1
|
Luks FI, Monteagudo J, Collins S, Eyerly-Webb SA, Howley LW, Lillegard JB, Lobeck IN, Beninati MJ. Surface Rendering of Cross-Sectional Imaging and Medical Illustration for Perinatal Planning in Conjoined Twins. Fetal Diagn Ther 2024:1-8. [PMID: 39561738 DOI: 10.1159/000542700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
INTRODUCTION Surface rendering of diagnostic imaging data can reveal hidden conditions with an almost life-like realism. However, early gestation images alone are often insufficient to accurately predict postnatal anatomy. Yet, time-sensitive decisions may have to be made before detailed imaging becomes possible. In this case series, we evaluate how combining medical illustration with cross-sectional diagnostic imaging can enhance the accuracy and clinical value of early visualization of conjoined twins. METHODS Early gestation magnetic resonance imaging scans underwent semiautomated computerized post hoc manipulation to allow the medical illustrator to create the most effective images of the twins. RESULTS Four sets of conjoined twins were diagnosed before 17 weeks. Surface modeling allowed spatial manipulation of the twins to highlight their anatomic connections. Further volumetric enhancement and critical interpretation of the models assisted the illustrator in creating life-like, accurate images of the twins. These illustrations allowed parents to visualize the likely presentation at birth and helped the multidisciplinary team to plan postnatal management. CONCLUSION Surface rendering and surface modeling can be combined with medical illustration to create realistic, informative images of developing fetuses, using a level of detail that is tailored to the intended audience. This may be particularly useful in visualizing complex anomalies like conjoined twins.
Collapse
Affiliation(s)
- Francois I Luks
- Hasbro Children's and Rhode Island Hospital, Providence, Rhode Island, USA
- Fetal Treatment Center of New England, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Julie Monteagudo
- Hasbro Children's and Rhode Island Hospital, Providence, Rhode Island, USA
- Fetal Treatment Center of New England, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Scott Collins
- Hasbro Children's and Rhode Island Hospital, Providence, Rhode Island, USA
| | | | - Lisa W Howley
- Midwest Fetal Center, Children's Minnesota, Minneapolis, Minnesota, USA
| | | | - Inna N Lobeck
- UW Health Fetal Diagnosis and Treatment Center, University of Wisconsin, Madison, Wisconsin, USA
| | - Michael J Beninati
- UW Health Fetal Diagnosis and Treatment Center, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Li H, Zhuang Y, Yuan W, Gu Y, Dai X, Li M, Chen H, Zhou H. Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023). Front Oncol 2024; 14:1464104. [PMID: 39558950 PMCID: PMC11571149 DOI: 10.3389/fonc.2024.1464104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
Background The incidence and mortality of colorectal cancer (CRC) have been rising steadily. Early diagnosis and precise treatment are essential for improving patient survival outcomes. Over the past decade, the integration of artificial intelligence (AI) and medical imaging technologies has positioned radiomics as a critical area of research in the diagnosis, treatment, and prognosis of CRC. Methods We conducted a comprehensive review of CRC-related radiomics literature published between 1 January 2013 and 31 December 2023 using the Web of Science Core Collection database. Bibliometric tools such as Bibliometrix, VOSviewer, and CiteSpace were employed to perform an in-depth bibliometric analysis. Results Our search yielded 1,226 publications, revealing a consistent annual growth in CRC radiomics research, with a significant rise after 2019. China led in publication volume (406 papers), followed by the United States (263 papers), whereas the United States dominated in citation numbers. Notable institutions included General Electric, Harvard University, University of London, Maastricht University, and the Chinese Academy of Sciences. Prominent researchers in this field are Tian J from the Chinese Academy of Sciences, with the highest publication count, and Ganeshan B from the University of London, with the most citations. Journals leading in publication and citation counts are Frontiers in Oncology and Radiology. Keyword and citation analysis identified deep learning, texture analysis, rectal cancer, image analysis, and management as prevailing research themes. Additionally, recent trends indicate the growing importance of AI and multi-omics integration, with a focus on improving precision medicine applications in CRC. Emerging keywords such as deep learning and AI have shown rapid growth in citation bursts over the past 3 years, reflecting a shift toward more advanced technological applications. Conclusions Radiomics plays a crucial role in the clinical management of CRC, providing valuable insights for precision medicine. It significantly contributes to predicting molecular biomarkers, assessing tumor aggressiveness, and monitoring treatment efficacy. Future research should prioritize advancing AI algorithms, enhancing multi-omics data integration, and further expanding radiomics applications in CRC precision medicine.
