1
|
Vimonish R, Capelli-Peixoto J, Johnson WC, Hussein HE, Taus NS, Brayton KA, Munderloh UG, Noh SM, Ueti MW. Anaplasma marginale Infection of Dermacentor andersoni Primary Midgut Cell Culture Is Dependent on Fucosylated Glycans. Front Cell Infect Microbiol 2022; 12:877525. [PMID: 35711652 PMCID: PMC9197492 DOI: 10.3389/fcimb.2022.877525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/06/2022] [Indexed: 12/05/2022] Open
Abstract
Tick midgut is the primary infection site required by tick-borne pathogens to initiate their development for transmission. Despite the biological significance of this organ, cell cultures derived exclusively from tick midgut tissues are unavailable and protocols for generating primary midgut cell cultures have not been described. To study the mechanism of Anaplasma marginale-tick cell interactions, we successfully developed an in vitro Dermacentor andersoni primary midgut cell culture system. Midgut cells were maintained for up to 120 days. We demonstrated the infection of in vitro midgut cells by using an A. marginale omp10::himar1 mutant with continued replication for up to 10 days post-infection. Anaplasma marginale infection of midgut cells regulated the differential expression of tick α-(1,3)-fucosyltransferases A1 and A2. Silencing of α-(1,3)-fucosyltransferase A2 in uninfected midgut cells reduced the display of fucosylated glycans and significantly lowered the susceptibility of midgut cells to A. marginale infection, suggesting that the pathogen utilized core α-(1,3)-fucose of N-glycans to infect tick midgut cells. This is the first report using in vitro primary D. andersoni midgut cells to study A. marginale-tick cell interactions at the molecular level. The primary midgut cell culture system will further facilitate the investigation of tick-pathogen interactions, leading to the development of novel intervention strategies for tick-borne diseases.
Collapse
Affiliation(s)
- Rubikah Vimonish
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Janaina Capelli-Peixoto
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Wendell C. Johnson
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Hala E. Hussein
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Naomi S. Taus
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
| | - Kelly A. Brayton
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Ulrike G. Munderloh
- School of Public Health, Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Susan M. Noh
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
| | - Massaro W. Ueti
- Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Diseases Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Pullman, WA, United States
- The Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, United States
- *Correspondence: Massaro W. Ueti,
| |
Collapse
|
2
|
Escobar-Chavarría O, Cossío-Bayúgar R, Ramírez-Noguera P, Prado-Ochoa MG, Velázquez-Sánchez AM, Muñoz-Guzmán MA, Angeles E, Alba-Hurtado F. In vivo and in vitro apoptosis induced by new acaricidal ethyl-carbamates in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101603. [PMID: 33221619 DOI: 10.1016/j.ttbdis.2020.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
Abstract
The ability of ethyl-4-bromophenylcarbamate (LQM 919) and ethyl-4-chlorophenylcarbamate (LQM 996) to induce in vivo apoptosis of Rhipicephalus microplus ovarian cells and in vitro apoptosis of tick and mammalian cell culture was evaluated. The ovaries of engorged females treated with 1 mg mL-1 LQM 919 or LQM 996 presented more (p < 0.001) peroxidase-TUNEL-positive labeled cells (apoptotic cells) in situ than their respective control groups, and this increase was time-dependent (p < 0.001). The majority of apoptotic cells were observed in the epithelium and ovarian pedicel. HepG2, Vero and Rm-sus cells, as well as cells from primary cultures of R. microplus salivary glands, intestine and ovaries were exposed to different concentrations of the ethyl-carbamates. Both ethyl-carbamates induced a concentration-dependent reduction in the viability of all cell types (p < 0.001). Exposure to the ethyl-carbamates increased caspase 3 activity (p < 0.01) in primary cultures and cell lines, except in HepG2 cells. Fluorescent TUNEL-positive cells were observed in all cell types treated with 600 μM LQM 919 or LQM 996. These results indicate that both ethyl-carbamates induce apoptosis of the ovarian, intestinal and salivary glands cells in R. microplus and strongly suggest that this is their main mechanism of acaricidal action.
