1
|
Christodoulidis G, Agko SE, Koumarelas KE, Kouliou MN, Zacharoulis D. Advancements and challenges in the treatment of esophageal cancer: A comprehensive review. World J Clin Oncol 2024; 15:1463-1467. [DOI: 10.5306/wjco.v15.i12.1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024] Open
Abstract
Esophageal cancer (EC) is an aggressive malignancy with a poor prognosis, ranking seventh in incidence and sixth cancer-related deaths globally. EC is classified in two main types, the esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC), with ESCC being more common in Eastern Europe, South Asia, and Africa, while EAC is prevalent in Western Europe and North America. Molecular analysis identifies three subgroups of ESCC, each with distinct genetic mutations and treatment responses. Early-stage EC is often difficult to detect, leading to late-stage diagnoses that necessitate systemic drug therapies, including molecular-targeted therapies and immunotherapies. Immunotherapy, particularly immune checkpoint inhibitor, has shown promising results in improving survival rates for metastatic or persistent EC. It is particularly important to target to multidisciplinary combination therapies, integrating surgery, chemoradiotherapy, targeted therapy and immunotherapy. Additionally, radioimmunotherapy is being explored for its potential to enhance treatment efficacy, especially in advanced and metastatic tumors. However, the pathological complete response rate to neoadjuvant chemoradiotherapy remains suboptimal, highlighting the need for novel treatment strategies. Future research should focus on optimizing treatment combinations and identifying predictive biomarkers to improve clinical outcomes for EC patients.
Collapse
Affiliation(s)
| | - Sara Eirini Agko
- Intensive Care Unit, Asklepios Paulinen Clinic Wiesbaden, Wiesbaden 65197, Hesse, Germany
| | | | - Marina Nektaria Kouliou
- Department of General Surgery, University Hospital of Larissa, Larisa 41110, Thessalía, Greece
| | - Dimitris Zacharoulis
- Department of Surgery, University Hospital of Larissa, Larisa GR41334, Thessalía, Greece
| |
Collapse
|
2
|
Nobel T, Sihag S. Advances in Diagnostic, Staging, and Restaging Evaluation of Esophageal and Gastric Cancer. Surg Oncol Clin N Am 2024; 33:467-485. [PMID: 38789190 DOI: 10.1016/j.soc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The initial endoscopic and staging evaluation of esophagogastric cancers must be accurate and comprehensive in order to select the optimal therapeutic plan for the patient. Esophageal and gastric cancers (and treatment paradigms) are delineated by their proximity to the cardia (within 2 cm). The most frequent and important symptom that informs the initial staging evaluation is dysphagia, which is associated with at least cT3 or locally advanced disease. Endoscopic ultrasound is often needed if earlier stage disease is suspected, preferably in combination with endoscopic mucosal or submucosal resection or fine-needle aspiration of suspicious lymph nodes to enhance staging accuracy.
Collapse
Affiliation(s)
- Tamar Nobel
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, C-881, New York, NY 10065, USA
| | - Smita Sihag
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, C-881, New York, NY 10065, USA.
| |
Collapse
|
3
|
Yang Q, Li X, Zhu W. Identification of a unique stress response state of T cells-related gene signature in patients with gastric cancer. Aging (Albany NY) 2024; 16:9709-9726. [PMID: 38848147 PMCID: PMC11210248 DOI: 10.18632/aging.205895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Gastric cancer (GC), the third most lethal cancer worldwide, is often diagnosed at an advanced stage, leaving limited therapeutic options. Given the diverse outcomes among GC patients with similar AJCC/UICC-TNM characteristics, there is a pressing need for more reliable prognostic tools. Recent advances in targeted therapy and immunotherapy have underscored this necessity. In this context, our study focused on a novel stress response state of T cells, termed TSTR, identified across multiple cancers, which is associated with resistance to immunotherapy. We aimed to develop a predictive gene signature for the TSTR phenotype within the tumor microenvironment (TME) of GC patients. By categorizing GC patients into high and low TSTR groups based on the infiltration states of TME TSTR cells, we observed significant differences in clinical prognosis and characteristics between the groups. Through a multi-step bioinformatics approach, we established an eight-gene signature based on genes differentially expressed between these groups. We conducted functional validations for the signature gene PDGFRL in GC cells. This gene signature effectively stratifies GC patients into high and low-risk categories, demonstrating robustness in predicting clinical outcomes. Furthermore, these risk groups exhibited distinct immune profiles, somatic mutations, and drug susceptibilities, highlighting the potential of our gene signature to enhance personalized treatment strategies in clinical practice.
Collapse
Affiliation(s)
- Qin Yang
- Puai Medical College, Shaoyang University, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Weiyuan Zhu
- Puai Medical College, Shaoyang University, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| |
Collapse
|
4
|
Qian T, Liu D, Cao G, Chen Z, Zhang Q. Neoadjuvant PD-1 Plus Chemotherapy for Locally Advanced Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241231610. [PMID: 38497137 PMCID: PMC10946079 DOI: 10.1177/15330338241231610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2024] [Accepted: 01/10/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Clinical studies have shown that programmed cell death-1 (PD-1) inhibitors can activate T cells and inhibit cancer growth. Therefore, the use of a PD-1 inhibitor plus chemotherapy as neoadjuvant chemotherapy for locally advanced esophageal cancer is worth further exploration. METHODS Patients with locally advanced esophageal squamous cell carcinoma were enrolled in this study to receive two cycles of a preoperative combination of toripalimab, paclitaxel, and cisplatin. Efficacy was evaluated after two treatment cycles. The patients' postoperative pathological staging was analyzed and compared. Surgery was performed within 42 days of the start date of the last chemotherapy cycle. RESULTS Neoadjuvant immunochemotherapy achieved a high pathologic complete response (pCR) rate (29.0%), major pathological response rate (41.9%), and objective response rate (80.6%) and demonstrated statistically significant downstaging after neoadjuvant therapy (P < .05) with manageable treatment-related adverse effects. No significant association was found between PD-L1 level and pCR (P = .365). In addition, R0 resection was achieved in all 31 (100%) patients during surgery. For all the included patients, the one-year progression-free survival rate was 87.1% (95% CI: 75.3%-98.9%), the one-year overall survival (OS) rate was 96.8% (95% CI: 79.8%-95.9%), and the two-year OS rate was 83.9% (95% CI: 71.6%-92.2%). CONCLUSIONS Our findings indicate that this combination may be a potential neoadjuvant therapy regimen in this setting.
Collapse
Affiliation(s)
- Ting Qian
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Delin Liu
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Guochun Cao
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhipeng Chen
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Cancer Institute of Jiangsu Province, Nanjing, China
| |
Collapse
|
5
|
Wang L, Du C, Jiang B, Chen L, Wang Z. Adjusting the dose of traditional drugs combined with immunotherapy: reshaping the immune microenvironment in lung cancer. Front Immunol 2023; 14:1256740. [PMID: 37901223 PMCID: PMC10600379 DOI: 10.3389/fimmu.2023.1256740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/31/2023] Open
Abstract
Immunotherapy is currently the most promising clinical treatment for lung cancer, not only revolutionizing second-line therapy but now also approved for first-line treatment. However, its clinical efficiency is not high and not all patients benefit from it. Thus, finding the best combination strategy to expand anti-PD-1/PD-L1-based immunotherapy is now a hot research topic. The conventional use of chemotherapeutic drugs and targeted drugs inevitably leads to resistance, toxic side effects and other problems. Recent research, however, suggests that by adjusting the dosage of drugs and blocking the activation of mutational mechanisms that depend on acquired resistance, it is possible to reduce toxic side effects, activate immune cells, and reshape the immune microenvironment of lung cancer. Here, we discuss the effects of different chemotherapeutic drugs and targeted drugs on the immune microenvironment. We explore the effects of adjusting the dosing sequence and timing, and the mechanisms of such responses, and show how the effectiveness and reliability of combined immunotherapy provide improved treatment outcomes.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Changqi Du
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Bing Jiang
- Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Chen
- Guangzhou Medical University-Guangzhou Institute of Biomedicine and Health (GMU-GIBH) Joint School of Life Sciences, Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zibing Wang
- Department of Immunotherapy, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Pan Y, Ma Y, Dai G. The Prognostic Value of the Prognostic Nutritional Index in Patients with Advanced or Metastatic Gastric Cancer Treated with Immunotherapy. Nutrients 2023; 15:4290. [PMID: 37836573 PMCID: PMC10574242 DOI: 10.3390/nu15194290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, the therapeutic effect of monoclonal antibodies against programmed cell death protein-1 (PD-1) in patients with locally advanced or metastatic gastric or gastroesophageal junction (G/GEJ) cancer has been confirmed in many studies. The exploration and discovery of new biomarker combinations based on tumor characteristics and tumor microenvironment help screen superior patients and realize precise immunotherapy. As an evaluation index of immunonutritional status, the prognostic nutritional index (PNI) is low cost, simple and easy to obtain, and effective in determining the prognosis of tumor patients. We selected 268 consecutive AGC patients who were treated with ICI therapy from December 2014 to May 2021. We measured their pretreatment of the PNI levels and performed univariate and multivariate Cox regression analyses of progression-free survival (PFS) or overall survival (OS) after ICI therapy. The low pretreatment PNI level of AGC patients was significantly correlated with shorter PFS (p < 0.001) and OS (p < 0.001) after ICI treatment. In univariate and multivariate analyses of the associations between PNI and OS or PFS, PNI is an independent prognostic factor for PFS (HR = 1.511; 95%CI 1.154-1.977; p = 0.003) and OS (HR = 1.431; 95%CI 1.049-1.951; p = 0.024), respectively. Notably, decreased PNI during treatment with ICIs was associated with early relapse and death. Pretreatment with PNI might help to identify AGC patients who will obtain a survival benefit from ICI therapy.
Collapse
Affiliation(s)
- Yuting Pan
- Chinese PLA Medical School, Beijing 100853, China; (Y.P.); (Y.M.)
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Yue Ma
- Chinese PLA Medical School, Beijing 100853, China; (Y.P.); (Y.M.)
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Guanghai Dai
- Chinese PLA Medical School, Beijing 100853, China; (Y.P.); (Y.M.)
