1
|
Muzzioli R, Gallo A. The Interaction and Effect of a Small MitoBlock Library as Inhibitor of ALR Protein-Protein Interaction Pathway. Int J Mol Sci 2024; 25:1174. [PMID: 38256258 PMCID: PMC10816046 DOI: 10.3390/ijms25021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage and oxidizes it. Subsequently, ALR re-oxidizes MIA40 and then ALR transfers electrons to terminal electron acceptors. However, the precise mechanism by which ALR and MIA40 coordinate translocation is unknown. With a collection of small molecule modulators (MB-5 to MB-9 and MB-13) that inhibit ALR activity, we characterized the import mechanism in mitochondria. NMR studies show that most of the compounds bind to a similar region in ALR. Mechanistic studies with small molecules demonstrate that treatment with compound MB-6 locks the precursor in a state bound to MIA40, blocking re-oxidation of MIA40 by ALR. Thus, small molecules that target a similar region in ALR alter the dynamics of the MIA import pathway differently, resulting in a set of probes that are useful for studying the catalysis of the redox-regulated import pathway in model systems.
Collapse
Affiliation(s)
- Riccardo Muzzioli
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| | - Angelo Gallo
- CERM, University of Florence, Via L Sacconi 9, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Weiss TS, Lupke M, Ibrahim S, Buechler C, Lorenz J, Ruemmele P, Hofmann U, Melter M, Dayoub R. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways. PLoS One 2017; 12:e0184282. [PMID: 28877220 PMCID: PMC5587239 DOI: 10.1371/journal.pone.0184282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.
Collapse
Affiliation(s)
- Thomas S. Weiss
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Center for Liver Cell Research, University of Regensburg Hospital, Regensburg, Germany
- * E-mail:
| | - Madeleine Lupke
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Sara Ibrahim
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Julia Lorenz
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Petra Ruemmele
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Michael Melter
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Rania Dayoub
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|
3
|
Nalesnik MA, Gandhi CR, Starzl TE. Augmenter of liver regeneration: A fundamental life protein. Hepatology 2017; 66:266-270. [PMID: 28085209 PMCID: PMC5682950 DOI: 10.1002/hep.29047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Michael A. Nalesnik
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA,Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Chandrashekhar R. Gandhi
- Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Thomas E. Starzl
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
4
|
Duggett NA, Griffiths LA, McKenna OE, de Santis V, Yongsanguanchai N, Mokori EB, Flatters SJL. Oxidative stress in the development, maintenance and resolution of paclitaxel-induced painful neuropathy. Neuroscience 2016; 333:13-26. [PMID: 27393249 PMCID: PMC4996646 DOI: 10.1016/j.neuroscience.2016.06.050] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/16/2016] [Accepted: 06/29/2016] [Indexed: 11/26/2022]
Abstract
ROS levels assessed in peripheral and central sensory neurons following paclitaxel. Increased ROS levels seen in non-peptidergic neurons prior to paclitaxel-induced pain. Elevated ROS levels in spinal neurons, but not microglia/astrocytes, after paclitaxel. Assayed activity of main antioxidant enzymes during paclitaxel-evoked pain timecourse. Inadequate antioxidant response suggests elevated ROS sustains paclitaxel-evoked pain.
Paclitaxel is a first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Previous preclinical studies indicate mitochondrial dysfunction and oxidative stress are associated with this disorder; however no direct assessment of reactive oxygen species (ROS) levels and antioxidant enzyme activity in sensory neurons following paclitaxel has been undertaken. As expected, repeated low doses of systemic paclitaxel in rats induced long-lasting pain behaviour with a delayed onset, akin to the clinical scenario. To elucidate the role of ROS in the development and maintenance of paclitaxel-induced painful neuropathy, we have assessed ROS and antioxidant enzyme activity levels in the nociceptive system in vivo at three key behavioural time-points; prior to pain onset (day 7), peak pain severity and pain resolution. In isolated dorsal root ganglia (DRG) neurons, ROS levels were unchanged following paclitaxel-exposure in vitro or in vivo. ROS levels were further assessed in DRG and spinal cord in vivo following intrathecal MitoTracker®RedCM-H2XRos administration in paclitaxel-/vehicle-treated rats. ROS levels were increased at day 7, specifically in non-peptidergic DRG neurons. In the spinal cord, neuronally-derived ROS was increased at day 7, yet ROS levels in microglia and astrocytes were unaltered. In DRG, CuZnSOD and glutathione peroxidase (GPx) activity were increased at day 7 and peak pain time-points, respectively. In peripheral sensory nerves, CuZnSOD activity was increased at day 7, and at peak pain, MnSOD, CuZnSOD and GPx activity were increased. Catalase activity was unaltered in DRG and saphenous nerves. These data suggest that neuronally-derived mitochondrial ROS, accompanied with an inadequate endogenous antioxidant enzyme response, are contributory factors in paclitaxel-induced painful neuropathy.
