changes in metabolic pathways that respond to dietary intervention which makes them accessible samples for revealing metabolic effects of diet. Three broadly defined areas of investigation related to dietary-metabolomic strategies include: (1) describing the metabolite variation within and between dietary exposures or interventions; (2) characterizing the metabolic response to dietary interventions with respect to time; and (3) assessing individual variation in baseline nutritional health and/or disease status. An overview of metabolites that were responsive to dietary interventions as reported from original research in human or animal studies is provided and illustrates the breadth of metabolites affected by dietary intervention. Advantages and drawbacks for assessing metabolic changes are discussed in relation to types of metabolite analysis platforms. A combination of targeted and non-targeted global profiling studies as a component of future dietary intervention trials will increase our understanding of nutrition in a systems context.
Collapse
Affiliation(s)
- Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523
| | - Adam L Heuberger
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins CO 80523
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins CO 80523
| | - Erica C Borresen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523
| | - Cadie Tillotson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins CO 80523
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins CO 80523.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO 80523
| |
Collapse
|
20
|
Kim HK, Kim JN, Han SN, Nam JH, Na HN, Ha TJ. Black soybean anthocyanins inhibit adipocyte differentiation in 3T3-L1 cells. Nutr Res 2012; 32:770-7. [PMID: 23146774 DOI: 10.1016/j.nutres.2012.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
Abstract
Anthocyanins are naturally occurring polyphenolic pigments in plants that have been shown to decrease weight gain and insulin resistance in mice-fed high-fat diets. We investigated the effects of anthocyanins on cell growth, differentiation, and lipolysis in 3T3-L1 cells to test our hypothesis that anthocyanins could reduce adipose tissue mass by acting directly on adipocytes. Anthocyanin extracts from black soybeans were used and composed of 3 of the following major anthocyanins: cyanidine-3-O-glucoside (68.3%), delphinidin-3-O-glucoside (25.2%), and petunidin-3-O-glucoside (6.5%). Treatment with 12.5 and 50 μg/mL of black soybean anthocyanins exhibited inhibitory effects on the proliferation of both preconfluent preadipocytes (P < .01) and maturing postconfluent adipocytes (P < .01). In fully differentiated adipocytes, the number of viable cells was reduced by black soybean anthocyanins (P < .01). Treatment with 50 μg/mL of black soybean anthocyanins slightly increased epinephrine-induced lipolysis but decreased the basal lipolysis of fully differentiated adipocytes (P < .05). Black soybean anthocyanins also reduced lipid accumulation and suppressed the expression of the peroxisome proliferator-activated receptor γ, a major transcription factor for the adipogenic gene (P < .01). These results suggest that black soybean anthocyanins inhibit adipocyte differentiation and basal lipolysis, which may contribute to their antiobesity and antidiabetic properties.
Collapse
Affiliation(s)
- Hye-Kyeong Kim
- Department of Food Science and Nutrition, The Catholic University of Korea, Bucheon, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
21
|
Tammasakchai A, Reungpatthanaphong S, Chaiyasut C, Rattanachitthawat S, Suwannalert P. Red strain oryza sativa-unpolished thai rice prevents oxidative stress and colorectal aberrant crypt foci formation in rats. Asian Pac J Cancer Prev 2012; 13:1929-33. [PMID: 22901149 DOI: 10.7314/apjcp.2012.13.5.1929] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oxidative stress has been proposed to be involved in colorectal cancer development. Many dark pigments of plants have potent oxidative stress preventive properties. In this study, unpolished Thai rice was assessed for antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) methods. Red strain unpolished Thai rice was also administered to rats exposed to azoxymethane (AOM) for induction of aberrant crypt foci (ACF). Serum malondialdehyde (MDA) and ferric reducing antioxidant power (FRAP) were investigated for cellular oxidative stress and serum antioxidants, respectively. Red pigment unpolished Thai rice demonstrated high antioxidant activity and was found to significantly and dose dependently decrease the total density and crypt multiplicity of ACF. Consumption of Thai rice further resulted in high serum antioxidant activity and low MDA cellular oxidative stress. Interestingly, the density of ACF was strongly related to MDA at r=0.964, while it was inversely related with FRAP antioxidants (r=-0.915, p<0.001). The results of this study suggest that the consumption of red strain of unpolished Thai rice may exert potentially beneficial effects on colorectal cancer through decrease in the level of oxidative stress.