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Zhang XD, Liu ZY, Luo K, Wang XK, Wang MS, Huang S, Li RF. Clinical implications of RAB13 expression in pan-cancer based on multi-databases integrative analysis. Sci Rep 2023; 13:16859. [PMID: 37803063 PMCID: PMC10558570 DOI: 10.1038/s41598-023-43699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
Worldwide, cancer is a huge burden, and each year sees an increase in its incidence. RAB (Ras-related in brain) 13 is crucial for a number of tumor types. But more research on RAB13's tumor-related mechanism is still required. This study's goal was to investigate RAB13's function in human pan-cancer, and we have also preliminarily explored the relevant mechanisms. To investigate the differential expression, survival prognosis, immunological checkpoints, and pathological stage of RAB13 in human pan-cancer, respectively, databases of TIMER2.0, GEPIA 2, and UALCAN were employed. CBioPortal database was used to analyze the mutation level, meanwhile, PPI network was constructed based on STRING website. The putative functions of RAB13 in immunological infiltration were investigated using single sample gene set enrichment analysis (ssGSEA). The mechanism of RAB13 in hepatocellular cancer was also briefly investigated by us using gene set enrichment analysis (GSEA). RAB13 was differentially expressed in a number of different cancers, including liver hepatocellular carcinoma (LIHC), stomach adenocarcinoma (STAD), etc. Additionally, RAB13 overexpression in LGG and LIHC is associated with a worse prognosis, including overall survival (OS) and disease-free survival (DFS). Then, we observed that early in BLCA, BRAC, CHOL, ESCA, HNSC, KICH, KIRC, LIHC, LUAD, LUSC, and STAD, the level of RAB13 expression was raised. Next, we found that "amplification" was the most common mutation in RAB13. The expression of SLC39A1, JTB, SSR2, SNAPIN, and RHOC was strongly positively linked with RAB13, according to a correlation study. RAB13 favorably regulated B cell, CD8 + T cell, CD4 + T cell, macrophage, neutrophil, and dendritic cell in LIHC, according to immune infiltration analysis. Immune checkpoint study revealed a positive correlation between RAB13 expression and PD1, PDL1, and CTLA4 in LIHC. According to GSEA, RAB13 is involved in a number of processes in LIHC, including MTORC1 signaling, MYC targets v1, G2M checkpoint, MITOTIC spindle, DNA repair, P53 pathway, glycolysis, PI3K-AKT-MTOR signaling, etc. RAB13 is a possible therapeutic target in LIHC and can be used as a prognostic marker.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Zhong-Yuan Liu
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Kai Luo
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Xiang-Kun Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Mao-Sen Wang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Shuai Huang
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| | - Ren-Feng Li
- Departments of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
8
|
Liu X, Lv K, Wang J, Lin C, Liu H, Zhang H, Li H, Gu Y, Li R, He H, Xu J. C-type lectin receptor Dectin-1 blockade on tumour-associated macrophages improves anti-PD-1 efficacy in gastric cancer. Br J Cancer 2023; 129:721-732. [PMID: 37422529 PMCID: PMC10421860 DOI: 10.1038/s41416-023-02336-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND This study aimed to investigate the expression and clinical significance of Dendritic cell-associated C-type lectin-1 (Dectin-1) in gastric cancer (GC), and to explore the mechanism of Dectin-1 regulating tumour-associated macrophage (TAM)-mediated immune evasion in GC. METHODS The association of Dectin-1+ cells with clinical outcomes was inspected by immunohistochemistry on tumour microarrays. Flow cytometry and RNA sequencing were applied to detect characteristics of T cells, phenotypic and transcriptional features of Dectin-1+ TAMs. The effect of Dectin-1 blockade was evaluated using an in vitro intervention experiment based on fresh GC tissues. RESULTS High infiltration of intratumoral Dectin-1+ cells predicted poor prognosis in GC patients. Dectin-1+ cells were mainly composed of TAMs, and the accumulation of Dectin-1+ TAMs was associated with T-cell dysfunction. Notably, Dectin-1+ TAMs exhibited an immunosuppressive phenotype. Furthermore, blockade of Dectin-1 could reprogramme Dectin-1+ TAMs and reactivate anti-tumour effects of T cells, as well as enhanced PD-1 inhibitor-mediated cytotoxicity of CD8+ T cells against tumour cells. CONCLUSIONS Dectin-1 could affect T-cell anti-tumour immune response by regulating the immunosuppressive function of TAMs, leading to poor prognosis and immune evasion in GC patients. Blockade of Dectin-1 can be used alone or in combination with current therapeutic strategies in GC.
Collapse
Affiliation(s)
- Xin Liu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kunpeng Lv
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Pan J, Huang T, Deng Z, Zou C. Roles and therapeutic implications of m6A modification in cancer immunotherapy. Front Immunol 2023; 14:1132601. [PMID: 36960074 PMCID: PMC10028070 DOI: 10.3389/fimmu.2023.1132601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Recent studies have demonstrated that N6-methyladenosine (m6A), the most abundant, dynamic, and reversible epigenetic RNA modification in eukaryotes, is regulated by a series of enzymes, including methyltransferases (writers), demethylases (erasers), and m6A recognition proteins (readers). Aberrant regulation of m6A modification is pivotal for tumorigenesis, progression, invasion, metastasis, and apoptosis of malignant tumors. Immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, as recognized by the 2018 Nobel Prize in Medicine and Physiology. However, not all cancer patients response to ICI therapy, which is thought to be the result of intricate immune escape mechanisms. Recently, numerous studies have suggested a novel role for m6A epigenetic modification in the regulation of tumor immune evasion. Herein, we review the relevant mechanisms of m6A regulators in regulating various key signaling pathways in cancer biology and how m6A epigenetic modifications regulate the expression of immune checkpoints, opening a new window to understand the roles and mechanisms of m6A epigenetic modifications in regulating tumor immune evasion. In addition, we highlight the prospects and development directions of future combined immunotherapy strategies based on m6A modification targeting, providing directions for promoting the treatment outcomes of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Juan Pan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tuxiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhenjun Deng
- Department of Dermatology, The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital), Shenzhen, China
- The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chang Zou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
- Department of Clinical Medical Research Center, The 2nd Clinical Medical College (Shenzhen People’s Hospital) of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Shenzhen Public Service Platform On Tumor Precision Medicine and Molecular Diagnosis, The Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen, China
| |
Collapse
|
10
|
Li X, Li L, Wu J. The members of the miR-148/152 family inhibit cancer stem cell-like properties in gastric cancer via negative regulation of ITGA5. J Transl Med 2023; 21:105. [PMID: 36765401 PMCID: PMC9912648 DOI: 10.1186/s12967-023-03894-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The role of microRNA (miRNA) in modulating the function of cancer stem cells through diverse signaling pathway has been evidenced. We here identified a role of microRNA (miRNA) family, specifically miR-148/152, in gastric cancer and delineated its functional effects on gastric cancer stem cells. METHODS Bioinformatics analysis was conducted to analyze expression of integrin α5 (ITGA5) which was verified through expression determination in clinical tissue samples. Next, the upstream regulatory factors of ITGA5 were determined. CD44+EpCAM (high) cells sorted from AGS cells subjected to gain-of-function experiments, followed by evaluation of their capacity of colony formation, generation of tumorosphere, cell migration and viability in vitro and xenograft tumor formation in vivo. RESULTS ITGA5 was elevated in gastric cancer tissues and confirmed as a target gene of the miR-148/152 family members. The miR-148/152 family members were downregulated in gastric cancer tissues and cells. Decreased expression of miR-148/152 family members was also detected in gastric cancer stem cells. However, the raised expression led to reduced colony formation, tumorosphere, cell migration, cell viability, and drug resistance of CD44+EpCAM (high) AGS cells in vitro, and tumorigenesis in vitro. ITGA5 overexpression reversed the effect of the miR-148/152 family members. CONCLUSIONS This study demonstrates that the miR-148/152 family members may prevent gastric cancer stem cell-like properties by targeting ITGA5, which can serve as an appealing target for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaoying Li
- grid.412644.10000 0004 5909 0696Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 People’s Republic of China
| | - Lin Li
- grid.412644.10000 0004 5909 0696Department of Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032 People’s Republic of China
| | - Jiangying Wu
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, 110032, Liaoning, People's Republic of China.
| |
Collapse
|
11
|
Yoshida T, Ogura G, Tanabe M, Hayashi T, Ohbayashi C, Azuma M, Kunisaki C, Akazawa Y, Ozawa S, Matsumoto S, Suzuki T, Mitoro A, Fukunaga T, Shimizu A, Fujimoto G, Yao T. Clinicopathological features of PD-L1 protein expression, EBV positivity, and MSI status in patients with advanced gastric and esophagogastric junction adenocarcinoma in Japan. Cancer Biol Ther 2022; 23:191-200. [PMID: 35220884 PMCID: PMC8890430 DOI: 10.1080/15384047.2022.2038002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This real-world study examined the prevalence of programmed death ligand-1 (PD-L1) expression and assessed the frequency of microsatellite instability-high (MSI-H) status and Epstein-Barr virus (EBV) positivity in Japanese patients with advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma. This multicenter (5 sites), retrospective, observational study (November 2018–March 2019) evaluated Japanese patients with advanced gastric and GEJ adenocarcinoma after surgical resection (Stage II/III at initial diagnosis) or unresectable advanced cancer (Stage IV). The primary objectives were prevalence of PD-L1 expression (combined positive score [CPS] ≥1), MSI status, and EBV positivity. Tumor specimens of 389/391 patients were analyzed (male, 67.1%; mean age, 67.6 ± 12.2 years); 241/389 (62%) were PD-L1 positive, 24/379 (6.3%) had MSI-H tumors, and 13/389 (3.3%) were EBV positive. PD-L1 expression was higher in tumor-infiltrating immune cells than in tumor cells for lower CPS cutoffs. Among patients with MSI-H tumors and EBV-positive tumors, 19/24 (79.2%) and 9/13 (69.2%), respectively, were PD-L1 positive. A greater proportion of patients with MSI-H tumors (83.3% [20/24]) were PD-L1 positive than those with MSI-low/stable tumors (60.8% [216/355]; p = .0297); similarly, an association was observed between history of H pylori infection and PD-L1 expression. A higher proportion of patients with MSI-H tumors demonstrated PD-L1 expression with a CPS ≥10 (66.7% [16/24]) vs those with MSI-low/stable tumors (24.8% [88/355]; p < .0001). The prevalence of PD-L1 positivity among Japanese patients was comparable to that in previous pembrolizumab clinical trials and studies in gastric cancer. Particularly, higher PD-L1 expression was observed in MSI-H tumors.
Collapse
Affiliation(s)
- Tsutomu Yoshida
- Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Go Ogura
- Department of Pathology, Tokai University School of Medicine, Isehara, Japan
| | - Mikiko Tanabe
- Division of Diagnostic Pathology, Yokohama City University Medical Center, Yokohama, Japan
| | - Takuo Hayashi
- Department of Diagnostic Pathology, Main Hospital, Juntendo University, Tokyo, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan
| | - Mizutomo Azuma
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Chikara Kunisaki
- Department of Surgery, Gastroenterological Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yoichi Akazawa
- Department of Gastroenterology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Soji Ozawa
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Isehara, Japan
| | - Sohei Matsumoto
- Department of Surgery, Nara Medical University, Kashihara, Japan
| | - Takayoshi Suzuki
- Division of Gastroenterology and Hepatology, Tokai University School of Medicine, Tokai University, Isehara, Japan
| | - Akira Mitoro
- Department of Gastroenterology, Nara Medical University, Kashihara, Japan
| | - Tetsu Fukunaga
- Department of Gastroenterology and Minimally Invasive Surgery, School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Yang Y, Wang F. Research trends on anti-PD-1/PD-L1 immunotherapy for esophageal cancer: A bibliometric analysis. Front Oncol 2022; 12:983892. [DOI: 10.3389/fonc.2022.983892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
ObjectivesThe study aims to summarize publication characteristics of anti-programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) immunotherapy for esophageal cancer and create scientific maps to explore hotspots and emerging trends with bibliometric methods.MethodsThe publications between 2012 and 2021 were retrieved from the Web of Science Core Collection (WoSCC) on June 20, 2022. Bibliometric tools including HistCite, VOSviewer, and CiteSpace were used for statistical analysis. Data on the trend of the annual output, countries/regions, institutions, journals, authors, subject categories, keywords, and co-cited references were presented in this study.ResultsA total of 552 publications written by 3,623 authors of 872 institutions, 44 countries/regions in 250 journals were included in the bibliometric study. China, USA and Japan were the key countries in this field. Kato Ken, Bang Yung-Jue, Frontiers in Oncology, Journal of Clinical Oncology and Natl Canc Ctr were the top 1 productive author, co-cited author, productive journal, co-cited journal and prolific institution, respectively. The top 4 most present keywords were esophageal cancer, immunotherapy, esophageal squamous cell carcinoma and PD-L1. Neoadjuvant chemotherapy, response, PD-1 blockade and CD8+ T cell were four latest research frontiers. The keywords reflected the progress from PD-1/PD-L1 expression to the clinical application of PD-1/PD-L1 inhibitors. The current researches mainly focus on neoadjuvant immunotherapy for esophageal cancer and development of biomarkers. Further research is warranted to determine effective predictive biomarkers or models, illustrate the molecular mechanism of combined treatment, and construct the optimal therapeutic strategy.ConclusionsThis study visually analyzed the global trend and hotspots of anti-PD-1/PD-L1 immunotherapy for esophageal cancer over the past decade. The results could guide scientists to comprehensively understand the global frontiers and determine future directions.
