1
|
Garg P, Singhal S, Kulkarni P, Horne D, Malhotra J, Salgia R, Singhal SS. Advances in Non-Small Cell Lung Cancer: Current Insights and Future Directions. J Clin Med 2024; 13:4189. [PMID: 39064229 PMCID: PMC11278207 DOI: 10.3390/jcm13144189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The leading cause of cancer deaths worldwide is attributed to non-small cell lung cancer (NSCLC), necessitating a continual focus on improving the diagnosis and treatment of this disease. In this review, the latest breakthroughs and emerging trends in managing NSCLC are highlighted. Major advancements in diagnostic methods, including better imaging technologies and the utilization of molecular biomarkers, are discussed. These advancements have greatly enhanced early detection and personalized treatment plans. Significant improvements in patient outcomes have been achieved by new targeted therapies and immunotherapies, providing new hope for individuals with advanced NSCLC. This review discusses the persistent challenges in accessing advanced treatments and their associated costs despite recent progress. Promising research into new therapies, such as CAR-T cell therapy and oncolytic viruses, which could further revolutionize NSCLC treatment, is also highlighted. This review aims to inform and inspire continued efforts to improve outcomes for NSCLC patients globally, by offering a comprehensive overview of the current state of NSCLC treatment and future possibilities.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sulabh Singhal
- Department of Internal Medicine, Drexel University College of Medicine, Philadelphia, PA 19104, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Amicizia D, Piazza MF, Marchini F, Astengo M, Grammatico F, Battaglini A, Schenone I, Sticchi C, Lavieri R, Di Silverio B, Andreoli GB, Ansaldi F. Systematic Review of Lung Cancer Screening: Advancements and Strategies for Implementation. Healthcare (Basel) 2023; 11:2085. [PMID: 37510525 PMCID: PMC10379173 DOI: 10.3390/healthcare11142085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in Europe, with low survival rates primarily due to late-stage diagnosis. Early detection can significantly improve survival rates, but lung cancer screening is not currently implemented in Italy. Many countries have implemented lung cancer screening programs for high-risk populations, with studies showing a reduction in mortality. This review aimed to identify key areas for establishing a lung cancer screening program in Italy. A literature search was conducted in October 2022, using the PubMed and Scopus databases. Items of interest included updated evidence, approaches used in other countries, enrollment and eligibility criteria, models, cost-effectiveness studies, and smoking cessation programs. A literature search yielded 61 scientific papers, highlighting the effectiveness of low-dose computed tomography (LDCT) screening in reducing mortality among high-risk populations. The National Lung Screening Trial (NLST) in the United States demonstrated a 20% reduction in lung cancer mortality with LDCT, and other trials confirmed its potential to reduce mortality by up to 39% and detect early-stage cancers. However, false-positive results and associated harm were concerns. Economic evaluations generally supported the cost-effectiveness of LDCT screening, especially when combined with smoking cessation interventions for individuals aged 55 to 75 with a significant smoking history. Implementing a screening program in Italy requires the careful consideration of optimal strategies, population selection, result management, and the integration of smoking cessation. Resource limitations and tailored interventions for subpopulations with low-risk perception and non-adherence rates should be addressed with multidisciplinary expertise.
Collapse
Affiliation(s)
- Daniela Amicizia
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
- Department of Health Sciences (DiSSal), University of Genoa, 16132 Genoa, Italy
| | - Maria Francesca Piazza
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Francesca Marchini
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Matteo Astengo
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Federico Grammatico
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
- Department of Health Sciences (DiSSal), University of Genoa, 16132 Genoa, Italy
| | - Alberto Battaglini
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Irene Schenone
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Camilla Sticchi
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Rosa Lavieri
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Bruno Di Silverio
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Giovanni Battista Andreoli
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
| | - Filippo Ansaldi
- Regional Health Agency of Liguria (ALiSa), 16121 Genoa, Italy; (D.A.); (F.M.); (M.A.); (F.G.); (A.B.); (I.S.); (C.S.); (R.L.); (B.D.S.); (G.B.A.); (F.A.)
- Department of Health Sciences (DiSSal), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
3
|
Predicting EGFR mutational status from pathology images using a real-world dataset. Sci Rep 2023; 13:4404. [PMID: 36927889 PMCID: PMC10020556 DOI: 10.1038/s41598-023-31284-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Treatment of non-small cell lung cancer is increasingly biomarker driven with multiple genomic alterations, including those in the epidermal growth factor receptor (EGFR) gene, that benefit from targeted therapies. We developed a set of algorithms to assess EGFR status and morphology using a real-world advanced lung adenocarcinoma cohort of 2099 patients with hematoxylin and eosin (H&E) images exhibiting high morphological diversity and low tumor content relative to public datasets. The best performing EGFR algorithm was attention-based and achieved an area under the curve (AUC) of 0.870, a negative predictive value (NPV) of 0.954 and a positive predictive value (PPV) of 0.410 in a validation cohort reflecting the 15% prevalence of EGFR mutations in lung adenocarcinoma. The attention model outperformed a heuristic-based model focused exclusively on tumor regions, and we show that although the attention model also extracts signal primarily from tumor morphology, it extracts additional signal from non-tumor tissue regions. Further analysis of high-attention regions by pathologists showed associations of predicted EGFR negativity with solid growth patterns and higher peritumoral immune presence. This algorithm highlights the potential of deep learning tools to provide instantaneous rule-out screening for biomarker alterations and may help prioritize the use of scarce tissue for biomarker testing.