Collapse
Affiliation(s)
- Hao Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yupei Zhuang
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Weichen Yuan
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yutian Gu
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyan Dai
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Muhan Li
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibin Chen
- Science and Technology Department, Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongguang Zhou
- Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, The First Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Gorman C, Punzo D, Octaviano I, Pieper S, Longabaugh WJR, Clunie DA, Kikinis R, Fedorov AY, Herrmann MD. Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. Nat Commun 2023; 14:1572. [PMID: 36949078 PMCID: PMC10033920 DOI: 10.1038/s41467-023-37224-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
The exchange of large and complex slide microscopy imaging data in biomedical research and pathology practice is impeded by a lack of data standardization and interoperability, which is detrimental to the reproducibility of scientific findings and clinical integration of technological innovations. We introduce Slim, an open-source, web-based slide microscopy viewer that implements the internationally accepted Digital Imaging and Communications in Medicine (DICOM) standard to achieve interoperability with a multitude of existing medical imaging systems. We showcase the capabilities of Slim as the slide microscopy viewer of the NCI Imaging Data Commons and demonstrate how the viewer enables interactive visualization of traditional brightfield microscopy and highly-multiplexed immunofluorescence microscopy images from The Cancer Genome Atlas and Human Tissue Atlas Network, respectively, using standard DICOMweb services. We further show how Slim enables the collection of standardized image annotations for the development or validation of machine learning models and the visual interpretation of model inference results in the form of segmentation masks, spatial heat maps, or image-derived measurements.
Collapse
Affiliation(s)
- Chris Gorman
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Ron Kikinis
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrey Y Fedorov
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Papazoglou AS, Karagiannidis E, Liatsos A, Bompoti A, Moysidis DV, Arvanitidis C, Tsolaki F, Tsagkaropoulos S, Theocharis S, Tagarakis G, Michaelson JS, Herrmann MD. Volumetric Tissue Imaging of Surgical Tissue Specimens Using Micro-Computed Tomography: An Emerging Digital Pathology Modality for Nondestructive, Slide-Free Microscopy-Clinical Applications of Digital Pathology in 3 Dimensions. Am J Clin Pathol 2023; 159:242-254. [PMID: 36478204 DOI: 10.1093/ajcp/aqac143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Micro-computed tomography (micro-CT) is a novel, nondestructive, slide-free digital imaging modality that enables the acquisition of high-resolution, volumetric images of intact surgical tissue specimens. The aim of this systematic mapping review is to provide a comprehensive overview of the available literature on clinical applications of micro-CT tissue imaging and to assess its relevance and readiness for pathology practice. METHODS A computerized literature search was performed in the PubMed, Scopus, Web of Science, and CENTRAL databases. To gain insight into regulatory and financial considerations for performing and examining micro-CT imaging procedures in a clinical setting, additional searches were performed in medical device databases. RESULTS Our search identified 141 scientific articles published between 2000 and 2021 that described clinical applications of micro-CT tissue imaging. The number of relevant publications is progressively increasing, with the specialties of pulmonology, cardiology, otolaryngology, and oncology being most commonly concerned. The included studies were mostly performed in pathology departments. Current micro-CT devices have already been cleared for clinical use, and a Current Procedural Terminology (CPT) code exists for reimbursement of micro-CT imaging procedures. CONCLUSIONS Micro-CT tissue imaging enables accurate volumetric measurements and evaluations of entire surgical specimens at microscopic resolution across a wide range of clinical applications.
Collapse
Affiliation(s)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandros Liatsos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreana Bompoti
- Diagnostic Imaging, Peterborough City Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK
| | - Dimitrios V Moysidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece.,LifeWatch ERIC, Sector II-II, Seville, Spain
| | - Fani Tsolaki
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, National and Kapoditrian University of Athens, Athens, Greece
| | - Georgios Tagarakis
- Department of Cardiothoracic Surgery, AHEPA University Hospital, Thessaloniki, Greece
| | - James S Michaelson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Markus D Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Choi JW, Dean EA, Lu H, Thompson Z, Qi J, Krivenko G, Jain MD, Locke FL, Balagurunathan Y. Repeatability of metabolic tumor burden and lesion glycolysis between clinical readers. Front Immunol 2023; 14:994520. [PMID: 36875072 PMCID: PMC9975754 DOI: 10.3389/fimmu.2023.994520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
The Metabolic Tumor Volume (MTV) and Tumor Lesion Glycolysis (TLG) has been shown to be independent prognostic predictors for clinical outcome in Diffuse Large B-cell Lymphoma (DLBCL). However, definitions of these measurements have not been standardized, leading to many sources of variation, operator evaluation continues to be one major source. In this study, we propose a reader reproducibility study to evaluate computation of TMV (& TLG) metrics based on differences in lesion delineation. In the first approach, reader manually corrected regional boundaries after automated detection performed across the lesions in a body scan (Reader M using a manual process, or manual). The other reader used a semi-automated method of lesion identification, without any boundary modification (Reader A using a semi- automated process, or auto). Parameters for active lesion were kept the same, derived from standard uptake values (SUVs) over a 41% threshold. We systematically contrasted MTV & TLG differences between expert readers (Reader M & A). We find that MTVs computed by Readers M and A were both concordant between them (concordant correlation coefficient of 0.96) and independently prognostic with a P-value of 0.0001 and 0.0002 respectively for overall survival after treatment. Additionally, we find TLG for these reader approaches showed concordance (CCC of 0.96) and was prognostic for over -all survival (p ≤ 0.0001 for both). In conclusion, the semi-automated approach (Reader A) provides acceptable quantification & prognosis of tumor burden (MTV) and TLG in comparison to expert reader assisted measurement (Reader M) on PET/CT scans.