Collapse
|
13
|
Wu J, Deng R, Ni T, Zhong Q, Tang F, Li Y, Zhang Y. Efficacy and safety of radiotherapy/chemoradiotherapy combined with immune checkpoint inhibitors for locally advanced stages of esophageal cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:887525. [PMID: 35992797 PMCID: PMC9381695 DOI: 10.3389/fonc.2022.887525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background Radiotherapy (RT)/Chemoradiotherapy (CRT) are important treatments for all stages of esophageal cancer (EC). The combination of immune checkpoint inhibitors (ICIs) with RT/CRT seems to be promising avenue for the treatment of EC. Therefore, a systematic review and meta-analysis was performed in order to assess the safety and efficacy of RT/CRT and ICI combination therapy for EC patients. Methods PubMed and several other databases were searched (according to specific criteria) to find relevant studies published prior to the 31st of December 2021. Results 1962 articles were identified for screening, and six trials containing 668 patients were identified and pooled to determine the one- and two-year overall survival (OS), which were 84.5% (95% confidence interval (CI): 69.9%-100%) and 68.3% (95% CI: 49.0%-95.1%), respectively. Additionally, the rate of pooled grade 3-5 adverse reactions was 41.0% (95% CI: 31.2%-51.2%). The rate of specific grade 3-5 adverse reactions are as follows: lymphopenia (36.8%-60%), esophagitis (20%), anastomotic leakage (18%), esophageal fistula (10%), pain (10%), leukopenia (5.3%-10%), esophageal hemorrhage (2.5%-5%), chyle leakage (3%), fatigue (5%), cough (2.7%-5%), diarrhea (2.7%), pulmonary embolism (2.5%) and allergic reaction (2.5%). The pooled rate of pneumonitis of grade 3-5 and grade 1-5 was 0.8% (95% CI: 0.1%-0.16%, I2: 0%) and 5.4% (95% CI: 2.0%-14.2%, I2: 82%). For thoracic complication, esophagitis was 63.6% (95% CI: 42.4%-80.6%), which appeared to be more frequent with the combination of ICIs to RT/CRT (12%-37.7%). Other thoracic complications include esophageal hemorrhage (2.5%-10%), esophageal fistula (6%-10%) and anastomotic leakage (6%-21%). Additionally, some of the trials did not report cardiac related adverse reactions. The subgroup analyses also revealed that the pooled rate patients with grade 3-5 pneumonitis was higher for CRT/RT with concurrent and sequential ICI treatment (1.9%) than other groups (0.8%). Conclusion This study suggests that the addition of ICIs to RT/CRT for EC patients may be both safe and feasible. However, larger randomized studies are needed to confirm these results.
Collapse
Affiliation(s)
- Jing Wu
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Rong Deng
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Tingting Ni
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Qin Zhong
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Fei Tang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Yan Li
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
| | - Yu Zhang
- Department of Oncology, Guizhou Provincial People’s Hospital, Guizhou Cancer Center, Guiyang, China
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People’s Hospital, Guiyang, China
| |
Collapse
|
14
|
Identification of AKIRIN2 as a potential biomarker and correlation with immunotherapy in gastric adenocarcinoma by integrated bioinformatics analysis. Sci Rep 2022; 12:8400. [PMID: 35589807 PMCID: PMC9120157 DOI: 10.1038/s41598-022-12531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/07/2022] Open
Abstract
Gastric adenocarcinoma is major type of gastric cancer that endangers human health. AKIRIN2 has been shown to be associated with cholangiocarcinoma promoting invasion and angiogenesis. In this study, AKIRIN2 is highly expressed in Gastric adenocarcinoma through bioinformatics analysis based on Stomach adenocarcinoma samples data from The Cancer Genome Atlas. Correlation analysis showed that the high-expression of AKIRIN2 was associated with poor survival rate compared to the low-expression group. Univariate and multivariate Cox regression analyses determined the correlation between clinical characteristics and overall survival. Next, the correlation between AKIRIN2 and immune infiltration was evaluated. The distribution of 24 immune cells and their correlation with the expression of AKIRIN2 were explored using the immune cell database. In addition, three Immune cell methods were used to verify the positive correlation between immune cells and AKIRIN2. Also, Genomics of Drug Sensitivity in Cancer database was utilized to verify the correlation between AKIRIN2 expression level and the efficacy of chemotherapy and immunotherapy. The results showed that AKIRIN2 is an effective biomarker of Gastric adenocarcinoma prognosis, which can guide chemotherapy and immunotherapy and clarify the progress of Gastric adenocarcinoma promoted by immune microenvironment.
Collapse
|
15
|
Zhao L, Liu Y, Zhang S, Wei L, Cheng H, Wang J, Wang J. Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death Dis 2022; 13:378. [PMID: 35444235 PMCID: PMC9021207 DOI: 10.1038/s41419-022-04821-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Metabolic disorders and abnormal immune function changes occur in tumor tissues and cells to varying degrees. There is increasing evidence that reprogrammed energy metabolism contributes to the development of tumor suppressive immune microenvironment and influences the course of gastric cancer (GC). Current studies have found that tumor microenvironment (TME) also has important clinicopathological significance in predicting prognosis and therapeutic efficacy. Novel approaches targeting TME therapy, such as immune checkpoint blockade (ICB), metabolic inhibitors and key enzymes of immune metabolism, have been involved in the treatment of GC. However, the interaction between GC cells metabolism and immune metabolism and how to make better use of these immunotherapy methods in the complex TME in GC are still being explored. Here, we discuss how metabolic reprogramming of GC cells and immune cells involved in GC immune responses modulate anti-tumor immune responses, as well as the effects of gastrointestinal flora in TME and GC. It is also proposed how to enhance anti-tumor immune response by understanding the targeted metabolism of these metabolic reprogramming to provide direction for the treatment and prognosis of GC.
Collapse
Affiliation(s)
- Lin Zhao
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Yuanyuan Liu
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Simiao Zhang
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Lingyu Wei
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Hongbing Cheng
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.,Department of Microbiology, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Jinsheng Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Key Laboratory of Esophageal Cancer Basic Research and Clinical Transformation, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| | - Jia Wang
- Collaborative Innovation Center for Aging Mechanism Research and Transformation, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China. .,Department of Immunology, Center for Healthy Aging, Changzhi Medical College, Changzhi, Shanxi, 046000, China.
| |
Collapse
|
16
|
Zhou F, Ding W, Mao Q, Jiang X, Chen J, Zhao X, Xu W, Huang J, Zhong L, Sun X. The regulation of hsacirc_004413 promotes proliferation and drug resistance of gastric cancer cells by acting as a competing endogenous RNA for miR-145-5p. PeerJ 2022; 10:e12629. [PMID: 35415017 PMCID: PMC8995023 DOI: 10.7717/peerj.12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Background Whether circRAN, which acts as a microRNA sponge, plays a role in 5-fluorouracil (5-Fu) resistant gastric cancer has not been reported. In this study, a 5-Fu resistant cell line with an IC50 of 16.59 µM was constructed. Methods Using comparative analysis of circRNA in the transcriptomics of resistant and sensitive strains, 31 differentially expressed circRNAs were detected, and the microRNA interacting with them was predicted. Results Hsacirc_004413 was selected for verification in drug resistant and sensitive cells. By interfering with hsacirc_004413 using antisense RNA, the sensitivity of drug resistant cells to 5-Fu was significantly promoted, and the apoptosis and necrosis of the cells were significantly increased. In sensitive cells, inhibition by inhibitors enhanced the resistance of cells to 5-Fu. We hypothesize that hsacirc_004413 makes gastric cancer cells resistant to 5-Fu mainly through adsorption of miR-145-5p.
Collapse
Affiliation(s)
- Fusheng Zhou
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weiqun Ding
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiqi Mao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xiaoyun Jiang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiajie Chen
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xianguang Zhao
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Weijia Xu
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Jiaxin Huang
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| | - Xu Sun
- Department of Gastroenterology, Huashan Hospital North, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Fu M, Huang Y, Peng X, Li X, Luo N, Zhu W, Yang F, Chen Z, Ma S, Zhang Y, Li Q, Hu G. Development of Tumor Mutation Burden-Related Prognostic Model and Novel Biomarker Identification in Stomach Adenocarcinoma. Front Cell Dev Biol 2022; 10:790920. [PMID: 35399509 PMCID: PMC8983817 DOI: 10.3389/fcell.2022.790920] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/21/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Stomach adenocarcinoma (STAD) is one of the most common tumors. Tumor mutation burden (TMB) has been linked to immunotherapy response. We wanted to see if there was any link between TMB and cancer prognosis. Methods: The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases were used to obtain mutation data, gene expression profiles, and clinical data. We looked at the differences in gene expression and immune markers between low and high TMB groups, built an immune prognostic model, and created a dynamic nomograph App that may be used in the clinic. Simultaneously, We ran the immunotherapy prediction and model comparison at the same time. Finally, model gene mutation and copy number variation (CNV) were displayed. The cellular functional experiments were used to investigate the potential role of GLP2R in gastric cancer. Results: Firstly, basic mutation information and differences in immune infiltration in STAD are revealed. Secondly, the prognostic model developed by us has good accuracy, and the corresponding dynamic nomograph Apps online and immunotherapy prediction facilitate clinical transformation. Furthermore, GLP2R knockdown significantly inhibited the proliferation, migration of gastric cancer cells in vitro. Conclusion: Our findings imply that TMB plays a significant role in the prognosis of STAD patients from a biological perspective. GLP2R may serve as a potential target for gastric cancer.