Collapse
Affiliation(s)
- Natalie A Duggett
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Lisa A Griffiths
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Olivia E McKenna
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Vittorio de Santis
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Nutcha Yongsanguanchai
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Esther B Mokori
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Sarah J L Flatters
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK.
| |
Collapse
|
5
|
Balancing oxidative protein folding: The influences of reducing pathways on disulfide bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1383-90. [DOI: 10.1016/j.bbapap.2014.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 11/20/2022]
|
6
|
Dayoub R, Vogel A, Schuett J, Lupke M, Spieker SM, Kettern N, Hildt E, Melter M, Weiss TS. Nrf2 activates augmenter of liver regeneration (ALR) via antioxidant response element and links oxidative stress to liver regeneration. Mol Med 2013; 19:237-44. [PMID: 23887691 DOI: 10.2119/molmed.2013.00027] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
Liver regeneration can be impaired by permanent oxidative stress and activation of nuclear factor erythroid 2-related factor 2 (Nrf2), known to regulate the cellular antioxidant response, and has been shown to improve the process of liver regeneration. A variety of factors regulate hepatic tissue regeneration, among them augmenter of liver regeneration (ALR), attained great attention as being survival factors for the liver with proproliferative and antiapoptotic properties. Here we determined the Nrf2/antioxidant response element (ARE) regulated expression of ALR and show ALR as a target gene of Nrf2 in vitro and in vivo. The ALR promoter comprises an ARE binding site and, therefore, ALR expression can be induced by ARE-activator tertiary butylhydroquinone (tBHQ) in hepatoma cells and primary human hepatocytes (PHH). Promoter activity and expression of ALR were enhanced after cotransfection of Nrf2 compared with control and dominant negative mutant of Nrf2. Performing partial hepatectomy in livers from Nrf2+/+ mice compared with Nrf2-/- knock-out (KO) mice, we found increased expression of ALR in addition to known antioxidant ARE-regulated genes. Furthermore, we observed increased ALR expression in hepatitis B virus (HBV) compared with hepatitis C virus (HCV) positive hepatoma cells and PHH. Recently, it was demonstrated that HBV infection activates Nrf2 and, now, we add results showing increased ALR expression in liver samples from patients infected with HBV. ALR is regulated by Nrf2, acts as a liver regeneration and antioxidative protein and, therefore, links oxidative stress to hepatic regeneration to ensure survival of damaged cells.
Collapse
Affiliation(s)
- Rania Dayoub
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Bergeaud M, Mathieu L, Guillaume A, Moll UM, Mignotte B, Le Floch N, Vayssière JL, Rincheval V. Mitochondrial p53 mediates a transcription-independent regulation of cell respiration and interacts with the mitochondrial F₁F0-ATP synthase. Cell Cycle 2013; 12:2781-93. [PMID: 23966169 DOI: 10.4161/cc.25870] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We and others previously reported that endogenous p53 can be located at mitochondria in the absence of stress, suggesting that p53 has a role in the normal physiology of this organelle. The aim of this study was to characterize in unstressed cells the intramitochondrial localization of p53 and identify new partners and functions of p53 in mitochondria. We find that the intramitochondrial pool of p53 is located in the intermembrane space and the matrix. Of note, unstressed HCT116 p53(+/+) cells simultaneously show increased O₂ consumption and decreased mitochondrial superoxide production compared with their p53-null counterpart. This data was confirmed by stable H1299 cell lines expressing low levels of p53 specifically targeted to the matrix. Using immunoprecipitation and mass spectrometry, we identified the oligomycin sensitivity-conferring protein (OSCP), a subunit of the F₁F₀-ATP synthase complex, as a new partner of endogenous p53, specifically interacting with p53 localized in the matrix. Interestingly, this interaction seems implicated in mitochondrial p53 localization. Moreover, p53 localized in the matrix promotes the assembly of F₁F₀-ATP synthase. Taking into account that deregulations of mitochondrial respiration and reactive oxygen species production are tightly linked to cancer development, we suggest that mitochondrial p53 may be an important regulator of normal mitochondrial and cellular physiology, potentially exerting tumor suppression activity inside mitochondria.
