1
|
Furci L, Berthelier J, Saze H. RNA N6-adenine methylation dynamics impact Hyaloperonospora arabidopsidis resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:745-753. [PMID: 38991559 DOI: 10.1093/plphys/kiae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
In plants, epitranscriptomic mark N6-adenine methylation (m6A) is dynamically regulated in response to environmental cues. However, little is known about m6A dynamics under biotic stresses and their role in environmental adaptation. Additionally, current methodologies limit the investigation of m6A dynamics at single-nucleotide resolution on specific RNA molecules. Using Oxford Nanopore Technology direct RNA sequencing and a neural network model, we show transcript-specific dynamics of m6A modification at single-nucleotide resolution during Hyaloperonospora arabidopsidis (Hpa) infection in Arabidopsis (Arabidopsis thaliana). In wild-type seedlings, pathogen infection causes a significant reduction in global m6A ratios, which corresponds with the activation of m6A-modified transcripts. Defect of m6A deposition in the m6A mutant hakai-1 mimics m6A reduction from Hpa infection at ∼70% of sites, resulting in constitutive overexpression of basal defense genes and enhanced resistance against the pathogen. Our results demonstrate that m6A dynamics impact defense response against Hpa, providing a promising target for future crop improvement strategies.
Collapse
Affiliation(s)
- Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| |
Collapse
|
2
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
3
|
Dinkeloo K, Pelly Z, McDowell JM, Pilot G. A split green fluorescent protein system to enhance spatial and temporal sensitivity of translating ribosome affinity purification. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:304-315. [PMID: 35436375 PMCID: PMC9544980 DOI: 10.1111/tpj.15779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Translating ribosome affinity purification (TRAP) utilizes transgenic plants expressing a ribosomal protein fused to a tag for affinity co-purification of ribosomes and the mRNAs that they are translating. This population of actively translated mRNAs (translatome) can be interrogated by quantitative PCR or RNA sequencing. Condition- or cell-specific promoters can be utilized to isolate the translatome of specific cell types, at different growth stages and/or in response to environmental variables. While advantageous for revealing differential expression, this approach may not provide sufficient sensitivity when activity of the condition/cell-specific promoter is weak, when ribosome turnover is low in the cells of interest, or when the targeted cells are ephemeral. In these situations, expressing tagged ribosomes under the control of these specific promoters may not yield sufficient polysomes for downstream analysis. Here, we describe a new TRAP system that employs two transgenes: One is constitutively expressed and encodes a ribosomal protein fused to one fragment of a split green fluorescent protein (GFP); the second is controlled by a stimulus-specific promoter and encodes the second GFP fragment fused to an affinity purification tag. In cells where both transgenes are active, the purification tag is attached to ribosomes by bi-molecular folding and assembly of the split GFP fragments. This approach provides increased sensitivity and better temporal resolution because it labels pre-existing ribosomes and does not depend on rapid ribosome turnover. We describe the optimization and key parameters of this system, and then apply it to a plant-pathogen interaction in which spatial and temporal resolution are difficult to achieve with current technologies.