Collapse
Affiliation(s)
- Min Fu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Zhu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziqi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengling Ma
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanyuan Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yuanyuan Zhang, ; Qianxia Li, ; Guangyuan Hu,
| |
Collapse
|
18
|
Shen DD, Pang JR, Bi YP, Zhao LF, Li YR, Zhao LJ, Gao Y, Wang B, Wang N, Wei L, Guo H, Liu HM, Zheng YC. LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in gastric cancer. Mol Cancer 2022; 21:75. [PMID: 35296335 PMCID: PMC8925194 DOI: 10.1186/s12943-022-01557-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/20/2022] Open
Abstract
Background Histone lysine-specific demethylase 1 (LSD1) expression has been shown to be significantly elevated in gastric cancer (GC) and may be associated with the proliferation and metastasis of GC. It has been reported that LSD1 repressed tumor immunity through programmed cell death 1 ligand 1 (PD-L1) in melanoma and breast cancer. The role of LSD1 in the immune microenvironment of GC is unknown. Methods Expression LSD1 and PD-L1 in GC patients was analyzed by immunohistochemical (IHC) and Western blotting. Exosomes were isolated from the culture medium of GC cells using an ultracentrifugation method and characterized by transmission electronic microscopy (TEM), nanoparticle tracking analysis (NTA), sucrose gradient centrifugation, and Western blotting. The role of exosomal PD-L1 in T-cell dysfunction was assessed by flow cytometry, T-cell killing and enzyme-linked immunosorbent assay (ELISA). Results Through in vivo exploration, mouse forestomach carcinoma (MFC) cells with LSD1 knockout (KO) showed significantly slow growth in 615 mice than T-cell-deficient BALB/c nude mice. Meanwhile, in GC specimens, expression of LSD1 was negatively correlated with that of CD8 and positively correlated with that of PD-L1. Further study showed that LSD1 inhibited the response of T cells in the microenvironment of GC by inducing the accumulation of PD-L1 in exosomes, while the membrane PD-L1 stayed constant in GC cells. Using exosomes as vehicles, LSD1 also obstructed T-cell response of other cancer cells while LSD1 deletion rescued T-cell function. It was found that while relying on the existence of LSD1 in donor cells, exosomes can regulate MFC cells proliferation with distinct roles depending on exosomal PD-L1-mediated T-cell immunity in vivo. Conclusion LSD1 deletion decreases exosomal PD-L1 and restores T-cell response in GC; this finding indicates a new mechanism with which LSD1 may regulate cancer immunity in GC and provides a new target for immunotherapy against GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01557-1.
Collapse
Affiliation(s)
- Dan-Dan Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ya-Ping Bi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Long-Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Yin-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Hebei, China
| | - Huiqin Guo
- Thoracic Department, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Henan, 450052, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
Pan Y, Si H, Deng G, Chen S, Zhang N, Zhou Q, Wang Z, Dai G. A Composite Biomarker of Derived Neutrophil–Lymphocyte Ratio and Platelet–Lymphocyte Ratio Correlates With Outcomes in Advanced Gastric Cancer Patients Treated With Anti-PD-1 Antibodies. Front Oncol 2022; 11:798415. [PMID: 35251952 PMCID: PMC8895371 DOI: 10.3389/fonc.2021.798415] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/29/2021] [Indexed: 12/25/2022] Open
Abstract
BackgroundThe highly heterogeneous characteristics of GC may limit the accuracy of a single biomarker for screening populations benefiting from immunotherapy. However, the combination of multiple indicators can provide more directed information for the detection of potential immune benefit subgroups. At present, there are no recognized complex indexes to identify advanced GC (AGC) in patients who likely benefited from immunotherapy. The objective of this research is to explore whether the composite biomarker of derived neutrophil–lymphocyte ratio (dNLR) and platelet–lymphocyte ratio (PLR) can be used as a reliable prognostic factor for the survival of AGC patients receiving immunotherapy.MethodsFrom December 2014 to May 2021, a total 238 AGC patients at a single Center were included in this retrospective cohort research study. The cutoff value of dNLR was obtained by the ROC curves to predict the disease progression rate at the 8th month and the cutoff value of PLR was estimated by the median value. The cutoff values of dNLR and PLR were 1.95 and 163.63, respectively. The high levels of dNLR (≥1.95) and PLR (≥163.63) were considered to be risk factors. Based on these two risk factors, patients were categorized into 3 groups: the risk factor number for the “good” group was 0, that for the “intermediate” group was 1, and that for the “poor” group was 2. The subjects were divided into two groups: dNLR/PLR-good and dNLR/PLR-intermediate/poor.ResultsOf the 238 patients, the median overall survival (mOS) and progression-free survival (mPFS) were 12.5 and 4.7 months, respectively. Multivariate analysis revealed that the good dNLR/PLR group was independently associated with better prognosis. The intermediate/poor dNLR/PLR group was independently correlated with an over 1.4 times greater risk of disease progression (4.1 months vs. 5.5 months; p = 0.016) and an over 1.54 times greater risk of death (11.1 months vs. 26.3 months; p = 0.033) than the good dNLR/PLR group. However, no clear differences in the disease control rate (DCR) and overall response rate (ORR) were observed between the intermediate/poor dNLR/PLR group and the good dNLR/PLR group (51.5% vs. 56.3%, 26.3% vs. 29.6%; p = 0.494, p = 0.609).ConclusionOur study firstly verifies that the composite biomarker of dNLR and PLR is an independent prognostic factor affecting survival of advanced AGC patients receiving immunotherapy. It may be difficult for patients with the intermediate/poor dNLR/PLR group to benefit from immunotherapy.
Collapse
Affiliation(s)
- Yuting Pan
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Haiyan Si
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Guochao Deng
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shiyun Chen
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Nan Zhang
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qian Zhou
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - ZhiKuan Wang
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: ZhiKuan Wang, ; Guanghai Dai,
| | - Guanghai Dai
- Chinese People’s Liberation Army Medical School, Beijing, China
- Medical Oncology Department, The First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: ZhiKuan Wang, ; Guanghai Dai,
| |
Collapse
|
20
|
Puhr HC, Ilhan-Mutlu A. Immunotherapy for Gastroesophageal Tumors: Is There Still Hope for Efficacy? Curr Cancer Drug Targets 2022; 22:651-666. [DOI: 10.2174/1568009622666220117101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Immunotherapy represents one of the biggest break-throughs of the 21st century and redefined modern cancer treatment. Despite this new approach changed the treatment paradigm in various cancer entities including lung and head-and-neck cancer, the efficacy of these treatment regimens varies in different patient subgroups and so far, failed to meet these high expectations in gastroesophageal cancer patients. This review discusses new treatment approaches concerning immunotherapy in gastroesophageal cancer patients and sheds some light on ongoing trials and new treatment combinations.
Collapse
Affiliation(s)
| | - Aysegul Ilhan-Mutlu
- Department of Medicine I, Division of Oncology, Medical University of Vienna
| |
Collapse
|
21
|
Hinata M, Ushiku T. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning. Sci Rep 2021; 11:22636. [PMID: 34811485 PMCID: PMC8608814 DOI: 10.1038/s41598-021-02168-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is widely used but effective only in a subset of gastric cancers. Epstein–Barr virus (EBV)-positive and microsatellite instability (MSI) / mismatch repair deficient (dMMR) tumors have been reported to be highly responsive to ICIs. However, detecting these subtypes requires costly techniques, such as immunohistochemistry and molecular testing. In the present study, we constructed a histology-based deep learning model that aimed to screen this immunotherapy-sensitive subgroup efficiently. We processed whole slide images of 408 cases of gastric adenocarcinoma, including 108 EBV, 58 MSI/dMMR, and 242 other subtypes. Many images generated by data augmentation of the learning set were used for training convolutional neural networks to establish an automatic detection platform for EBV and MSI/dMMR subtypes, and the test sets of images were used to verify the learning outcome. Our model detected the subgroup (EBV + MSI/dMMR tumors) with high accuracy in test cases with an area under the curve of 0.947 (0.901–0.992). This result was slightly better than when EBV and MSI/dMMR tumors were detected separately. In an external validation cohort including 244 gastric cancers from The Cancer Genome Atlas database, our model showed a favorable result for detecting the “EBV + MSI/dMMR” subgroup with an AUC of 0.870 (0.809–0.931). In addition, a visualization of the trained neural network highlighted intraepithelial lymphocytosis as the ground for prediction, suggesting that this feature is a discriminative characteristic shared by EBV and MSI/dMMR tumors. Histology-based deep learning models are expected to be used for detecting EBV and MSI/dMMR gastric cancers as economical and less time-consuming alternatives, which may help to effectively stratify patients who respond to ICIs.
Collapse
Affiliation(s)
- Munetoshi Hinata
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
22
|
Co-Expression with Membrane CMTM6/4 on Tumor Epithelium Enhances the Prediction Value of PD-L1 on Anti-PD-1/L1 Therapeutic Efficacy in Gastric Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205175. [PMID: 34680324 PMCID: PMC8533876 DOI: 10.3390/cancers13205175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapeutic efficacy is low even in PD-L1 positive patients with advanced gastric adenocarcinoma. Based on the results of 6-color multiplex immunofluorescence staining of the gastric tumor tissues in tissue array and 48-case pre-immunotherapy patients, a better prognostic value was found in the membrane co-expression of CMTM6/4 and PD-L1 in tumor epithelial cells than PD-L1 alone. The membrane co-expression of CMTM6/4 and PD-L1 can be used as a valuable tool for precision pre-immunotherapy patient screening in gastric adenocarcinoma. Abstract Anti-PD-1/L1 immunotherapy has been intensively used in heavily treated population with advanced gastric adenocarcinoma. However, the immunotherapeutic efficacy is low even in PD-L1 positive patients. We aimed to establish a new strategy based on the co-expression of CMTM6/4 and PD-L1 for patient stratification before immunotherapy. By analyzing the data obtained from TCGA and single-cell RNA sequencing at the mRNA level, and 6-color multiplex immunofluorescence staining of tumor tissues in tissue array and 48-case pre-immunotherapy patients at the protein level, we found that CMTM6/4 and PD-L1 co-expressed in both epithelial and mesenchymal regions of gastric adenocarcinoma. The tumor tissues had higher levels of CMTM6/4 expression than their adjacent ones. A positive correlation was found between the expression of CMTM6/4 and the expression of PD-L1 in tumor epithelium. Epithelial co-expression of CMTM6/4 and PD-L1 in gastric tumor region was associated with shorter overall survival but better short-term response to anti-PD-1/L1 immunotherapy. Thus, we developed a predictive model and three pathological patterns based on the membrane co-expression of CMTM6/4 and PD-L1 in tumor epithelial cells for pre-immunotherapy patient screening in gastric adenocarcinoma.
Collapse
|
23
|
Tan L, Cheng D, Wen J, Huang K, Zhang Q. Identification of prognostic hypoxia-related genes signature on the tumor microenvironment in esophageal cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7743-7758. [PMID: 34814273 DOI: 10.3934/mbe.2021384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hypoxia is a crucial factor in the development of esophageal cancer. The relationship between hypoxia and immune status in the esophageal cancer microenvironment is becoming increasingly important in clinical practice. This study aims to clarify and investigate the possible connection between immunotherapy and hypoxia in esophageal cancer. METHODS The Cancer Genome Atlas databases are used to find two types of esophageal cancer cases. Cox regressions analyses are used to screen genes for hypoxia-related traits. After that, the genetic signature is validated by survival analysis and the construction of ROC curves. GSEA is used to compare differences in enrichment in the two groups and is followed by the CIBERSORT tool to investigate a potentially relevant correlation between immune cells and gene signatures. RESULTS We found that the esophageal adenocarcinoma hypoxia model contains 3 genes (PGK1, PGM1, SLC2A3), and the esophageal squamous cell carcinoma hypoxia model contains 2 genes (EGFR, ATF3). The findings demonstrated that the survival rate of patients in the high-risk group is lower than in the lower-risk group. Furthermore, we find that three kinds of immune cells (memory activated CD4+ T cells, activated mast cells, and M2 macrophages) have a marked infiltration in the tissues of patients in the high-risk group. Moreover, we find that PD-L1 and CD244 are highly expressed in high-risk groups. CONCLUSIONS Our data demonstrate that oxygen deprivation is correlated with prognosis and the incidence of immune cell infiltration in patients with both types of esophageal cancer, which provides an immunological perspective for the development of personalized therapy.