Collapse
Affiliation(s)
- Achiraya Tammasakchai
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
22
|
Antioxidant activity and antiproliferative action of methanol extracts of 4 different colored bell peppers (Capsicum annuum l.). Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
23
|
Scherr J, Nieman DC, Schuster T, Habermann J, Rank M, Braun S, Pressler A, Wolfarth B, Halle M. Nonalcoholic beer reduces inflammation and incidence of respiratory tract illness. Med Sci Sports Exerc 2012; 44:18-26. [PMID: 21659904 DOI: 10.1249/mss.0b013e3182250dda] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Strenuous exercise significantly increases the incidence of upper respiratory tract illness (URTI) caused by transient immune dysfunction. Naturally occurring polyphenolic compounds present in food such as nonalcoholic beer (NAB) have strong antioxidant, antipathogenic, and anti-inflammatory properties.The objective of this study was to determine whether ingestion of NAB polyphenols for 3 wk before and 2 wk after a marathon would attenuate postrace inflammation and decrease URTI incidence. METHODS Healthy male runners (N = 277, age = 42 ± 9 yr) were randomly assigned to 1-1.5 L · d(-1) of NAB or placebo (PL) beverage (double-blind design) for 3 wk before and 2 wk after the Munich Marathon. Blood samples were collected 4 and 1 wk before the race and immediately and 24 and 72 h after the race and analyzed for inflammation measures (interleukin-6 and total blood leukocyte counts). URTI rates, assessed by the Wisconsin Upper Respiratory Symptom Survey, were compared between groups during the 2-wk period after the race. RESULTS Change in interleukin-6 was significantly reduced in NAB compared with PL immediately after the race (median (interquartile range) = 23.9 (15.9-38.7) vs 31.6 (18.5-53.3) ng · L(-1), P = 0.03). Total blood leukocyte counts were also reduced in NAB versus PL by approximately 20% immediately and 24 h after the race (P = 0.02). Incidence of URTI was 3.25-fold lower (95% confidence interval = 1.38-7.66) (P = 0.007) in NAB compared with PL during the 2-wk postmarathon period. CONCLUSIONS Consumption of 1-1.5 L · d(-1) of NAB for 3 wk before and 2 wk after marathon competition reduces postrace inflammation and URTI incidence.
Collapse
Affiliation(s)
- Johannes Scherr
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Assessment of the protective effects of selected dietary anticarcinogens against DNA damage and cytogenetic effects induced by benzo[a]pyrene in C57BL/6J mice. Food Chem Toxicol 2011; 49:1674-83. [DOI: 10.1016/j.fct.2011.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 01/19/2011] [Accepted: 02/25/2011] [Indexed: 02/06/2023]
|
25
|
Affiliation(s)
- Elizabeth P Ryan
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
26
|
Ryan EP, Heuberger AL, Weir TL, Barnett B, Broeckling CD, Prenni JE. Rice bran fermented with saccharomyces boulardii generates novel metabolite profiles with bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:1862-70. [PMID: 21306106 PMCID: PMC3048450 DOI: 10.1021/jf1038103] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/12/2011] [Accepted: 01/20/2011] [Indexed: 05/21/2023]
Abstract
Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography-mass spectrometry (GC-MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety's nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties.
Collapse
Affiliation(s)
- Elizabeth P Ryan
- Department of Clinical Sciences, Colorado State University , Fort Collins, Colorado 80523, United States.