Collapse
Affiliation(s)
- O Escobar-Chavarría
- Programa de Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico
| | - R Cossío-Bayúgar
- Centro Nacional de Investigaciones Disciplinarias en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Mexico
| | - P Ramírez-Noguera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - M G Prado-Ochoa
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - A M Velázquez-Sánchez
- Laboratorio de Química Medicinal, Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - M A Muñoz-Guzmán
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - E Angeles
- Laboratorio de Química Medicinal, Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico
| | - F Alba-Hurtado
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
3
|
Kendall BL, Grabowski JM, Rosenke R, Pulliam M, Long DR, Scott DP, Offerdahl DK, Bloom ME. Characterization of flavivirus infection in salivary gland cultures from male Ixodes scapularis ticks. PLoS Negl Trop Dis 2020; 14:e0008683. [PMID: 33017410 PMCID: PMC7561187 DOI: 10.1371/journal.pntd.0008683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 10/15/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Infected Ixodes scapularis (black-legged tick) transmit a host of serious pathogens via their bites, including Borrelia burgdorferi, Babesia microti, and tick-borne flaviviruses (TBFVs), such as Powassan virus (POWV). Although the role of female I. scapularis ticks in disease transmission is well characterized, the role of male ticks is poorly understood. Because the pathogens are delivered in tick saliva, we studied the capacity of male salivary glands (SGs) to support virus replication. Ex vivo cultures of SGs from unfed male I. scapularis were viable for more than a week and maintained the characteristic tissue architecture of lobular ducts and acini. When SG cultures were infected with the TBFVs Langat virus (LGTV) or POWV lineage II (deer tick virus), the production of infectious virus was demonstrated. Using a green fluorescent protein-tagged LGTV and confocal microscopy, we demonstrated LGTV infection within SG acinus types II and III. The presence of LGTV in the acini and lobular ducts of the cultures was also shown via immunohistochemistry. Furthermore, the identification by in situ hybridization of both positive and negative strand LGTV RNA confirmed that the virus was indeed replicating. Finally, transmission electron microscopy of infected SGs revealed virus particles packaged in vesicles or vacuoles adjacent to acinar lumina. These studies support the concept that SGs of male I. scapularis ticks support replication of TBFVs and may play a role in virus transmission, and further refine a useful model system for developing countermeasures against this important group of pathogens. Powassan disease has greatly increased in frequency since its discovery in Powassan, Ontario in 1958. Powassan virus (lineage I; POWV) and Powassan virus lineage II (deer tick virus; DTV) are endemic to North America and there were 133 reported cases between 2009 and 2018, the majority since 2016. Nymphal and adult Ixodes scapularis ticks are thought to be the primary vectors of POWV/DTV to humans. However, little is known regarding DTV infection of male Ixodes ticks or their potential as vectors. In this study we characterized LGTV, a model tick-borne flavivirus, and DTV infection and propagation in male I. scapularis salivary gland cultures using an ex vivo organ culture system. This work provides insight into potential flavivirus transmission by the male I. scapularis tick.
Collapse
Affiliation(s)
- Benjamin L. Kendall
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Mikayla Pulliam
- Microscopy Unit, Research and Technologies Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Daniel R. Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, Hamilton, MT, United States of America
- * E-mail: , (JMG); (MEB)
| |
Collapse
|
4
|
Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis 2018; 9:1364-1371. [PMID: 29886187 PMCID: PMC6052676 DOI: 10.1016/j.ttbdis.2018.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022]
Abstract
Tick cell lines are increasingly used in many fields of tick and tick-borne disease research. The Tick Cell Biobank was established in 2009 to facilitate the development and uptake of these unique and valuable resources. As well as serving as a repository for existing and new ixodid and argasid tick cell lines, the Tick Cell Biobank supplies cell lines and training in their maintenance to scientists worldwide and generates novel cultures from tick species not already represented in the collection. Now part of the Institute of Infection and Global Health at the University of Liverpool, the Tick Cell Biobank has embarked on a new phase of activity particularly targeted at research on problems caused by ticks, other arthropods and the diseases they transmit in less-developed, lower- and middle-income countries. We are carrying out genotypic and phenotypic characterisation of selected cell lines derived from tropical tick species. We continue to expand the culture collection, currently comprising 63 cell lines derived from 18 ixodid and argasid tick species and one each from the sand fly Lutzomyia longipalpis and the biting midge Culicoides sonorensis, and are actively engaging with collaborators to obtain starting material for primary cell cultures from other midge species, mites, tsetse flies and bees. Outposts of the Tick Cell Biobank will be set up in Malaysia, Kenya and Brazil to facilitate uptake and exploitation of cell lines and associated training by scientists in these and neighbouring countries. Thus the Tick Cell Biobank will continue to underpin many areas of global research into biology and control of ticks, other arthropods and vector-borne viral, bacterial and protozoan pathogens.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| | - Alistair Darby
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom.
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom; NIHR Health Protection Research Institute in Emerging and Zoonotic Infections, Institute of Infection and Global Health, University of Liverpool, The Ronald Ross Building, 8 West Derby Street, Liverpool L69 7BE, United Kingdom.
| | - Benjamin L Makepeace
- Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom.
| |
Collapse
|
5
|
Rodríguez-Hernández E, Mosqueda J, León-Ávila G, Castañeda-Ortiz EJ, Álvarez-Sánchez ME, Camacho AD, Ramos A, Camacho-Nuez M. BmVDAC upregulation in the midgut of Rhipicephalus microplus, during infection with Babesia bigemina. Vet Parasitol 2015; 212:368-74. [PMID: 26141408 DOI: 10.1016/j.vetpar.2015.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms involved during the infection of Rhipicephalus microplus midgut cells by Babesia bigemina are of great relevance and currently unknown. In a previous study, we found a voltage-dependent anion channel (VDAC)-like protein (BmVDAC) that may participate during parasite invasion of midgut cells. In this work, we investigated BmVDAC expression at both mRNA and protein levels and examined BmVDAC localization in midgut cells of ticks infected with B. bigemina at different times post-repletion. Based on the RT-PCR results, Bmvdac expression levels were significantly higher in infected ticks compared to uninfected ones, reaching their highest values at 24h post-repletion (p<0.0001). Similar results were obtained at the protein level (p<0.0001). Interestingly, BmVDAC immunolocalization showed that there was an important differential expression and redistribution of BmVDAC protein between the midgut cells of infected and uninfected ticks, which was more evident 24h post-repletion of infected ticks. This is the first report of BmVDAC upregulation and immunolocalization in R. microplus midgut cells during B. bigemina infection. Further studies regarding the function of BmVDAC during the infection may provide new insights into the molecular mechanisms between B. bigemina and its tick vector and could result in its use as an anti-tick and transmission-blocking vaccine candidate.