Collapse
Affiliation(s)
- Marie Bergeaud
- Laboratoire de génétique et biologie cellulaire (LGBC); Université de Versailles St Quentin-en-Yvelines/Ecole Pratique des Hautes Etudes; UFR des Sciences de la Santé; Montigny-le-Bretonneux, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
SIGNIFICANCE Disulfide bond formation is an essential reaction involved in the folding and maturation of many secreted and membrane proteins. Both prokaryotic and eukaryotic cells utilize various disulfide oxidoreductases and redox-active cofactors to accelerate this oxidative reaction, and higher eukaryotes have diversified and refined these disulfide-introducing cascades over the course of evolution. RECENT ADVANCES In the past decade, atomic resolution structures have been solved for an increasing number of disulfide oxidoreductases, thereby revealing the structural and mechanistic basis of cellular disulfide bond formation systems. CRITICAL ISSUES In this review, we focus on the evolution, structure, and regulatory mechanisms of endoplasmic reticulum oxidoreductin 1 (Ero1) family enzymes, the primary disulfide bond-generating catalysts in the endoplasmic reticulum (ER). Detailed comparison of Ero1 with other oxidoreductases, such as Prx4, QSOX, Erv1/2, and disulfide bond protein B (DsbB), provides important insight into how this ER-resident flavoenzyme acts in a regulated and specific manner to maintain redox and protein homeostasis in eukaryotic cells. FUTURE DIRECTIONS Currently, it is presumed that multiple pathways in addition to that mediated by Ero1 cooperate to achieve oxidative folding of many secretory and membrane proteins in mammalian cells. The important open question is how each oxidative pathway works distinctly or redundantly in response to various cellular conditions.
Collapse
Affiliation(s)
- Kazutaka Araki
- Laboratory of Molecular and Cellular Biology, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
9
|
Son M, Srikanth U, Puttaparthi K, Luther C, Elliott JL. Biochemical properties and in vivo effects of the SOD1 zinc-binding site mutant (H80G). J Neurochem 2011; 118:891-901. [PMID: 21692800 DOI: 10.1111/j.1471-4159.2011.07360.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study presents the initial characterization of transgenic mice with mutations in a primary zinc-binding residue (H80), either alone or with a G93A mutation. H80G;G93A superoxide dismutase 1 (SOD1) transgenic mice developed paralysis with motor neuron loss, and ubiquitin inclusion-type rather than mitochondrial vacuolar pathology. Unlike G93A SOD1-related disease, the course was not accelerated by over-expression of copper chaperone for SOD1. H80G SOD1 transgenic mice did not manifest disease at levels of SOD1 transgene expressed. The H80G mutation altered certain biochemical parameters of both human wild-type SOD1 and G93A SOD1. The H80G mutation does not substantially change the age-dependent accumulation of G93A SOD1 aggregates and hydrophobic species in spinal cord. However, both H80G;G93A SOD1 and H80G SOD1 lack dismutase activity, the ability to form homodimers, and co-operativity with copper chaperone for SOD1, indicating that their dimerization interface is abnormal. The H80G mutation also made SOD1 susceptible to protease digestion. The H80G mutation alters the redox properties of SOD1. G93A SOD1 exists in either reduced or oxidized form, whereas H80G;G93A SOD1 and H80G SOD1 exist only in a reduced state. The inability of SOD1 with an H80G mutation to take part in normal oxidation-reduction reactions has important ramifications for disease mechanisms and pathology in vivo.