| | | | | | | | | | | |
Collapse
|
27
|
Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal 2010; 13:1575-91. [PMID: 20222825 DOI: 10.1089/ars.2009.3024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vegetarian diets are rich in antioxidant phytochemicals. However, they may not act as antioxidants in vivo, and yet still have important signaling and regulatory functions. Some may act as pro-oxidants, modulating cellular redox tone and oxidizing redox sensitive sites. In this review, evidence for health benefits of vegetarian diets is presented from different perspectives: epidemiological, biomarker, evolutionary, and public health, as well as antioxidant. From the perspective of molecular connections between diet and health, evidence of a role for plasma ascorbic acid as a biomarker for future disease risk is presented. Basic concepts of redox-based cell signaling are presented, and effects of antioxidant phytochemicals on signaling, especially via redox tone, sulfur switches and the Antioxidant Response Element (ARE), are explored. Sufficient scientific evidence exists for public health policy to promote a plant-rich diet for health promotion. This does not need to wait for science to provide all the answers as to why and how. However, action and interplay of dietary antioxidants in the nonequilibrium systems that control redox balance, cell signaling, and cell function provide rich ground for research to advance understanding of orthomolecular nutrition and provide science-based evidence to advance public health in our aging population.
Collapse
Affiliation(s)
- Iris F F Benzie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | | |
Collapse
|
28
|
D'Antuono F, Sanches-Silva A, Costa HS. NEWS FROM EU RESEARCH: BaSeFood: sustainable exploitation of bioactive components from the Black Sea Area traditional foods. NUTR BULL 2010. [DOI: 10.1111/j.1467-3010.2010.01833.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Terra X, Pallarés V, Ardèvol A, Bladé C, Fernández-Larrea J, Pujadas G, Salvadó J, Arola L, Blay M. Modulatory effect of grape-seed procyanidins on local and systemic inflammation in diet-induced obesity rats. J Nutr Biochem 2010; 22:380-7. [PMID: 20655715 DOI: 10.1016/j.jnutbio.2010.03.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/17/2022]
Abstract
Chronic low-grade inflammation in obesity is characterized by macrophage accumulation in white adipose tissue (WAT) and abnormal cytokine production. We tested the hypothesis that grape-seed procyanidin extract (PE), with known anti-inflammatory and antioxidant effects, would improve local and systemic inflammation in diet-induced obesity rats. First, we analyzed the preventive effects of procyanidins (30 mg/kg per day) on rats fed a 60% kcal fat diet for 19 weeks. Second, we induced cafeteria diet obesity for 13 weeks to investigate the corrective effects of two PE doses (25 and 50 mg/kg per day) for 10 and 30 days. In the preventive model, PE group had reduced not only body weight but also plasmatic systemic markers of inflammation tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). The PE preventive treatment significantly showed an increased adiponectin expression and decreased TNF-α, interleukin-6 and CRP expression in mesenteric WAT and muscle TNF-α. A reduced NF-κB activity in liver is also observed which can be related to low expression rates of hepatic inflammatory markers found in PE group. Finally, PE dietary supplementation is linked to a reduced expression of Emr1 (specific marker of macrophage F4/80), which suggests a reduced macrophage infiltration of WAT. In the corrective model, however, only the high dose of PE reduced CRP plasma levels in the short treatment without changes in plasmatic TNF-α. In conclusion, orally ingested PE helps preventing imbalanced obesity cytokine pattern, but its corrective effects need to be further investigated. The dietary regular intake of food or drinks containing procyanidins might help prevent low-grade inflammatory-related diseases.
Collapse
Affiliation(s)
- Ximena Terra
- Department of Biochemistry and Biotechnology, Nutrigenomic Research Group, Rovira i Virgili University, Tarragona, 43007, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Leone A, Zefferino R, Longo C, Leo L, Zacheo G. Supercritical CO(2)-extracted tomato Oleoresins enhance gap junction intercellular communications and recover from mercury chloride inhibition in keratinocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4769-4778. [PMID: 20235579 DOI: 10.1021/jf1001765] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A nutritionally relevant phytochemical such as lycopene, found in tomatoes and other fruits, has been proposed to have health-promoting effects by modulating hormonal and immune systems, metabolic pathways, and gap junction intercellular communication (GJIC). This work analyzes lycopene extracts, obtained from tomato and tomato added with grape seeds by using a safe and environmentally friendly extraction process, based on supercritical carbon dioxide technology (S-CO(2)). Analysis of the innovative S-CO(2)-extracted oleoresins showed peculiar chemical composition with high lycopene concentration and the presence of other carotenoids, lipids, and phenol compounds. The oleoresins showed a higher in vitro antioxidant activity compared with pure lycopene and beta-carotene and the remarkable ability to enhance the GJIC and to increase cx43 expression in keratinocytes. The oleoresins, (0.9 microM lycopene), were also able to overcome, completely, the GJIC inhibition induced by 10 nM HgCl(2), mercury(II) chloride, suggesting a possible action mechanism.