Collapse
Affiliation(s)
- Jung W Choi
- Department of Diagnostic Imaging and Interventional Radiology, H Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Erin A Dean
- Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee. Moffitt Cancer Center, Tampa, FL, United States.,Division of Hematology and Oncology, University of Florida, Gainesville, FL, , United States
| | - Hong Lu
- Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, United States.,Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zachary Thompson
- Biostatistics & Bioinformatics, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | - Jin Qi
- Cancer Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | - Gabe Krivenko
- Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | - Michael D Jain
- Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | - Frederick L Locke
- Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee. Moffitt Cancer Center, Tampa, FL, United States
| | | |
Collapse
|
6
|
Arthur A, Johnston EW, Winfield JM, Blackledge MD, Jones RL, Huang PH, Messiou C. Virtual Biopsy in Soft Tissue Sarcoma. How Close Are We? Front Oncol 2022; 12:892620. [PMID: 35847882 PMCID: PMC9286756 DOI: 10.3389/fonc.2022.892620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
A shift in radiology to a data-driven specialty has been unlocked by synergistic developments in imaging biomarkers (IB) and computational science. This is advancing the capability to deliver "virtual biopsies" within oncology. The ability to non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging to inform management of complex tumours; improving diagnostic accuracy, providing new insights into inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with over 150 histological subtypes and notorious heterogeneity. The combination of inter- and intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective treatments. We provide an overview of the process of successful IB development, the key imaging and computational advancements in STS including quantitative magnetic resonance imaging, radiomics and artificial intelligence, and the studies to date that have explored the potential biological surrogates to imaging metrics. We discuss the promising future directions of IBs in STS and illustrate how the routine clinical implementation of a virtual biopsy has the potential to revolutionise the management of this group of complex cancers and improve clinical outcomes.
Collapse
Affiliation(s)
- Amani Arthur
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Edward W. Johnston
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
- Sarcoma Unit, The Royal Marsden National Health Service (NHS) Foundation Trust, London, United Kingdom
| |
Collapse
|
7
|
Association of PTPRT Mutations with Cancer Metastasis in Multiple Cancer Types. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9386477. [PMID: 35789644 PMCID: PMC9250438 DOI: 10.1155/2022/9386477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022]
Abstract
Metastasis is one of the characteristics of advanced cancer and the primary cause of cancer-related deaths from cancer, but the mechanism underlying metastasis is unclear, and there is a lack of metastasis markers. PTPRT is a protein-coding gene involved in both signal transduction and cellular adhesion. It is also known as a tumor suppressor gene that inhibits cell malignant proliferation by inhibiting the STAT3 pathway. Recent studies have reported that PTPRT is involved in the early metastatic seeding of colorectal cancer; however, the correlation between PTPRT and metastasis in other types of cancer has not been revealed. A combined analysis using a dataset from the genomics evidence neoplasia information exchange (GENIE) and cBioPortal revealed that PTPRT mutation is associated with poor prognosis in pan-cancer and non-small-cell lung cancer. The mutations of PTPRT or “gene modules” containing PTPRT are significantly enriched in patients with metastatic cancer in multiple cancers, suggesting that the PTPRT mutations serve as potential biomarkers of cancer metastasis.
Collapse
|
8
|
Aiello M, Esposito G, Pagliari G, Borrelli P, Brancato V, Salvatore M. How does DICOM support big data management? Investigating its use in medical imaging community. Insights Imaging 2021; 12:164. [PMID: 34748101 PMCID: PMC8574146 DOI: 10.1186/s13244-021-01081-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The diagnostic imaging field is experiencing considerable growth, followed by increasing production of massive amounts of data. The lack of standardization and privacy concerns are considered the main barriers to big data capitalization. This work aims to verify whether the advanced features of the DICOM standard, beyond imaging data storage, are effectively used in research practice. This issue will be analyzed by investigating the publicly shared medical imaging databases and assessing how much the most common medical imaging software tools support DICOM in all its potential. Therefore, 100 public databases and ten medical imaging software tools were selected and examined using a systematic approach. In particular, the DICOM fields related to privacy, segmentation and reporting have been assessed in the selected database; software tools have been evaluated for reading and writing the same DICOM fields. From our analysis, less than a third of the databases examined use the DICOM format to record meaningful information to manage the images. Regarding software, the vast majority does not allow the management, reading and writing of some or all the DICOM fields. Surprisingly, if we observe chest computed tomography data sharing to address the COVID-19 emergency, there are only two datasets out of 12 released in DICOM format. Our work shows how the DICOM can potentially fully support big data management; however, further efforts are still needed from the scientific and technological community to promote the use of the existing standard, encouraging data sharing and interoperability for a concrete development of big data analytics.