Collapse
Affiliation(s)
- Marjatta Son
- Department of Neurology, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
10
|
Xu XM, Møller SG. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Antioxid Redox Signal 2011; 15:271-307. [PMID: 20812788 DOI: 10.1089/ars.2010.3259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron-sulfur clusters [Fe-S] are small, ubiquitous inorganic cofactors representing one of the earliest catalysts during biomolecule evolution and are involved in fundamental biological reactions, including regulation of enzyme activity, mitochondrial respiration, ribosome biogenesis, cofactor biogenesis, gene expression regulation, and nucleotide metabolism. Although simple in structure, [Fe-S] biogenesis requires complex protein machineries and pathways for assembly. [Fe-S] are assembled from cysteine-derived sulfur and iron onto scaffold proteins followed by transfer to recipient apoproteins. Several predominant iron-sulfur biogenesis systems have been identified, including nitrogen fixation (NIF), sulfur utilization factor (SUF), iron-sulfur cluster (ISC), and cytosolic iron-sulfur protein assembly (CIA), and many protein components have been identified and characterized. In eukaryotes ISC is mainly localized to mitochondria, cytosolic iron-sulfur protein assembly to the cytosol, whereas plant sulfur utilization factor is localized mainly to plastids. Because of this spatial separation, evidence suggests cross-talk mediated by organelle export machineries and dual targeting mechanisms. Although research efforts in understanding iron-sulfur biogenesis has been centered on bacteria, yeast, and plants, recent efforts have implicated inappropriate [Fe-S] biogenesis to underlie many human diseases. In this review we detail our current understanding of [Fe-S] biogenesis across species boundaries highlighting evolutionary conservation and divergence and assembling our knowledge into a cellular context.
Collapse
Affiliation(s)
- Xiang Ming Xu
- Centre for Organelle Research CORE, University of Stavanger, Norway
| | | |
Collapse
|
11
|
Gebert N, Ryan MT, Pfanner N, Wiedemann N, Stojanovski D. Mitochondrial protein import machineries and lipids: A functional connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1002-11. [DOI: 10.1016/j.bbamem.2010.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/01/2023]
|
12
|
Dayoub R, Wagner H, Bataille F, Stöltzing O, Spruss T, Buechler C, Schlitt HJ, Weiss TS. Liver regeneration associated protein (ALR) exhibits antimetastatic potential in hepatocellular carcinoma. Mol Med 2010; 17:221-8. [PMID: 21152698 DOI: 10.2119/molmed.2010.00117] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/02/2010] [Indexed: 01/17/2023] Open
Abstract
Augmenter of liver regeneration (ALR), which is critically important in liver regeneration and hepatocyte proliferation, is highly expressed in cirrhotic livers and hepatocellular carcinomas (HCC). In the current study, the functional role of ALR in hepatocancerogenesis was analyzed in more detail. HepG2 cells, in which the cytosolic 15 kDa ALR isoform was reexpressed stably, (HepG2-ALR) were used in migration and invasion assays using modified Boyden chambers. Epithelial-mesenchymal transition (EMT) markers were determined in HepG2-ALR cells in vitro and in HepG2-ALR tumors grown in nude mice. ALR protein was quantified in HCC and nontumorous tissues by immunohistochemistry. HepG2-ALR, compared with HepG2 cells, demonstrated reduced cell motility and increased expression of the epithelial cell markers E-cadherin and Zona occludens-1 (ZO-1), whereas SNAIL, a negative regulator of E-cadherin, was diminished. Matrix metalloproteinase MMP1 and MMP3 mRNA expression and activity were reduced. HepG2-ALR cell-derived subcutaneously grown tumors displayed fewer necrotic areas, more epithelial-like cell growth and fewer polymorphisms and atypical mitotic figures than tumors derived from HepG2 cells. Analysis of tumor tissues of 53 patients with HCC demonstrated an inverse correlation of ALR protein with histological angioinvasion and grading. The 15 kDa ALR isoform was found mainly in HCC tissues without histological angioinvasion 0. In summary the present data indicate that cytosolic ALR reduces hepatoma cell migration, augments epithelial growth and, therefore, may act as an antimetastatic and EMT reversing protein.
