1
|
Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2023; 37:101864. [PMID: 37625930 DOI: 10.1016/j.berh.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberto Depascale
- Unit of Rheumatology, Department of Medicine, University of Padova, Padova, Italy
| | - Ana Luisa Stefanski
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Eva Schrezenmeier
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Hye Khan MA, Stavniichuk A, Sattar MA, Falck JR, Imig JD. Epoxyeicosatrienoic Acid Analog EET-A Blunts Development of Lupus Nephritis in Mice. Front Pharmacol 2019; 10:512. [PMID: 31133860 PMCID: PMC6523399 DOI: 10.3389/fphar.2019.00512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disorder that causes life threatening renal disease and current therapies are limited with serious side-effects. CYP epoxygenase metabolites of arachidonic acid epoxyeicosatrienoic acids (EETs) demonstrate strong anti-inflammatory and kidney protective actions. We investigated the ability of an orally active EET analog, EET-A to prevent kidney injury in a mouse SLE model. Twenty-weeks old female NZBWF1 (SLE) and age-matched NZW/LacJ (Non SLE) were treated with vehicle or EET-A (10 mg/kg/d, p.o.) for 14 weeks and urine and kidney tissues were collected at the end of the protocol. SLE mice demonstrated marked renal chemotaxis with 30-60% higher renal mRNA expression of CXC chemokine receptors (CXCR) and CXC chemokines (CXCL) compared to Non SLE mice. In SLE mice, the elevated chemotaxis is associated with 5-15-fold increase in cytokine mRNA expression and elevated inflammatory cell infiltration in the kidney. SLE mice also had elevated BUN, serum creatinine, proteinuria, and renal fibrosis. Interestingly, EET-A treatment markedly diminished renal CXCR and CXCL renal mRNA expression in SLE mice. EET-A treatment also reduced renal TNF-α, IL-6, IL-1β, and IFN-γ mRNA expression by 70-80% in SLE mice. Along with reductions in renal chemokine and cytokine mRNA expression, EET-A reduced renal immune cell infiltration, BUN, serum creatinine, proteinuria and renal fibrosis in SLE mice. Overall, we demonstrate that an orally active EET analog, EET-A prevents renal injury in a mouse model of SLE by reducing inflammation.
Collapse
Affiliation(s)
- Md. Abdul Hye Khan
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anna Stavniichuk
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammad Abdul Sattar
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, United States
| | - John R. Falck
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, United States
| | - John D. Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Gatto M, Iaccarino L, Ghirardello A, Punzi L, Doria A. Clinical and pathologic considerations of the qualitative and quantitative aspects of lupus nephritogenic autoantibodies: A comprehensive review. J Autoimmun 2016; 69:1-11. [DOI: 10.1016/j.jaut.2016.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/04/2016] [Indexed: 12/11/2022]
|
4
|
Li Y, Raman I, Du Y, Yan M, Min S, Yang J, Fang X, Li W, Lu J, Zhou XJ, Mohan C, Li QZ. Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress. PLoS One 2013; 8:e67790. [PMID: 23935844 PMCID: PMC3720854 DOI: 10.1371/journal.pone.0067790] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/26/2013] [Indexed: 12/20/2022] Open
Abstract
Previously we have shown that kallikreins (klks) play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs) as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1) gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 106 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN) and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Indu Raman
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yong Du
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Mei Yan
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Soyoun Min
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jichen Yang
- Quantitative Biomedical Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Xiangdong Fang
- Laboratory of Disease Genomics and Individualized Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- Key Laboratory of Medical Genetics, Wenzhou Medical College School of Laboratory Medicine & Life Science, Wenzhou, China
| | - Jianxin Lu
- Key Laboratory of Medical Genetics, Wenzhou Medical College School of Laboratory Medicine & Life Science, Wenzhou, China
| | - Xin J. Zhou
- Renal Path Diagnostics, Pathologist BioMedical Laboratories, Lewisville, Texas, United States of America
| | - Chandra Mohan
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- BME Departments, University of Houston, Houston, Texas, United States of America
- * E-mail: (CM); (QL)
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Key Laboratory of Medical Genetics, Wenzhou Medical College School of Laboratory Medicine & Life Science, Wenzhou, China