Collapse
Affiliation(s)
- Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
9
|
Fedorov A, Longabaugh WJR, Pot D, Clunie DA, Pieper S, Aerts HJWL, Homeyer A, Lewis R, Akbarzadeh A, Bontempi D, Clifford W, Herrmann MD, Höfener H, Octaviano I, Osborne C, Paquette S, Petts J, Punzo D, Reyes M, Schacherer DP, Tian M, White G, Ziegler E, Shmulevich I, Pihl T, Wagner U, Farahani K, Kikinis R. NCI Imaging Data Commons. Cancer Res 2021; 81:4188-4193. [PMID: 34185678 PMCID: PMC8373794 DOI: 10.1158/0008-5472.can-21-0950] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022]
Abstract
The National Cancer Institute (NCI) Cancer Research Data Commons (CRDC) aims to establish a national cloud-based data science infrastructure. Imaging Data Commons (IDC) is a new component of CRDC supported by the Cancer Moonshot. The goal of IDC is to enable a broad spectrum of cancer researchers, with and without imaging expertise, to easily access and explore the value of deidentified imaging data and to support integrated analyses with nonimaging data. We achieve this goal by colocating versatile imaging collections with cloud-based computing resources and data exploration, visualization, and analysis tools. The IDC pilot was released in October 2020 and is being continuously populated with radiology and histopathology collections. IDC provides access to curated imaging collections, accompanied by documentation, a user forum, and a growing number of analysis use cases that aim to demonstrate the value of a data commons framework applied to cancer imaging research. SIGNIFICANCE: This study introduces NCI Imaging Data Commons, a new repository of the NCI Cancer Research Data Commons, which will support cancer imaging research on the cloud.
Collapse
Affiliation(s)
- Andrey Fedorov
- Brigham and Women's Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts.
| | | | - David Pot
- General Dynamics, Bethesda, Maryland
| | | | | | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
- Departments of Radiation Oncology & Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands
| | | | - Rob Lewis
- Radical Imaging, Boston, Massachusetts
| | - Afshin Akbarzadeh
- Brigham and Women's Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Dennis Bontempi
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, Massachusetts
| | | | - Markus D Herrmann
- Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | - Mi Tian
- Institute for Systems Biology, Seattle, Washington
| | - George White
- Institute for Systems Biology, Seattle, Washington
| | | | | | - Todd Pihl
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ulrike Wagner
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Ron Kikinis
- Brigham and Women's Hospital, Department of Radiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Cheung HMC, Rubin D. Challenges and opportunities for artificial intelligence in oncological imaging. Clin Radiol 2021; 76:728-736. [PMID: 33902889 DOI: 10.1016/j.crad.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Imaging plays a key role in oncology, including the diagnosis and detection of cancer, determining clinical management, assessing treatment response, and complications of treatment or disease. The current use of clinical oncology is predominantly qualitative in nature with some relatively crude size-based measurements of tumours for assessment of disease progression or treatment response; however, it is increasingly understood that there may be significantly more information about oncological disease that can be obtained from imaging that is not currently utilized. Artificial intelligence (AI) has the potential to harness quantitative techniques to improve oncological imaging. These may include improving the efficiency or accuracy of traditional roles of imaging such as diagnosis or detection. These may also include new roles for imaging such as risk-stratifying patients for different types of therapy or determining biological tumour subtypes. This review article outlines several major areas in oncological imaging where there may be opportunities for AI technology. These include (1) screening and detection of cancer, (2) diagnosis and risk stratification, (3) tumour segmentation, (4) precision oncology, and (5) predicting prognosis and assessing treatment response. This review will also address some of the potential barriers to AI research in oncological imaging.
Collapse
Affiliation(s)
- H M C Cheung
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - D Rubin
- Department of Radiology, Stanford University, CA, USA.
| |
Collapse
|
11
|
Warner JL, Klemm JD. Informatics Tools for Cancer Research and Care: Bridging the Gap Between Innovation and Implementation. JCO Clin Cancer Inform 2020; 4:784-786. [PMID: 32870722 DOI: 10.1200/cci.20.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Juli D Klemm
- National Institutes of Health, National Cancer Institute, Bethesda, MD
| |
Collapse
|