Collapse
Affiliation(s)
- Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Zoe Pelly
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia TechBlacksburgVirginia24061USA
| |
Collapse
|
4
|
Serrazina S, Machado H, Costa RL, Duque P, Malhó R. Expression of Castanea crenata Allene Oxide Synthase in Arabidopsis Improves the Defense to Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2021; 12:628697. [PMID: 33659016 PMCID: PMC7917121 DOI: 10.3389/fpls.2021.628697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Allene oxide synthase (AOS) is a key enzyme of the jasmonic acid (JA) signaling pathway. The AOS gene was previously found to be upregulated in an Asian chestnut species resistant to infection by the oomycete Phytophthora cinnamomi (Castanea crenata), while lower expression values were detected in the susceptible European chestnut (Castanea sativa). Here, we report a genetic and functional characterization of the C. crenata AOS (CcAOS) upon its heterologous gene expression in a susceptible ecotype of Arabidopsis thaliana, which contains a single AOS gene. It was found that Arabidopsis plants expressing CcAOS delay pathogen progression and exhibit more vigorous growth in its presence. They also show upregulation of jasmonic acid and salicylic acid-related genes. As in its native species, heterologous CcAOS localized to plastids, as revealed by confocal imaging of the CcAOS-eGFP fusion protein in transgenic Arabidopsis roots. This observation was confirmed upon transient expression in Nicotiana benthamiana leaf epidermal cells. To further confirm a specific role of CcAOS in the defense mechanism against the pathogen, we performed crosses between transgenic CcAOS plants and an infertile Arabidopsis AOS knockout mutant line. It was found that plants expressing CcAOS exhibit normal growth, remain infertile but are significantly more tolerant to the pathogen than wild type plants. Together, our results indicate that CcAOS is an important player in plant defense responses against oomycete infection and that its expression in susceptible varieties may be a valuable tool to mitigate biotic stress responses.
Collapse
Affiliation(s)
- Susana Serrazina
- Faculdade de Ciências, BioISI – Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Helena Machado
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Rita Lourenço Costa
- INIAV—Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa—Tapada da Ajuda, Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui Malhó
- Faculdade de Ciências, BioISI – Biosystems & Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Islam MT, Gan HM, Ziemann M, Hussain HI, Arioli T, Cahill D. Phaeophyceaean (Brown Algal) Extracts Activate Plant Defense Systems in Arabidopsis thaliana Challenged With Phytophthora cinnamomi. FRONTIERS IN PLANT SCIENCE 2020; 11:852. [PMID: 32765538 PMCID: PMC7381280 DOI: 10.3389/fpls.2020.00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Seaweed extracts are important sources of plant biostimulants that boost agricultural productivity to meet current world demand. The ability of seaweed extracts based on either of the Phaeophyceaean species Ascophyllum nodosum or Durvillaea potatorum to enhance plant growth or suppress plant disease have recently been shown. However, very limited information is available on the mechanisms of suppression of plant disease by such extracts. In addition, there is no information on the ability of a combination of extracts from A. nodosum and D. potatorum to suppress a plant pathogen or to induce plant defense. The present study has explored the transcriptome, using RNA-seq, of Arabidopsis thaliana following treatment with extracts from the two species, or a mixture of both, prior to inoculation with the root pathogen Phytophthora cinnamomi. Following inoculation, five time points (0-24 h post-inoculation) that represented early stages in the interaction of the pathogen with its host were assessed for each treatment and compared with their respective water controls. Wide scale transcriptome reprogramming occurred predominantly related to phytohormone biosynthesis and signaling, changes in metabolic processes and cell wall biosynthesis, there was a broad induction of proteolysis pathways, a respiratory burst and numerous defense-related responses were induced. The induction by each seaweed extract of defense-related genes coincident with the time of inoculation showed that the plants were primed for defense prior to infection. Each seaweed extract acted differently in inducing plant defense-related genes. However, major systemic acquired resistance (SAR)-related genes as well as salicylic acid-regulated marker genes (PR1, PR5, and NPR1) and auxin associated genes were found to be commonly up-regulated compared with the controls following treatment with each seaweed extract. Moreover, each seaweed extract suppressed P. cinnamomi growth within the roots of inoculated A. thaliana by the early induction of defense pathways and likely through ROS-based signaling pathways that were linked to production of ROS. Collectively, the RNA-seq transcriptome analysis revealed the induction by seaweed extracts of suites of genes that are associated with direct or indirect plant defense in addition to responses that require cellular energy to maintain plant growth during biotic stress.
Collapse
Affiliation(s)
- Md Tohidul Islam
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Han Ming Gan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| | | | - Tony Arioli
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
- Seasol International R&D Department, Bayswater, VIC, Australia
| | - David Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC, Australia
| |
Collapse
|