- * E-mail: (CM); (QL)
| |
Collapse
|
5
|
Rekha MR, Pal K, Bala P, Shetty M, Mittra I, Bhuvaneshwar GS, Sharma CP. Pullulan-histone antibody nanoconjugates for the removal of chromatin fragments from systemic circulation. Biomaterials 2013; 34:6328-38. [PMID: 23746856 DOI: 10.1016/j.biomaterials.2013.05.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/13/2013] [Indexed: 12/23/2022]
Abstract
The billions of cells that die in the adult human body daily release considerable amounts of fragmented chromatin in the form of mono- and oligonucleosomes into the circulation in normal individuals, and in higher quantities in many disease conditions. Recent results suggest that circulating chromatin fragments (Cfs) especially from abnormal cells can spontaneously enter into healthy cells to damage their DNA and induce genomic instability. Furthermore, Cfs isolated from cancer patients may induce oncogenic transformation in the recipients' cells. Thus, it follows that if such Cfs emanating from apoptotic cells could be prevented from reaching other cells, it could potentially inhibit pathological conditions, including cancer. Here we have developed pullulan based histone antibody nanoconjugates for the removal of Cfs. Nanoconjugates were developed and various physico-chemical characterizations were carried out. The efficacy of these nanoconjugates on removing Cfs was evaluated both in vitro and in vivo. Our results indicate that nanoconjugates may have therapeutic value in the efficient removal of Cfs, reducing inflammation and fatality in a mouse model of sepsis, and in preventing neutropenia following treatment with Adriamycin.
Collapse
Affiliation(s)
- M R Rekha
- Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695012, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Systemic lupus erythematosus is a prototypic autoimmune disease characterized by autoantibody production and immune complex formation/deposition in target organs such as the kidney. Resultant local inflammation then leads to organ damage. Nephritis, a major cause of morbidity and mortality in patients with lupus, occurs in approximately 50% of lupus patients. In the present review, we provide an overview of the current research and knowledge concerning mechanisms of renal injury in both lupus-prone mouse models and human lupus patients.
Collapse
|
7
|
Xia Y, Jiang S, Weng S, Lv X, Cheng H, Fang C. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model. Rheumatology (Oxford) 2011; 50:2187-96. [PMID: 21933790 DOI: 10.1093/rheumatology/ker231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. METHODS iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.
Collapse
Affiliation(s)
- Yumin Xia
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
8
|
Lacotte S, Dumortier H, Décossas M, Briand JP, Muller S. Identification of new pathogenic players in lupus: autoantibody-secreting cells are present in nephritic kidneys of (NZBxNZW)F1 mice. THE JOURNAL OF IMMUNOLOGY 2010; 184:3937-45. [PMID: 20181885 DOI: 10.4049/jimmunol.0902595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An important hallmark of systemic lupus erythematosus is the production of autoantibodies specific for nuclear Ags, among which nucleosomes and their constituents, DNA and histones. It is widely admitted that some of these autoantibodies contribute largely in lupus pathogenesis because of their nephritogenic potential. However, the underlying mechanisms are still debated. In this study, we analyzed the autoimmune response against histone H2B during the course of the disease in lupus-prone (NZBxNZW)F1 mice, both in lymphoid organs and kidneys, and we assessed its potential involvement in lupus pathogenicity. We found that the N-terminal region of histone H2B represents a preferential target for circulating autoantibodies, which kinetics of appearance positively correlates with disease development. Furthermore, immunization of preautoimmune (NZBxNZW)F1 mice with H2B peptide 1-25 accelerates the disease. Kidney eluates from diseased (NZBxNZW)F1 mice do contain IgG Abs reacting with this peptide, and this H2B sequence was found to be accessible to specific Ab probes in Ag-containing deposits detected in nephritic kidneys. Finally, compared with control normal mice and to young preautoimmune (NZBxNZW)F1 animals, the frequency of cells secreting autoantibodies reacting with peptide 1-25 was significantly raised in the spleen and bone marrow and most importantly on a pathophysiological point of view, locally, in nephritic kidneys of diseased (NZBxNZW)F1 mice. Altogether our results demonstrate the existence in (NZBxNZW)F1 mice of both a systemic and local B cell response targeting the N-terminal region of histone H2B, and highlight the potential implication of this nuclear domain in lupus pathology.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Immunologie et Chimie Thérapeutiques, Strasbourg, France