Collapse
Affiliation(s)
- Linlin Tan
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Dingzhuo Cheng
- Ningbo NO6. Hospital, Neurosurgery Department, Ningbo, Zhejiang, China
| | - Jianbo Wen
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Kefeng Huang
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Qin Zhang
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| |
Collapse
|
24
|
Kankeu Fonkoua LA, Yoon HH. Rapidly Evolving Treatment Landscape for Metastatic Esophagogastric Carcinoma: Review of Recent Data. Onco Targets Ther 2021; 14:4361-4381. [PMID: 34385820 PMCID: PMC8352646 DOI: 10.2147/ott.s216047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022] Open
Abstract
Esophagogastric cancer (EGC) is a heterogeneous group of malignancies that collectively represent the 2nd leading cause of cancer deaths worldwide. While surgery in combination with chemotherapy and/or radiation therapy represents the primary curative treatment for early stage disease, survival outcomes for the majority of patients with later-stage disease remain poor. Cytotoxic chemotherapy with platinum doublets such as 5-FU/leucovorin/oxaliplatin is the mainstay of treatment with incremental benefits provided by targeted therapy (trastuzumab, trastuzumab deruxtecan, ramucirumab) and immunotherapy (pembrolizumab, nivolumab). In this article, we provide an updated review and perspectives on the management of advanced EGC. We examine the distinct epidemiological, etiological and molecular features of each disease entity comprising EGC. After reviewing the critical studies that established conventional systemic cytotoxic and targeted therapeutics, we elaborate on recent promising and complex data with immune checkpoint inhibition focusing on implications of tumor histology and PD-L1 expression in the tumor microenvironment. We also highlight novel diagnostic and therapeutic strategies to build on these recent advances.
Collapse
Affiliation(s)
- Lionel Aurelien Kankeu Fonkoua
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Harry H Yoon
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
25
|
Yamashita K, Hosoda K, Niihara M, Hiki N. History and emerging trends in chemotherapy for gastric cancer. Ann Gastroenterol Surg 2021; 5:446-456. [PMID: 34337293 PMCID: PMC8316740 DOI: 10.1002/ags3.12439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is indispensable for gastric cancer. For unresectable and/or recurrent gastric cancer, first-line chemotherapy consists of multidrug regimens including oral 5-FU agents such as S1/Xeloda and platinum preparations, as well as Trastuzumab, which is effective in HER2-positive cases. Second- and third-line chemotherapy regimens include taxanes, Ramucirumab (R-mab), and Nivolumab (N-mab), which have different mechanisms of action from first-line chemotherapy. R-mab is molecularly targeted to vascular endothelial growth factor receptor 2 in the host cells, but its indication is not conditional. For resectable gastric cancer, in Eastern countries, postoperative adjuvant chemotherapy has been successful, including S1, Docetaxel/S1 (DS), and Xeloda/Oxaliplatin (Xelox) regimens, whereas, in Western countries, the 5-FU/Leucovorin/Oxaliplatin/Docetaxel (FLOT) regimen was recently shown to be effective in the perioperative chemotherapy setting. Most recently, however, in Eastern countries, perioperative SOX was demonstrated to be effective in specific advanced gastric cancer. For stage IV gastric cancer, new therapeutic strategies have been proposed such as neoadjuvant chemotherapy and conversion surgery, and cures can be conditionally obtained. Recent genomic understanding of gastric cancer proposed a diversity of molecular targets by molecular profiling. Such optimized chemotherapy regimens, according to the specific clinical situations, have been rigorously established for the best survival of advanced gastric cancer.
Collapse
Affiliation(s)
- Keishi Yamashita
- Division of Advanced Surgical Oncology, Research and Development Center for New Medical FrontiersKitasato University School of MedicineSagamiharaJapan
- Department of Upper Gastrointestinal SurgeryKitasato University School of MedicineSagamiharaJapan
| | - Kei Hosoda
- Department of Upper Gastrointestinal SurgeryKitasato University School of MedicineSagamiharaJapan
| | - Masahiro Niihara
- Department of Upper Gastrointestinal SurgeryKitasato University School of MedicineSagamiharaJapan
| | - Naoki Hiki
- Department of Upper Gastrointestinal SurgeryKitasato University School of MedicineSagamiharaJapan
| |
Collapse
|
26
|
Conroy MJ, Kennedy SA, Doyle SL, Hayes B, Kavanagh M, van der Stok EP, O'Sullivan K, Cathcart MC, Reynolds JV, Lysaght J. A study of the immune infiltrate and patient outcomes in esophageal cancer. Carcinogenesis 2021; 42:395-404. [PMID: 32940666 DOI: 10.1093/carcin/bgaa101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Cancer patient outcomes and selection for novel therapies are heavily influenced by the immune contexture of the tumor microenvironment. Esophageal cancer is associated with poor outcomes. In contrast to colorectal cancer, where the immunoscore is increasingly used in prognostic staging, little is known about the immune cell populations in esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (SCC), and their clinical significance. METHODS Tissue microarrays were constructed from resected tumor tissue of 72 EAC patients and 23 SCC patients. Immunohistochemical staining of CD3, CD8, CD56, CD68, CD45RO, CD69, IFN-γ, IL-10, IL-4, IL-17, TGF-β, FOXP3 and CD107a was performed. Positivity was examined in both the stromal and epithelial compartments. Statistical analysis was performed to identify differences in immune cell infiltration and functional phenotypes between cancer subtypes and tissue compartments. RESULTS This study identified that esophageal tumors are enriched with CD45RO+ and CD8+ cells and such positivity is significantly higher in SCC compared with EAC. Furthermore, the expression of CD45RO positively correlates with that of CD8 within the tumors of both patient cohorts, suggesting a dominance of memory cytotoxic T cells. This is supported by strong positivity of degranulation marker CD107a in the stromal compartment of EAC and SCC tumors. Cytokine staining revealed a mixed pro- and anti-inflammatory profile within EAC tumors. CONCLUSIONS Esophageal tumors are enriched with memory cytotoxic T cells. Applying these measurements to a larger cohort will ascertain the clinical utility of assessing specific lymphocyte infiltrates in EAC and SCC tumors with regards to future immunotherapy use, patient prognosis and outcomes.
Collapse
Affiliation(s)
- Melissa J Conroy
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Susan A Kennedy
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Suzanne L Doyle
- School of Biological Sciences, Dublin Institute of Technology, Ireland
| | - Brian Hayes
- Department of Histopathology, Cork University Hospital and Department of Pathology, University College Cork, Ireland
| | - Maria Kavanagh
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Eric P van der Stok
- Department of Surgical Oncology, Erasmus MC Cancer Institute, The Netherlands
| | - Katie O'Sullivan
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - Mary-Clare Cathcart
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| | - John V Reynolds
- National Esophageal and Gastric Centre, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Department of Surgery, Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin, Ireland
| |
Collapse
|
27
|
Challoner BR, von Loga K, Woolston A, Griffiths B, Sivamanoharan N, Semiannikova M, Newey A, Barber LJ, Mansfield D, Hewitt LC, Saito Y, Davarzani N, Starling N, Melcher A, Grabsch HI, Gerlinger M. Computational Image Analysis of T-Cell Infiltrates in Resectable Gastric Cancer: Association with Survival and Molecular Subtypes. J Natl Cancer Inst 2021; 113:88-98. [PMID: 32324860 PMCID: PMC7781469 DOI: 10.1093/jnci/djaa051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
Background Gastric and gastro-esophageal junction cancers (GCs) frequently recur after resection, but markers to predict recurrence risk are missing. T-cell infiltrates have been validated as prognostic markers in other cancer types, but not in GC because of methodological limitations of past studies. We aimed to define and validate the prognostic role of major T-cell subtypes in GC by objective computational quantification. Methods Surgically resected chemotherapy-naïve GCs were split into discovery (n = 327) and validation (n = 147) cohorts. CD8 (cytotoxic), CD45RO (memory), and FOXP3 (regulatory) T-cell densities were measured through multicolor immunofluorescence and computational image analysis. Cancer-specific survival (CSS) was assessed. All statistical tests were two-sided. Results CD45RO-cell and FOXP3-cell densities statistically significantly predicted CSS in both cohorts. Stage, CD45RO-cell, and FOXP3-cell densities were independent predictors of CSS in multivariable analysis; mismatch repair (MMR) and Epstein–Barr virus (EBV) status were not statistically significant. Combining CD45RO-cell and FOXP3-cell densities into the Stomach Cancer Immune Score showed highly statistically significant (all P ≤ .002) CSS differences (0.9 years median CSS to not reached). T-cell infiltrates were highest in EBV-positive GCs and similar in MMR-deficient and MMR-proficient GCs. Conclusion The validation of CD45RO-cell and FOXP3-cell densities as prognostic markers in GC may guide personalized follow-up or (neo)adjuvant treatment strategies. Only those 20% of GCs with the highest T-cell infiltrates showed particularly good CSS, suggesting that a small subgroup of GCs is highly immunogenic. The potential for T-cell densities to predict immunotherapy responses should be assessed. The association of high FOXP3-cell densities with longer CSS warrants studies into the biology of regulatory T cells in GC.
Collapse
Affiliation(s)
- Benjamin R Challoner
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Katharina von Loga
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Translational Immuno-Oncology Team, Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust and The Institute of Cancer Research, Sutton, UK
| | - Andrew Woolston
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Beatrice Griffiths
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Nanna Sivamanoharan
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Translational Immuno-Oncology Team, Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust and The Institute of Cancer Research, Sutton, UK
| | - Maria Semiannikova
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Alice Newey
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Louise J Barber
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Targeted Therapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Lindsay C Hewitt
- Department of Pathology, Maastricht University Medical Center, Limburg, The Netherlands
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Naser Davarzani
- Department of Pathology, Maastricht University Medical Center, Limburg, The Netherlands.,Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Naureen Starling
- Gastrointestinal Cancer Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Alan Melcher
- Translational Immunotherapy Team, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Heike I Grabsch
- Department of Pathology, Maastricht University Medical Center, Limburg, The Netherlands.,Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, St James's University Hospital, Leeds, UK
| | - Marco Gerlinger
- Translational Oncogenomics Laboratory, Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Gastrointestinal Cancer Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
28
|
Zhang H, Huang Z, Song Y, Yang Z, Shi Q, Wang K, Zhang Z, Liu Z, Cui X, Li F. The TP53-Related Signature Predicts Immune Cell Infiltration, Therapeutic Response, and Prognosis in Patients With Esophageal Carcinoma. Front Genet 2021; 12:607238. [PMID: 34234806 PMCID: PMC8256894 DOI: 10.3389/fgene.2021.607238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
TP53 mutation (TP53MUT) is one of the most common gene mutations and frequently occurs in many cancers, especially esophageal carcinoma (ESCA), and it correlates with clinical prognostic outcomes. Nevertheless, the mechanisms by which TP53MUT regulates the correlation between ESCA and prognosis have not been sufficiently studied. Here, in the current research, we constructed a TP53MUT-related signature to predict the prognosis of patients with esophageal cancer and successfully verified this model in patients in the TP53 mutant group, esophageal squamous cell carcinoma group, and adenocarcinoma group. The risk scores proved to be better independent prognostic factors than clinical features, and prognostic features were combined with other clinical features to establish a convincing nomogram to predict overall survival from 1 to 3 years. In addition, we further predicted the tumor immune cell infiltration, chemical drugs, and immunotherapy responses between the high-risk group and low risk group. Finally, the gene expression of the seven-gene signature (AP002478.1, BHLHA15, FFAR2, IGFBP1, KCTD8, PHYHD1, and SLC26A9) can provide personalized prognosis prediction and insights into new treatments.