Collapse
Affiliation(s)
- Antonella Leone
- National Research Council, Institute of Science of Food Production (CNR, ISPA), Lecce, Italy.
| | | | | | | | | |
Collapse
|
31
|
Reagan-Shaw S, Eggert D, Mukhtar H, Ahmad N. Antiproliferative Effects of Apple Peel Extract Against Cancer Cells. Nutr Cancer 2010; 62:517-24. [DOI: 10.1080/01635580903441253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 2010; 11:1365-402. [PMID: 20480025 PMCID: PMC2871121 DOI: 10.3390/ijms11041365] [Citation(s) in RCA: 681] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic β–cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.
Collapse
|
33
|
Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53 Suppl 2:S310-29. [PMID: 19437486 DOI: 10.1002/mnfr.200900039] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.
Collapse
Affiliation(s)
- José Serrano
- Universidad Complutense de Madrid, Depto. Nutrición y Bromatología I, Madrid, Spain
| | | | | | | | | |
Collapse
|
34
|
Hushmendy S, Jayakumar L, Hahn AB, Bhoiwala D, Bhoiwala DL, Crawford DR. Select phytochemicals suppress human T-lymphocytes and mouse splenocytes suggesting their use in autoimmunity and transplantation. Nutr Res 2009; 29:568-78. [PMID: 19761891 PMCID: PMC2746920 DOI: 10.1016/j.nutres.2009.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 12/26/2022]
Abstract
We have considered a novel "rational" gene targeting approach for treating pathologies whose genetic bases are defined using select phytochemicals. We reason that one such potential application of this approach would be conditions requiring immunosuppression such as autoimmune disease and transplantation, where the genetic target is clearly defined; i.e., interleukin-2 and associated T-cell activation. Therefore, we hypothesized that select phytochemicals can suppress T-lymphocyte proliferation both in vitro and in vivo. The immunosuppressive effects of berry extract, curcumin, quercetin, sulforaphane, epigallocatechin gallate (EGCG), resveratrol, alpha-tocopherol, vitamin C and sucrose were tested on anti-CD3 plus anti-CD28-activated primary human T-lymphocytes in culture. Curcumin, sulforaphane, quercetin, berry extract and EGCG all significantly inhibited T-cell proliferation, and this effect was not due to toxicity. IL-2 production was also reduced by these agents, implicating this important T-cell cytokine in proliferation suppression. Except for berry extract, these same agents also inhibited mouse splenic T-cell proliferation and IL-2 production. Subsequent in vivo studies revealed that quercetin (but not sulforaphane) modestly suppressed mouse splenocyte proliferation following supplementation of BALB/c mice diets. This effect was especially prominent if corrected for the loss of supplement "recall" as observed in cultured T-cells. These results suggest the potential use of these select phytochemicals for treating autoimmune and transplant patients, and support our strategy of using select phytochemicals to treat genetically-defined pathologies, an approach that we believe is simple, healthy, and cost-effective.