| | | | | | | | | |
Collapse
|
9
|
Luo N, Wu Y, Chen Y, Yang Z, Guo S, Fei L, Zhou D, Yang C, Wu S, Ni B, Hao F, Wu Y. Upregulated BclG(L) expression enhances apoptosis of peripheral blood CD4+ T lymphocytes in patients with systemic lupus erythematosus. Clin Immunol 2009; 132:349-61. [PMID: 19524489 DOI: 10.1016/j.clim.2009.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 05/04/2009] [Accepted: 05/10/2009] [Indexed: 11/15/2022]
Abstract
Increased lymphocyte apoptosis has been suggested to contribute to the development of systemic lupus erythematosus (SLE), but the critical factors involved in the apoptotic pathways are still unknown. By long serial analysis of gene expression (LongSAGE) profiles and microarray analyses, a novel apoptosis-related gene BclG(L) expression was found significantly increased in peripheral blood CD4+ T cells of SLE patients, which was correlated with the enhanced CD4+ T cells apoptosis, anti-nuclear antibody (ANA) titer and proteinuria. In vitro, BclG(L) expression could be specially upregulated by SLE serum stimulation and positively correlated with induced CD4+ T cell apoptosis. Enforcing BclG(L) overexpression by lentivirus could directly enhance CD4+ T cell apoptosis, but these apoptosis-inducing effects could be partially inhibited by knockdown of BclG(L) expression. Collectively, these results indicate that increased BclG(L) expression may contribute to the aberrant CD4+ T cell apoptosis which causes an inappropriate immune response and impaired homeostasis in SLE.
Collapse
Affiliation(s)
- Na Luo
- Department of Dermatology, Southwest Hospital, PLA, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fismen S, Hedberg A, Fenton KA, Jacobsen S, Krarup E, Kamper AL, Rekvig OP, Mortensen ES. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus 2009; 18:597-607. [PMID: 19433459 DOI: 10.1177/0961203308100512] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Murine and human lupus nephritis are characterized by glomerular deposits of electron-dense structures (EDS). Dominant components of EDS are chromatin fragments and IgG antibodies. Whether glomerular EDS predispose for similar deposits in skin is unknown. We analysed (i) whether dermo-epidermal immune complex deposits have similar molecular composition as glomerular deposits, (ii) whether chromatin fragments bind dermo-epidermal structures, and (iii) whether deposits in nephritic glomeruli predispose for accumulation of similar deposits in skin. Paired skin and kidney biopsies from nephritic (NZBxNZW)F1 and MRL-lpr/lpr mice and from five patients with lupus nephritis were analysed by immunofluorescence, immune electron microscopy (IEM) and co-localization TUNEL IEM. Affinity of chromatin fragments for membrane structures was determined by surface plasmon resonance. Results demonstrated (i) presence of EDS containing chromatin fragments and IgG in both organs in nephritic patients, (ii) chromatin fragments possessed high affinity for dermo-epidermal laminins and collagens, (iii) glomerular immune complex deposits did not predict similar interstitial deposits in skin, although such complexes were present in capillary lumina in glomeruli and skin of all nephritic individuals. Thus, chromatin-IgG complexes accounting for lupus nephritis seem to reach skin through circulation, but other undetermined factors are required for these complexes to deposit within skin membranes.
Collapse
Affiliation(s)
- S Fismen
- Department of Pathology, University Hospital of Northern Norway, N-9038 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lleo A, Selmi C, Invernizzi P, Podda M, Gershwin ME. The consequences of apoptosis in autoimmunity. J Autoimmun 2008; 31:257-62. [PMID: 18513925 DOI: 10.1016/j.jaut.2008.04.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The clearance of apoptotic cells is a highly regulated mechanism, normally associated with anti-inflammatory response. During early stages of apoptosis the cell is promptly recognized and engulfed by professional phagocytes or tissue cells to avoid the outflow of intracellular content and limit the immunological reaction against released antigens. However, increasing evidences suggest that impairment in the uptake of apoptotic cell debris is linked to the development of autoimmunity. In fact, autoantigens have been demonstrated to be content within apoptotic bodies and apoptotic cells seems to be critical in the presentation of antigens, activation of innate immunity and regulation of macrophage cytokine secretion. We herein review the known mechanisms for regulating the uptake of the products of apoptosis in the development of autoimmunity.
Collapse
Affiliation(s)
- Ana Lleo
- Division of Rheumatology, University of California, Davis, CA, USA
| | | | | | | | | |
Collapse
|