Collapse
Affiliation(s)
- Rania Dayoub
- Center for Liver Cell Research, University Medical Center Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kawamata H, Manfredi G. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 2010; 13:1375-84. [PMID: 20367259 PMCID: PMC2962758 DOI: 10.1089/ars.2010.3212] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA
| | | |
Collapse
|
14
|
Herrmann JM, Riemer J. Oxidation and reduction of cysteines in the intermembrane space of mitochondria: multiple facets of redox control. Antioxid Redox Signal 2010; 13:1323-6. [PMID: 20504153 DOI: 10.1089/ars.2010.3270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Eukaryotic cells employ a large variety of protein modifications to integrate individual protein activities into regulatory or signaling networks. Thereby, different compartments prefer specific types of protein modifications. For example, protein phosphorylation is a highly frequent modification in the cytosol and the nucleus, whereas in the lumen of the endoplasmic reticulum, protein functions may be predominantly regulated by protein oxidation or glycosylation. On the hundreds of mitochondrial proteins, only very few modifications were reported until very recently. This is particularly true for proteins of the intermembrane space, the compartment between the outer and inner membrane. However, studies over the last 5 years suggest that the introduction of disulfide bonds might regulate a variety of processes in this compartment. The different processes for which such redox regulations were shown or proposed include the import and folding of proteins and the assembly of cofactors of respiratory chain complexes. Although the understanding of the molecular functions underlying these processes is rapidly increasing, we still do hardly understand how these redox activities are used to coordinate mitochondrial activities with cellular functions such as apoptosis, reactive oxygen species homeostasis, or aging.
Collapse
|
15
|
Abstract
Mitochondria contain two aqueous compartments: the matrix and the intermembrane space. Whereas many of the biologic functions of the matrix were well characterized in the past, it became clear very recently that the intermembrane space plays a pivotal role in the coordination of mitochondrial activities with other cellular processes. These activities include the exchange of proteins, lipids, or metal ions between the matrix and the cytosol, the regulated initiation of apoptotic cascades, signalling pathways that regulate respiration and metabolic functions, the prevention of reactive oxygen species produced by the respiratory chain, or the control of mitochondrial morphogenesis. We focus on the different biologic functions of the intermembrane space and discuss the relevance of this fascinating compartment for cellular physiology and human health.
Collapse
|
16
|
Lionaki E, Aivaliotis M, Pozidis C, Tokatlidis K. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria. Antioxid Redox Signal 2010; 13:1327-39. [PMID: 20367271 DOI: 10.1089/ars.2010.3200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Erv1 and Mia40 constitute the two important components of the disulfide relay system that mediates oxidative protein folding in the mitochondrial intermembrane space. Mia40 is the import receptor that recognizes the substrates introducing disulfide bonds while it is reduced. A key function of Erv1 is to recycle Mia40 to its active oxidative state. Our aims here were to dissect the domain of Erv1 that mediates the protein-protein interaction with Mia40 and to investigate the interactions between the shuttle domain of Erv1 and its catalytic core and their relevance for the interaction with Mia40. We purified these domains separately as well as cysteine mutants in the shuttle and the active core domains. The noncovalent interaction of Mia40 with Erv1 was measured by isothermal titration calorimetry, whereas their covalent mixed disulfide intermediate was analyzed in reconstitution experiments in vitro and in organello. We established that the N-terminal shuttle domain of Erv1 is necessary and sufficient for interaction to occur. Furthermore, we provide direct evidence for the intramolecular electron transfer from the shuttle cysteine pair of Erv1 to the core domain. Finally, we reconstituted the system by adding in trans the N- and C- terminal domains of Erv1 together with its substrate Mia40.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Crete, Greece
| | | | | | | |
Collapse
|
17
|
Uhrigshardt H, Singh A, Kovtunovych G, Ghosh M, Rouault TA. Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis. Hum Mol Genet 2010; 19:3816-34. [PMID: 20668094 DOI: 10.1093/hmg/ddq301] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The importance of mitochondrial iron-sulfur cluster (ISC) biogenesis for human health has been well established, but the roles of some components of this critical pathway still remain uncharacterized in mammals. Among them is human heat shock cognate protein 20 (hHSC20), the putative human homolog of the specialized DnaJ type co-chaperones, which are crucial for bacterial and fungal ISC assembly. Here, we show that the human HSC20 protein can complement for its counterpart in yeast, Jac1p, and interacts with its proposed human partners, hISCU and hHSPA9. hHSC20 is expressed in various human tissues and localizes mainly to the mitochondria in HeLa cells. However, small amounts were also detected extra-mitochondrially. RNA interference-mediated depletion of hHSC20 specifically reduced the activities of both mitochondrial and cytosolic ISC-containing enzymes. The recovery of inactivated ISC enzymes was markedly delayed after an oxidative insult of hHSC20-deficient cells. Conversely, overexpression of hHSC20 substantially protected cells from oxidative insults. These results imply that hHSC20 is an integral component of the human ISC biosynthetic machinery that is particularly important in the assembly of ISCs under conditions of oxidative stress. A cysteine-rich N-terminal domain, which clearly distinguishes hHSC20 from the specialized DnaJ type III proteins of fungi and most bacteria, was found to be important for the integrity and function of the human co-chaperone.