Collapse
Affiliation(s)
- Elba Rodríguez-Hernández
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Juan Mosqueda
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av de las Ciencias s/n, Juriquilla Querétaro, C.P. 76230, Mexico
| | - Gloria León-Ávila
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Elizabeth J Castañeda-Ortiz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - María Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico
| | - Alejandro D Camacho
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomas, Delegación Miguel Hidalgo, México D.F. C.P. 11340, Mexico
| | - Alberto Ramos
- Centro Nacional de Investigación Disciplinaria en Parasitología Veterinaria, Carretera Federal Cuernavaca-Cuautla Núm. 8534, Colonia Progreso, Jiutepec, Morelos C.P. 62550, Mexico
| | - Minerva Camacho-Nuez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo Núm. 290, esquina Roberto Gayol, colonia del Valle Sur, delegación Benito Juárez, México D.F. C.P. 03100, Mexico.
| |
Collapse
|
6
|
SUNYAKUMTHORN PIYANATE, PETCHAMPAI NATTHIDA, GRASPERGE BRITTONJ, KEARNEY MICHAELT, SONENSHINE DANIELE, MACALUSO KEVINR. Gene expression of tissue-specific molecules in ex vivo Dermacentor variabilis (Acari: Ixodidae) during rickettsial exposure. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1089-96. [PMID: 24180114 PMCID: PMC3931258 DOI: 10.1603/me12162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ticks serve as both vectors and the reservoir hosts capable of transmitting spotted fever group Rickettsia by horizontal and vertical transmission. Persistent maintenance of Rickettsia species in tick populations is dependent on the specificity of the tick and Rickettsia relationship that limits vertical transmission of particular Rickettsia species, suggesting host-derived mechanisms of control. Tick-derived molecules are differentially expressed in a tissue-specific manner in response to rickettsial infection; however, little is known about tick response to specific rickettsial species. To test the hypothesis that tissue-specific tick-derived molecules are uniquely responsive to rickettsial infection, a bioassay to characterize the tick tissue-specific response to different rickettsial species was used. Whole organs of Dermacentor variabilis (Say) were exposed to either Rickettsia montanensis or Rickettsia amblyommii, two Rickettsia species common, or absent, in field-collected D. variabilis, respectively, for 1 and 12 h and harvested for quantitative real time-polymerase chain reaction assays of putative immune-like tick-derived factors. The results indicated that tick genes are differently expressed in a temporal and tissue-specific manner. Genes encoding glutathione S-transferase 1 (dvgst1) and Kunitz protease inhibitor (dvkpi) were highly expressed in midgut, and rickettsial exposure downregulated the expression of both genes. Two other genes encoding glutathione S-transferase 2 (dvgst2) and beta-thymosin (dvpbeta-thy) were highly expressed in ovary, with dvbeta-thy expression significantly downregulated in ovaries exposed to R. montanensis, but not R. amblyommii, at 12-h postexposure, suggesting a selective response. Deciphering the tissue-specific molecular interactions between tick and Rickettsia will enhance our understanding of the key mechanisms that mediate rickettsial infection in ticks.
Collapse
Affiliation(s)
- PIYANATE SUNYAKUMTHORN
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., SVM-3213, Baton Rouge, LA 70803
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, 42016 Rajvithi Road, Bangkok 10400, Thailand
| | - NATTHIDA PETCHAMPAI
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., SVM-3213, Baton Rouge, LA 70803
| | - BRITTON J. GRASPERGE
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three River Road, Covington, LA 70433
| | - MICHAEL T. KEARNEY
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., SVM-3213, Baton Rouge, LA 70803
| | - DANIEL E. SONENSHINE
- Department of Biological Sciences, Old Dominion University, 5115 Hampton Boulevard, Norfolk, VA 23529
| | - KEVIN R. MACALUSO
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Dr., SVM-3213, Baton Rouge, LA 70803
- Corresponding author,
| |
Collapse
|
7
|
Rodríguez-Hernández E, Mosqueda J, Alvarez-Sánchez ME, Neri AF, Mendoza-Hernández G, Camacho-Nuez M. The identification of a VDAC-like protein involved in the interaction of Babesia bigemina sexual stages with Rhipicephalus microplus midgut cells. Vet Parasitol 2012; 187:538-41. [DOI: 10.1016/j.vetpar.2012.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/20/2012] [Accepted: 01/22/2012] [Indexed: 10/14/2022]
|