Collapse
Affiliation(s)
- Hongpan Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Huang
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Yangguang Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhihao Yang
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Qi Shi
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Kaige Wang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zheng Liu
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaobin Cui
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China
| | - Feng Li
- Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Department of Pathology, Shihezi University School of Medicine, Shihezi, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
30
|
Predictive value of NLR, TILs (CD4+/CD8+) and PD-L1 expression for prognosis and response to preoperative chemotherapy in gastric cancer. Cancer Immunol Immunother 2021; 71:45-55. [PMID: 34009410 PMCID: PMC8738448 DOI: 10.1007/s00262-021-02960-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
The combination of perioperative chemotherapy plus complete surgical resection is currently accounted as the first-choice strategy in patients with locally advanced Gastric Cancer (LAGC). Nevertheless, the partial response rate makes it necessary to search biological parameters useful to select patients who would benefit most from neoadjuvant chemotherapy (NAD-CT). We performed a retrospective analysis on a cohort of 65 LAGC cases, EBV negative and without MMR defect, submitted to perioperative chemotherapy plus surgical resection. We evaluated the neutrophil-lymphocytes ratio (NLR) in peripheral blood, the TILs density (reported as CD4/CD8 tissue ratio) and PD-L1 expression by immunohistochemistry on bioptic tissues before the treatment. Results were correlated with the biological features, histological response (TRG) and clinical outcome (PFS and OS). We found that NLR, TILs and PD-L1 expression showed a significant correlation with TNM stage, lymphovascular invasion and response to NAD-CT (TRG). Correlating the NLR, TILs and PD-L1 expression with PFS and OS, we found that patients with lower NLR levels (< 2.5 ratio), lower TILs (< 0.2 ratio) and higher PD-L1 level (CPS ≥ 1) had a significantly better PFS and OS than those with higher NLR, higher TILs and lower PD-L1 expression (p < 0.0001). Multivariate and multiple regression analyses confirmed the predictive and prognostic role of all three parameters, especially when all three parameters are combined. Our study demonstrated that pre-treatment NLR, TILs and PD-L1 expression are predictive and prognostic parameters in NAD-CT-treated LAGC suggesting a pivotal role of the systemic and tumor microenvironment immunological profile in the response to chemotherapy.
Collapse
|
31
|
Lonie JM, Barbour AP, Dolcetti R. Understanding the immuno-biology of oesophageal adenocarcinoma: Towards improved therapeutic approaches. Cancer Treat Rev 2021; 98:102219. [PMID: 33993033 DOI: 10.1016/j.ctrv.2021.102219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
With an incidence that is constantly rising, oesophageal adenocarcinoma (OAC) is becoming an increasing health burden worldwide. Although significant advances in treatment regimens have improved patient outcomes, survival rates for this deadly cancer remain unsatisfactory. This highlights the need to improve current therapeutic approaches and develop novel therapeutic strategies for treating OAC patients. The advent of immunotherapy has revolutionised treatment across a range of malignancies, however outcomes in OAC show modest results. The inherent resistance of OAC to treatment reflects the complex genomic landscape of this cancer, which displays a lack of ubiquitous driver mutations and large-scale genomic alterations along with high tumour and immune heterogeneity. Research into the immune landscape of OAC is limited, and elucidation of the mechanisms surrounding the immune responses to this complex cancer will result in improved therapeutic approaches. This review explores what is known about the immuno-biology of OAC and explores promising therapeutic avenues that may improve responses to immunotherapeutic regimens.
Collapse
Affiliation(s)
- James M Lonie
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| | - Andrew P Barbour
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Riccardo Dolcetti
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Sir Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Xu J, Xu N, Bai Y, Liu R, Mao C, Sui H, Wang X, Jiang Q, Dou Y. Anti-PD-1 antibody HX008 combined with oxaliplatin plus capecitabine for advanced gastric or esophagogastric junction cancer: a multicenter, single-arm, open-label, phase Ib trial. Oncoimmunology 2020; 10:1864908. [PMID: 33457083 PMCID: PMC7781732 DOI: 10.1080/2162402x.2020.1864908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Anti-PD-1 monoclonal antibody is approved as an option for third-line treatment of advanced gastric and gastroesophageal junction (G/GEJ) cancer in several countries, but no anti-PD-1 monoclonal antibody treatment is yet approved for first-line treatment of advanced G/GEJ cancer. We report a phase Ib trial of HX008, a highly selective, humanized anti-programmed death-1 monoclonal antibody, plus oxaliplatin and capecitabine as first-line treatment for advanced G/GEJ cancer. Patients with previously untreated, locally advanced or metastatic G/GEJ cancer were enrolled. All patients received HX008 3 mg/kg intravenously every 3 weeks, oxaliplatin 130 mg/m2 intravenously on day 1 every 3 weeks (up to 6 cycles), and capecitabine 1000 mg/m2 orally twice daily for 14 days continuous dosing followed by a 7-day break. The primary end point was the incidence of adverse events and serious adverse events. In total, 35 patients were enrolled. Median follow-up was 12.7 months. Most frequent (>10%) grade ≥3 treatment-related adverse events were anemia (27.5%), neutropenia (20%), thrombocytopenia (17.1%), leukopenia (17.1%) and fatigue (17.3%). Objective response rate was 60.0% (95% confidence interval [CI] 42.1-76.1%). Disease control rate was 77.1% (95% CI 59.9-89.6). Median time to response and duration of response were 1.4 months (range 1.3-2.9) and 12.3 months (range 1.4-17.9+), respectively. Median PFS was 9.2 months (95% CI 5.4-not reached). These results demonstrated that HX008 combined with oxaliplatin plus capecitabine was well tolerated and demonstrated encouraging efficacy as first-line treatment for advanced G/GEJ cancer. This study was registered in china, register number was CTR20181270.
Collapse
Affiliation(s)
- Jianming Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Nong Xu
- Department of Medical Oncology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Yuxian Bai
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Rongrui Liu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chenyu Mao
- Department of Medical Oncology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Hong Sui
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaofei Wang
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| | - Qian Jiang
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| | - Yiwei Dou
- Taizhou Hanzhong Biomedical Co., Ltd., Jiangsu, China
| |
Collapse
|
33
|
Yin Z, Wu D, Shi J, Wei X, Jin N, Lu X, Ren X. Identification of ALDH3A2 as a novel prognostic biomarker in gastric adenocarcinoma using integrated bioinformatics analysis. BMC Cancer 2020; 20:1062. [PMID: 33148208 PMCID: PMC7640415 DOI: 10.1186/s12885-020-07493-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/04/2020] [Indexed: 01/11/2023] Open
Abstract
Background Extensive research has revealed that genes play a pivotal role in tumor development and growth. However, the underlying involvement of gene expression in gastric carcinoma (GC) remains to be investigated further. Methods In this study, we identified overlapping differentially expressed genes (DEGs) by comparing tumor tissue with adjacent normal tissue using the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) database. Results Our analysis identified 79 up-regulated and ten down-regulated genes. Functional enrichment analysis and prognosis analysis were conducted on the identified genes, and the fatty aldehyde dehydrogenase (FALDH) gene, ALDH3A2, was chosen for more detailed analysis. We performed Gene Set Enrichment Analysis (GSEA) and immunocorrelation analysis (infiltration, copy number alterations, and checkpoints) to elucidate the mechanisms of action of ALDH3A2 in depth. The immunohistochemical (IHC) result based on 140 paraffin-embedded human GC samples indicated that ALDH3A2 was over-expressed in low-grade GC cases and the OS of patients with low expression of ALDH3A2 was significantly shorter than those with high ALDH3A2 expression. In vitro results indicated that the expression of ALDH3A2 was negatively correlated with PDCD1, PDCD1LG2, and CTLA-4. Conclusion We conclude that ALDH3A2 might be useful as a potential reference value for the relief and immunotherapy of GC, and also as an independent predictive marker for the prognosis of GC.
Collapse
Affiliation(s)
- Zhenhua Yin
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Jianping Shi
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Xiyi Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Nuyun Jin
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China
| | - Xiaolan Lu
- Department of Digestive, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai, 201399, China.
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
34
|
Shaikh H, Kamran A, Monga DK. Immunotherapy in gastroesophageal cancers: Current state and future directions. J Oncol Pharm Pract 2020; 27:395-404. [PMID: 33050805 DOI: 10.1177/1078155220963538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While gastroesophageal (GE) cancers are one of the most common cancers worldwide, unfortunately, the mortality remains high. Commonly used treatment options include surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy, which improve survival only minimally; thus, affirming the dire need for exploring alternative strategies to improve patient outcomes. Immunotherapy, which has revolutionized the world of oncology, has somewhat lagged behind in GE malignancies. Tumor-associated microenvironment and regulatory T cells, alongside cell cycle checkpoints, have been proposed by various studies as the mediators of carcinogenesis in GE cancers. Thus, inhibition of each of these could serve as a possible target of treatment. While the approval of pembrolizumab has provided some hope, it is not enough to override the dismal prognosis that this disease confers. Herein, we discuss the prospects of immunotherapy in this variety of cancer.
Collapse
Affiliation(s)
- Hira Shaikh
- Department of Hematology-Oncology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Amir Kamran
- Department of Hematology-Oncology, West Virginia University Hospital, Morgantown, WV, USA
| | - Dulabh K Monga
- Department of Hematology-Oncology, AHN Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Immunotherapy and tumor microenvironment have been at the forefront of cancer research over the past several decades. Here, we will review the role of immunotherapy in advanced gastroesophageal cancers including targeted antibodies, immunomodulating agents, vaccines, oncolytic virus therapy, and adoptive immunotherapy, and discuss the future direction for immunotherapy in this population. RECENT FINDINGS Targeted antibodies are already standard-of-care. An anti-PD-1 monoclonal antibody is currently FDA approved for second-line treatment of locally advanced or metastatic ESCC, as well as beyond second-line treatment of advanced G/GEJ cancers, and recent data suggests it may be considered in first-line treatment of advanced G/GEJ cancers. Combination therapies such as immunotherapy plus chemotherapy and/or radiotherapy, vaccines, oncolytic viral therapy, and adoptive immunotherapy in varying combinations are currently under active investigation. Several trials are ongoing and are hoped to reach more efficacious and individualized treatment options in advanced gastroesophageal cancer, where novel treatment options are desperately needed.