Collapse
Affiliation(s)
- Helge Uhrigshardt
- Molecular Medicine Program, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Koopman WJH, Nijtmans LGJ, Dieteren CEJ, Roestenberg P, Valsecchi F, Smeitink JAM, Willems PHGM. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12:1431-70. [PMID: 19803744 DOI: 10.1089/ars.2009.2743] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Virtually every mammalian cell contains mitochondria. These double-membrane organelles continuously change shape and position and contain the complete metabolic machinery for the oxidative conversion of pyruvate, fatty acids, and amino acids into ATP. Mitochondria are crucially involved in cellular Ca2+ and redox homeostasis and apoptosis induction. Maintenance of mitochondrial function and integrity requires an inside-negative potential difference across the mitochondrial inner membrane. This potential is sustained by the electron-transport chain (ETC). NADH:ubiquinone oxidoreductase or complex I (CI), the first and largest protein complex of the ETC, couples the oxidation of NADH to the reduction of ubiquinone. During this process, electrons can escape from CI and react with ambient oxygen to produce superoxide and derived reactive oxygen species (ROS). Depending on the balance between their production and removal by antioxidant systems, ROS may function as signaling molecules or induce damage to a variety of biomolecules or both. The latter ultimately leads to a loss of mitochondrial and cellular function and integrity. In this review, we discuss (a) the role of CI in mitochondrial functioning; (b) the composition, structure, and biogenesis of CI; (c) regulation of CI function; (d) the role of CI in ROS generation; and (e) adaptive responses to CI deficiency.
Collapse
Affiliation(s)
- Werner J H Koopman
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
19
|
Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 2009; 11:2409-27. [PMID: 19388824 DOI: 10.1089/ars.2009.2625] [Citation(s) in RCA: 416] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cellular mechanisms governing redox homeostasis likely involve their integration with other stresses. Endoplasmic reticulum (ER) stress triggers complex adaptive or proapoptotic signaling defined as the unfolded protein response (UPR), involved in several pathophysiological processes. Since protein folding is highly redox-dependent, convergence between ER stress and oxidative stress has attracted interest. Evidence suggests that ROS production and oxidative stress are not only coincidental to ER stress, but are integral UPR components, being triggered by distinct types of ER stressors and contributing to support proapoptotic, as well as proadaptive UPR signaling. Thus, ROS generation can be upstream or downstream UPR targets and may display a UPR-specific plus a nonspecific component. Enzymatic mechanisms of ROS generation during UPR include: (a) Multiple thiol-disulfide exchanges involving ER oxidoreductases including flavooxidase Ero1 and protein disulfide isomerase (PDI); (b) Mitochondrial electron transport; (c) Nox4 NADPH oxidase complex, particularly Nox4. Understanding the roles of such mechanisms and how they interconnect with the UPR requires more investigation. Integration among such ROS sources may depend on Ca(2+) levels, ROS themselves, and PDI, which associates with NADPH oxidase and regulates its function. Oxidative stress may frequently integrate with a background of ER stress/UPR in several diseases; here we discuss a focus in the vascular system.
Collapse
Affiliation(s)
- Célio X C Santos
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, CEP 05403-000, São Paulo, Brazil
| | | | | | | |
Collapse
|
20
|
Riemer J, Bulleid N, Herrmann JM. Disulfide Formation in the ER and Mitochondria: Two Solutions to a Common Process. Science 2009; 324:1284-7. [DOI: 10.1126/science.1170653] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|