Collapse
Affiliation(s)
- Shazaan Hushmendy
- Center for Immunology and Microbial Disease MC-151, The Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
35
|
Craig WJ, Mangels AR. Position of the American Dietetic Association: vegetarian diets. ACTA ACUST UNITED AC 2009; 109:1266-82. [PMID: 19562864 DOI: 10.1016/j.jada.2009.05.027] [Citation(s) in RCA: 442] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It is the position of the American Dietetic Association that appropriately planned vegetarian diets, including total vegetarian or vegan diets, are healthful, nutritionally adequate, and may provide health benefits in the prevention and treatment of certain diseases. Well-planned vegetarian diets are appropriate for individuals during all stages of the life cycle, including pregnancy, lactation, infancy, childhood, and adolescence, and for athletes. A vegetarian diet is defined as one that does not include meat (including fowl) or seafood, or products containing those foods. This article reviews the current data related to key nutrients for vegetarians including protein, n-3 fatty acids, iron, zinc, iodine, calcium, and vitamins D and B-12. A vegetarian diet can meet current recommendations for all of these nutrients. In some cases, supplements or fortified foods can provide useful amounts of important nutrients. An evidence- based review showed that vegetarian diets can be nutritionally adequate in pregnancy and result in positive maternal and infant health outcomes. The results of an evidence-based review showed that a vegetarian diet is associated with a lower risk of death from ischemic heart disease. Vegetarians also appear to have lower low-density lipoprotein cholesterol levels, lower blood pressure, and lower rates of hypertension and type 2 diabetes than nonvegetarians. Furthermore, vegetarians tend to have a lower body mass index and lower overall cancer rates. Features of a vegetarian diet that may reduce risk of chronic disease include lower intakes of saturated fat and cholesterol and higher intakes of fruits, vegetables, whole grains, nuts, soy products, fiber, and phytochemicals. The variability of dietary practices among vegetarians makes individual assessment of dietary adequacy essential. In addition to assessing dietary adequacy, food and nutrition professionals can also play key roles in educating vegetarians about sources of specific nutrients, food purchase and preparation, and dietary modifications to meet their needs.
Collapse
|
36
|
Yadav M, Jain S, Bhardwaj A, Nagpal R, Puniya M, Tomar R, Singh V, Parkash O, Prasad GBKS, Marotta F, Yadav H. Biological and medicinal properties of grapes and their bioactive constituents: an update. J Med Food 2009; 12:473-84. [PMID: 19627194 DOI: 10.1089/jmf.2008.0096] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The grape is one of the most valued conventional fruits, worldwide. Although most of the parts of the grapevine are useful, primarily, the grape is considered as a source of unique natural products not only for the development of valuable medicines against a number of diseases, but also for manufacturing various industrial products. Over the last few decades, apart from the chemistry of grape compounds, considerable progress has been made towards exploring the biological activities of various grape-derived constituents. Today, it is well established that in addition to serving as food, the grape is a major source of several phytochemicals. The main biologically active and well-characterized constituent from the grape is resveratrol, which is known for various medicinal properties in human diseases. This review discusses the roles of various grape-derived phytochemicals in relation to various diseases.
Collapse
|
37
|
Rajamanickam S, Agarwal R. Natural products and colon cancer: current status and future prospects. Drug Dev Res 2008; 69:460-471. [PMID: 19884979 DOI: 10.1002/ddr.20276] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Carcinogenesis is a multistage process consisting of initiation, promotion and progression phases. Thus, the multistage sequence of events has many phases for prevention and intervention. Chemoprevention, a novel approach for controlling cancer, involves the use of specific natural products or synthetic chemical agents to reverse, suppress or prevent premalignancy before the development of invasive cancer. Several natural products, such as, grains, nuts, cereals, spices, fruits, vegetables, beverages, medicinal plants and herbs and their various phytochemical constituents including, phenolics, flavonoids, carotenoids, alkaloids, nitrogen containing as well as organosulfur compounds confer protective effects against wide range of cancers including colon cancer. Since diet has an important role in the etiology of colon cancer, dietary chemoprevention received attention for colon cancer prevention. However, identification of an agent with chemopreventive potential requires in vitro studies, efficacy and toxicity studies in animal models before embarking on human clinical trials. A brief introduction about colon cancer and the role of some recent natural products in colon cancer chemoprevention with respect to multiple molecular mechanisms in various in vitro, in vivo and clinical studies are described in this review.
Collapse
Affiliation(s)
- Subapriya Rajamanickam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Denver, Colorado, USA
| | | |
Collapse
|
38
|
Affiliation(s)
- Deanna M Minich
- Functional Medicine Research Center, MetaProteomics, LLC, Gig Harbor, Washington 98332, USA.
| | | |
Collapse
|
39
|
Canoy D. Introductory Editorial. Nutr Metab Insights 2008. [DOI: 10.1177/117863880800100001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Dexter Canoy
- Research Fellow in Epidemiology and Public Health, Northwest Institute for Bio-Health Informatics, University of Manchester, Manchester, U.K
| |
Collapse
|