Collapse
|
36
|
Zhang X, Pan Z. Influence of microbiota on immunity and immunotherapy for gastric and esophageal cancers. Gastroenterol Rep (Oxf) 2020; 8:206-214. [PMID: 32665852 PMCID: PMC7333930 DOI: 10.1093/gastro/goaa014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric and esophageal cancers are multifactorial and multistage-involved malignancy. While the impact of gut microbiota on overall human health and diseases has been well documented, the influence of gastric and esophageal microbiota on gastric and esophageal cancers remains unclear. This review will discuss the reported alteration in the composition of gastric and esophageal microbiota in normal and disease conditions, and the potential role of dysbiosis in carcinogenesis and tumorigenesis. This review will also discuss how dysbiosis stimulates local and systemic immunity, which may impact on the immunotherapy for cancer.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
37
|
MSI and EBV Positive Gastric Cancer's Subgroups and Their Link With Novel Immunotherapy. J Clin Med 2020; 9:jcm9051427. [PMID: 32403403 PMCID: PMC7291039 DOI: 10.3390/jcm9051427] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancers have been historically classified based on histomorphologic features. The Cancer Genome Atlas network reported the comprehensive identification of genetic alterations associated with gastric cancer, identifying four distinct subtypes- Epstein-Barr virus (EBV)-positive, microsatellite-unstable/instability (MSI), genomically stable and chromosomal instability. In particular, EBV-positive and MSI gastric cancers seem responsive to novel immunotherapies drugs. The aim of this review is to describe MSI and EBV positive gastric cancer's subgroups and their relationship with novel immunotherapy.
Collapse
|
38
|
Hayashi S, Imanishi R, Adachi M, Ikejima S, Nakata J, Morimoto S, Fujiki F, Nishida S, Tsuboi A, Hosen N, Nakajima H, Hasegawa K, Oka Y, Sugiyama H, Oji Y. Reader-free ELISPOT assay for immuno-monitoring in peptide-based cancer vaccine immunotherapy. Biomed Rep 2020; 12:244-250. [PMID: 32257187 DOI: 10.3892/br.2020.1289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer vaccine immunotherapy is a therapy that induces cellular immune responses against a target molecule to elicit clinical anti-tumor effects. These cellular immune responses against the target molecule are monitored to evaluate whether the antigen-specific cellular immune responses are induced and maintained during the vaccination period. Enzyme-linked immunospot (ELISPOT) assay is widely performed to analyze not only the frequency of immune cells, but also their effector functions as determined by their cytokine production/secretion. The present study aimed to develop a reader-free ELISPOT assay using a handy membrane-punching device termed ELI 8. With the assistance of particle analysis by ImageJ software, the results of spot counting were reproducible with high inter-assay and inter-examiner concordance. Immune cells that produce and secrete Th1 cytokines without antigen-peptide stimulation of peripheral blood mononuclear cells (PBMCs) were detected, and their frequencies in patients with cancer were significantly higher compared with those in healthy individuals. These frequencies varied between individuals, as well as between time points during the course of cancer vaccine immunotherapy in each patient. Due to the variability in spontaneous cytokine production/secretion by PBMCs, an antigen-specific immune response (IR) index is proposed, which is a ratio of the number of spot-forming cells (SFCs) subjected to antigen-stimulation to that of SFCs with spontaneous cytokine secretion without antigen-stimulation. This index may be used as a marker for antigen-specific cellular immune responses in patients treated with cancer immunotherapy. The IR index successfully detected the induction of Wilms' tumor 1-specific cellular immune responses in patients with cancer treated with cancer vaccine immunotherapy.
Collapse
Affiliation(s)
- Sae Hayashi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Rin Imanishi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Mayuko Adachi
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sayaka Ikejima
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Jun Nakata
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naoki Hosen
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kana Hasegawa
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Oka
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yusuke Oji
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Hutzen B, Paudel SN, Naeimi Kararoudi M, Cassady KA, Lee DA, Cripe TP. Immunotherapies for pediatric cancer: current landscape and future perspectives. Cancer Metastasis Rev 2019; 38:573-594. [PMID: 31828566 PMCID: PMC6994452 DOI: 10.1007/s10555-019-09819-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The advent of immunotherapy has revolutionized how we manage and treat cancer. While the majority of immunotherapy-related studies performed to date have focused on adult malignancies, a handful of these therapies have also recently found success within the pediatric space. In this review, we examine the immunotherapeutic agents that have achieved the approval of the US Food and Drug Administration for treating childhood cancers, highlighting their development, mechanisms of action, and the lessons learned from the seminal clinical trials that ultimately led to their approval. We also shine a spotlight on several emerging immunotherapeutic modalities that we believe are poised to have a positive impact on the treatment of pediatric malignancies in the near future.
Collapse
Affiliation(s)
- Brian Hutzen
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Siddhi Nath Paudel
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
| | - Kevin A Cassady
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Dean A Lee
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| | - Timothy P Cripe
- The Abigail Wexner Research Institute at Nationwide Children's Hospital Center for Childhood Cancer and Blood Disorders, 575 Children's Crossroad, Columbus, OH, 43215, USA.
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA.
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA.
- Ohio State University Wexner College of Medicine, Columbus, OH, USA.
| |
Collapse
|
40
|
Kelly RJ, Lee J, Bang YJ, Almhanna K, Blum-Murphy M, Catenacci DVT, Chung HC, Wainberg ZA, Gibson MK, Lee KW, Bendell JC, Denlinger CS, Chee CE, Omori T, Leidner R, Lenz HJ, Chao Y, Rebelatto MC, Brohawn PZ, He P, McDevitt J, Sheth S, Englert JM, Ku GY. Safety and Efficacy of Durvalumab and Tremelimumab Alone or in Combination in Patients with Advanced Gastric and Gastroesophageal Junction Adenocarcinoma. Clin Cancer Res 2019; 26:846-854. [PMID: 31676670 DOI: 10.1158/1078-0432.ccr-19-2443] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/03/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE This randomized, multicenter, open-label, phase Ib/II study assessed durvalumab and tremelimumab in combination or as monotherapy for chemotherapy-refractory gastric cancer or gastroesophageal junction (GEJ) cancer. PATIENTS AND METHODS Second-line patients were randomized 2:2:1 to receive durvalumab plus tremelimumab (arm A), or durvalumab (arm B) or tremelimumab monotherapy (arm C), and third-line patients received durvalumab plus tremelimumab (arm D). A tumor-based IFNγ gene signature was prospectively evaluated as a potential predictive biomarker in second- and third-line patients receiving the combination (arm E). The coprimary endpoints were objective response rate and progression-free survival (PFS) rate at 6 months. RESULTS A total of 113 patients were treated: 6 in phase Ib and 107 (arm A, 27; arm B, 24; arm C, 12; arm D, 25; arm E, 19) in phase II. Overall response rates were 7.4%, 0%, 8.3%, 4.0%, and 15.8% in the five arms, respectively. PFS rates at 6 months were 6.1%, 0%, 20%, 15%, and 0%, and 12-month overall survival rates were 37.0%, 4.6%, 22.9%, 38.8%, and NA, respectively. Treatment-related grade 3/4 adverse events were reported in 17%, 4%, 42%, 16%, and 11% of patients, respectively. CONCLUSIONS Response rates were low regardless of monotherapy or combination strategies. No new safety signals were identified. Including use of a tumor-based IFNγ signature and change in baseline and on-treatment circulating tumor DNA are clinically feasible and may be novel strategies to improve treatment response in this difficult-to-treat population.
Collapse
Affiliation(s)
- Ronan J Kelly
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yung-Jue Bang
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Khaldoun Almhanna
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mariela Blum-Murphy
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel V T Catenacci
- Department of Medicine, Division of Hematology-Oncology, The University of Chicago Medicine Comprehensive Cancer Center, Chicago, Illinois
| | - Hyun Cheol Chung
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zev A Wainberg
- Division of Hematology-Oncology, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Michael K Gibson
- Division of Hematology and Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Crystal S Denlinger
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Cheng Ean Chee
- Department of Hematology-Oncology, National University Cancer Institute, Singapore
| | - Takeshi Omori
- Department of Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Rom Leidner
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Center, Providence Portland Medical Center, Providence Cancer Institute, Portland, Oregon
| | - Heinz-Josef Lenz
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Yee Chao
- Division of Medical Oncology, Center for Immuno-oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Philip Z Brohawn
- Oncology Translational Medicine, AstraZeneca, Gaithersburg, Maryland
| | - Peng He
- Early Oncology Statistics, AstraZeneca, Gaithersburg, Maryland
| | - Jennifer McDevitt
- Early Oncology Clinical Development, AstraZeneca, Gaithersburg, Maryland
| | - Siddharth Sheth
- Early Oncology Clinical Development, AstraZeneca, Gaithersburg, Maryland.,Division of Hematology and Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Judson M Englert
- Early Oncology Clinical Development, AstraZeneca, Gaithersburg, Maryland
| | - Geoffrey Y Ku
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
41
|
Selim JH, Shaheen S, Sheu WC, Hsueh CT. Targeted and novel therapy in advanced gastric cancer. Exp Hematol Oncol 2019; 8:25. [PMID: 31632839 PMCID: PMC6788003 DOI: 10.1186/s40164-019-0149-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022] Open
Abstract
The systemic treatment options for advanced gastric cancer (GC) have evolved rapidly in recent years. We have reviewed the recent data of clinical trial incorporating targeted agents, including inhibitors of angiogenesis, human epidermal growth factor receptor 2 (HER2), mesenchymal-epithelial transition, epidermal growth factor receptor, mammalian target of rapamycin, claudin-18.2, programmed death-1 and DNA. Addition of trastuzumab to platinum-based chemotherapy has become standard of care as front-line therapy in advanced GC overexpressing HER2. In the second-line setting, ramucirumab with paclitaxel significantly improves overall survival compared to paclitaxel alone. For patients with refractory disease, apatinib, nivolumab, ramucirumab and TAS-102 have demonstrated single-agent activity with improved overall survival compared to placebo alone. Pembrolizumab has demonstrated more than 50% response rate in microsatellite instability-high tumors, 15% response rate in tumors expressing programmed death ligand 1, and non-inferior outcome in first-line treatment compared to chemotherapy. This review summarizes the current state and progress of research on targeted therapy for advanced GC.
Collapse
Affiliation(s)
- Julie H. Selim
- School of Pharmacy, Loma Linda University, Loma Linda, CA 92350 USA
| | - Shagufta Shaheen
- Division of Oncology, Stanford Cancer Center, Stanford, CA 94304 USA
| | - Wei-Chun Sheu
- Department of Internal Medicine, Richmond University Medical Center, Staten Island, NY 10310 USA
| | - Chung-Tsen Hsueh
- Division of Medical Oncology and Hematology, Department of Medicine, Loma Linda University, 11175 Campus Street, CSP 11015, Loma Linda, CA 92354 USA
| |
Collapse
|
42
|
Chakravorty S, Yan B, Wang C, Wang L, Quaid JT, Lin CF, Briggs SD, Majumder J, Canaria DA, Chauss D, Chopra G, Olson MR, Zhao B, Afzali B, Kazemian M. Integrated Pan-Cancer Map of EBV-Associated Neoplasms Reveals Functional Host-Virus Interactions. Cancer Res 2019; 79:6010-6023. [PMID: 31481499 DOI: 10.1158/0008-5472.can-19-0615] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
Epstein-Barr virus (EBV) is a complex oncogenic symbiont. The molecular mechanisms governing EBV carcinogenesis remain elusive and the functional interactions between virus and host cells are incompletely defined. Here we present a comprehensive map of the host cell-pathogen interactome in EBV-associated cancers. We systematically analyzed RNA sequencing from >1,000 patients with 15 different cancer types, comparing virus and host factors of EBV+ to EBV- tissues. EBV preferentially integrated at highly accessible regions of the cancer genome, with significant enrichment in super-enhancer architecture. Twelve EBV transcripts, including LMP1 and LMP2, correlated inversely with EBV reactivation signature. Overexpression of these genes significantly suppressed viral reactivation, consistent with a "virostatic" function. In cancer samples, hundreds of novel frequent missense and nonsense variations in virostatic genes were identified, and variant genes failed to regulate their viral and cellular targets in cancer. For example, one-third of patients with EBV+ NK/T-cell lymphoma carried two novel nonsense variants (Q322X, G342X) of LMP1 and both variant proteins failed to restrict viral reactivation, confirming loss of virostatic function. Host cell transcriptional changes in response to EBV infection classified tumors into two molecular subtypes based on patterns of IFN signature genes and immune checkpoint markers, such as PD-L1 and IDO1. Overall, these findings uncover novel points of interaction between a common oncovirus and the human genome and identify novel regulatory nodes and druggable targets for individualized EBV and cancer-specific therapies. SIGNIFICANCE: This study provides a comprehensive map of the host cell-pathogen interactome in EBV+ malignancies.See related commentary by Mbulaiteye and Prokunina-Olsson, p. 5917.
Collapse
Affiliation(s)
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Chong Wang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | | | - Chin Fang Lin
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana
| | - Scott D Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Joydeb Majumder
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - D Alejandro Canaria
- Department of Biological Science, Purdue University, West Lafayette, Indiana
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Gaurav Chopra
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Matthew R Olson
- Department of Biological Science, Purdue University, West Lafayette, Indiana
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, Indiana. .,Department of Computer Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
43
|
Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit. Front Med 2019; 14:101-111. [PMID: 31368030 DOI: 10.1007/s11684-019-0698-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that somatic hypermutational status and programmed cell death-1 overexpression are potential predictive biomarkers indicating treatment benefits from immunotherapy using immune checkpoint inhibitors. However, biomarker-matched trials are still limited, and many of the genomic alterations remain difficult to target. To isolate the potential somatic hypermutational tumor from microsatellite instability low/microsatellite stability (MSI-L/MSS) cases, we employed two commercial kits to determine MSI and forensic short tandem repeat (STR) alternations in 250 gastrointestinal (GI) tumors. Three types of forensic STR alternations, namely, allelic loss, Aadd, and Anew, were identified. 62.4% (156/250) of the patients with GI exhibited STR alternation, including 100% (15/15) and 60% (141/235) of the microsatellite high instability and MSI-L/MSS cases, respectively. 30% (75/250) of the patients exhibited STR instability with more than 26.32% (26.32%-84.21%) STR alternation. The cutoff with 26.32% of the STR alternations covered all 15 MSI cases and suggested that it might be a potential threshold. Given the similar mechanism of the mutations of MSI and forensic STR, the widely used forensic identifier STR kit might provide potential usage for identifying hypermutational status in GI cancers.
Collapse
|
44
|
Faiz Z, Plukker JTM. ASO Author Reflections: Implementation of Age and Co-morbidity in the Treatment Guideline of Patients with Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2019; 26:585-586. [PMID: 31011909 PMCID: PMC6901411 DOI: 10.1245/s10434-019-07361-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Z Faiz
- Department of Surgery/Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J T M Plukker
- Department of Surgery/Surgical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
45
|
Martin B, Märkl B. Immunologic Biomarkers and Biomarkers for Immunotherapies in Gastrointestinal Cancer. Visc Med 2019; 35:3-10. [PMID: 31312644 DOI: 10.1159/000496565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancers contribute significantly to the worldwide cancer burden. Pathologic evaluation is indispensable for the estimation of prognosis and therapeutic strategy. At present, immunotherapies are evolving into efficient therapeutic approaches, which are accompanied by the need for biomarkers to predict therapy response. In colorectal cancers, the only predictive biomarker for Food and Drug Administration-approved immunotherapy is the mismatch repair status. Besides, pathogenic polymerase epsilon mutations, tumor mutational burden, neoantigen load, and features of the immune contexture could soon find their way into clinical routine. Furthermore, in colorectal cancer, the Immunoscore, which is defined by the amount of CD3+ and CD8+ T-cells in the tumor center as well as at the infiltrative margin, might supplement the TNM system in the future (as TNM-Immune). This immunologic biomarker was shown to be impressively prognostic and predictive in colorectal cancer. In conclusion, there is increasing evidence of immunologic as well as predictive biomarkers for immunotherapies in GI cancers. Nevertheless, future progress is necessary for the variety of current advances to be implemented in clinical care.
Collapse
Affiliation(s)
- Benedikt Martin
- Institute of Pathology, University Clinic Augsburg, Augsburg, Germany
| | - Bruno Märkl
- Institute of Pathology, University Clinic Augsburg, Augsburg, Germany
| |
Collapse
|
46
|
Mehta R, Shah A, Almhanna K. Pembrolizumab for the treatment of patients with recurrent locally advanced or metastatic gastric or gastroesophageal junction cancer: an evidence-based review of place in therapy. Onco Targets Ther 2018; 11:6525-6537. [PMID: 30323626 PMCID: PMC6177372 DOI: 10.2147/ott.s152513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gastric and esopahgeal cancers account for the six most common causes of cancer death worldwide. Locally advanced resectable cancers have a 5-year life expectancy of 30%. Despite use of chemotherapy, median overall survival for stage IV cancer rarely exceeds 1 year. A subset of gastric cancers such as microsatellite-instable tumor and Epstein-Barr virus-positive tumors have a rich immune infiltrate that makes them more responsive to immune-directed therapies. Tumors can evade T-cell-mediated "immune surveillance" by activating the programmed cell death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway. Targeting PD-1 and thus de-engaging them from its ligands can help restore immunogenicity. Pembrolizumab is the first immunotherapy to be approved by US FDA for PD-L1 expressing gastric and gastroesopahgeal junction (GEJ) cancers after they have progressed on at least two prior lines of treatment. While PD-L1 positivity does not define tumor's responsiveness to pembrolizumab, PD-L1-positive tumors have better overall response rates. The treatment is usually well tolerated and has a favorable adverse events profile. The exact setting for use of pembrolizumab remains to be determined. Pembrolizumab failed to improve overall survival when administered as second-line treatment for advanced, metastatic gastric and GEJ cancers. There are several ongoing studies with various combinations and different settings not only with pembrolizumab but also with other checkpoint inhibitors.
Collapse
Affiliation(s)
- Rutika Mehta
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anand Shah
- Department of Pharmacy, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Khaldoun Almhanna
- Department of Hematology/Oncology, Lifespan Cancer Institute, Providence, RI, USA,
| |
Collapse
|
47
|
Kumar V, Soni P, Garg M, Kamholz S, Chandra AB. Emerging Therapies in the Management of Advanced-Stage Gastric Cancer. Front Pharmacol 2018; 9:404. [PMID: 30271341 PMCID: PMC6146175 DOI: 10.3389/fphar.2018.00404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/09/2018] [Indexed: 12/17/2022] Open
Abstract
Globally, gastric malignancy contributes to significant cancer-related morbidity and mortality. Despite a recent approval of two targeted agents, trastuzumab and ramucirumab, the treatment options for advanced-stage gastric cancer are limited. Consequently, the overall clinical outcomes for patients with advanced-stage gastric cancer remain poor. Numerous agents that are active against novel targets have been evaluated in the course of randomized trials; however, most have produced disappointing results because of the molecular heterogeneity of gastric cancer. The Cancer Genome Atlas (TCGA) project proposed a new classification system for gastric cancer that includes four different tumor subtypes based on molecular characteristics. This change led to the identification of several distinct and potentially targetable pathways. However, most agents targeting these pathways do not elicit any meaningful clinical benefit when employed for the treatment of advanced-stage gastric cancer. Most advanced-stage gastric cancer trials currently focus on agents that modulate tumor microenvironments and cancer cell stemness. In this review, we summarize data regarding novel compounds that have shown efficacy in early phase studies and show promise as effective therapeutic agents, with special emphasis on those for which phase III trials are either planned or underway.
Collapse
Affiliation(s)
- Vivek Kumar
- Brigham and Women's Hospital, Boston, MA, United States
| | - Parita Soni
- Maimonides Medical Center, New York, NY, United States
| | - Mohit Garg
- Maimonides Medical Center, New York, NY, United States
| | | | - Abhinav B. Chandra
- Oncology, Yuma Regional Medical Center Cancer Center, Yuma, AZ, United States
| |
Collapse
|
48
|
Hu Z, Ma Y, Shang Z, Hu S, Liang K, Liang W, Xing X, Wang Y, Du X. Improving immunotherapy for colorectal cancer using dendritic cells combined with anti-programmed death-ligand in vitro. Oncol Lett 2018; 15:5345-5351. [PMID: 29552177 DOI: 10.3892/ol.2018.7978] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/29/2017] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies recognizing programmed death-ligand 1 (PD-L1) have been used for the clinical treatment of diverse tumor types as a form of immune checkpoint inhibitor, with a favorable therapeutic effect. Dendritic cells (DCs) are potent antigen-presenting cells that serve a pivotal role in the activation of T cells, particularly cytotoxic T lymphocytes (CTLs). DC vaccines loaded with tumor antigens, DC-CTLs and activated T cells have been revealed to be a safe and effective treatment approach against colorectal cancer within a clinical setting. In addition to tumor cells, PD-L1 is also highly expressed on DCs. As research examining the association between anti-PD-L1 and DCs is lacking, the present study compared the expression of PD-L1 on DCs in the peripheral blood of healthy donors and patients with colorectal cancer. Following the application of anti-PD-L1, the DC phenotypes, function of DC-mediated T cell induction and the cytotoxicity of CTLs were investigated by flow cytometry. The present study revealed that treatment with anti-PD-L1 may promote the maturation of DCs and enhance the functionality of the DC1 subtype. It may also increase the number of CTLs that are activated and produce CTL cells with more potent anti-tumor activity. Therefore, the creation of DC vaccines in conjunction with anti-PD-L1 may be an effective future treatment strategy for patients with colorectal cancer.
Collapse
Affiliation(s)
- Zilong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yue Ma
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhiyang Shang
- Department of Tumor Prevention and Rehabilitation, PKU Care Rehabilitation Hospital, Beijing 102206, P.R. China
| | - Shidong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Kai Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wentao Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaowei Xing
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yufeng Wang
- Department of Patient Admission Management, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaohui Du
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|