Collapse
|
4
|
Cui T, Zhang A, Cui J, Chen L, Chen G, Dai H, Qin X, Li G, Sun J. Feasibility of omitting the clinical target volume under PET-CT guidance in unresectable stage III non-small-cell lung cancer: A phase II clinical trial. Radiother Oncol 2023; 181:109505. [PMID: 36764460 DOI: 10.1016/j.radonc.2023.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND This clinical trial aims at investigate the feasibility of CTV-omitted, positron-emission tomography computed tomography (PET-CT) combined with intensity-modulated radiation therapy (IMRT) for unresectable stage III NSCLC. METHODS AND MATERIALS This was a single-center, phase II clinical trial initiated in July 2016. Patients with unresectable stage III NSCLC undergoing routine IMRT were randomly enrolled into the study group (CTV-omitted under PET-CT guidance) and the control group (CTV-delineated). Patients received platinum-based dual-drug concurrent chemoradio therapy. In the study group, the PGTV dose was 60 Gy given in 30 daily 2 Gy fractions; in the control group, the PCTV dose was 54 Gy given in 30 daily 1.8 Gy fractions, and the PGTV dose was 60 Gy given in 30 daily 2 Gy fractions. The primary endpoint was the incidence of radiation respiratory events or esophagitis with grade 3 or higher. The secondary endpoints included objective response rate (ORR), locate control rate, progression-free survival (PFS), failure pattern and overall survival (OS). RESULTS A total of 90 patients were enrolled between July 2016 and March 2019. The incidence of radiation respiratory events or esophagitis with grade 3 or higher was 11.1 % in the study group, significantly lower than the rate of 28.9 % in the control group (P = 0.035), basically due to the reduced irradiated volumes of the lungs and esophagus in the study group. The median PFS was 9.0 months versus 10.0 months (P = 0.597), and the median OS 31.0 months versus 26.0 months (P = 0.489) in the study group and the control group, respectively. The failure pattern was not significantly different between the two groups (P = 0.826). CONCLUSION Omitting the CTV under PET-CT guidance has high feasibility to reduce severe radiation associated toxicity in IMRT for unresectable stage III NSCLC, without compromising the efficacy.
Collapse
Affiliation(s)
- Tianxiang Cui
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Anmei Zhang
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jianxiong Cui
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China; Department of Oncology, Sichuan Provincial Crops Hospital of Chinese People's Armed Police Forces, Leshan, China
| | - Lu Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangpeng Chen
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hongya Dai
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xianli Qin
- Department of Nuclear Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guanghui Li
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Jianguo Sun
- Cancer Institute, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
5
|
Behnke A, Cayre A, De Maglio G, Giannini G, Habran L, Tarsitano M, Chetta M, Cappellen D, Lespagnol A, Le Naoures C, Massazza G, Destro A, Bonzheim I, Rau A, Battmann A, Kah B, Watkin E, Hummel M. FACILITATE: A real-world, multicenter, prospective study investigating the utility of a rapid, fully automated real-time PCR assay versus local reference methods for detecting epidermal growth factor receptor variants in NSCLC. Pathol Oncol Res 2023; 29:1610707. [PMID: 36798672 PMCID: PMC9927408 DOI: 10.3389/pore.2023.1610707] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Accurate testing for epidermal growth factor receptor (EGFR) variants is essential for informing treatment decisions in non-small cell lung cancer (NSCLC). Automated diagnostic workflows may allow more streamlined initiation of targeted treatments, where appropriate, while comprehensive variant analysis is ongoing. FACILITATE, a real-world, prospective, multicenter, European study, evaluated performance and analytical turnaround time of the Idylla™ EGFR Mutation Test compared with local reference methods. Sixteen sites obtained formalin-fixed paraffin-embedded biopsy samples with ≥ 10% neoplastic cells from patients with NSCLC. Consecutive 5 μm sections from patient samples were tested for clinically relevant NSCLC-associated EGFR variants using the Idylla™ EGFR Mutation Test and local reference methods; performance (concordance) and analytical turnaround time were compared. Between January 2019 and November 2020, 1,474 parallel analyses were conducted. Overall percentage agreement was 97.7% [n = 1,418; 95% confidence interval (CI): 96.8-98.3], positive agreement, 87.4% (n = 182; 95% CI: 81.8-91.4) and negative agreement, 99.2% (n = 1,236; 95% CI: 98.5-99.6). There were 38 (2.6%) discordant cases. Ninety percent of results were returned with an analytical turnaround time of within 1 week using the Idylla™ EGFR Mutation Test versus ∼22 days using reference methods. The Idylla™ EGFR Mutation Test performed well versus local methods and had shorter analytical turnaround time. The Idylla™ EGFR Mutation Test can thus support application of personalized medicine in NSCLC.
Collapse
Affiliation(s)
- Anke Behnke
- Charité-Universitätsmedizin Berlin, Institute of Pathology and Berlin Institute of Health, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Cayre
- Département de Pathologie, Centre Jean-Perrin, Clermont-Ferrand, France
| | - Giovanna De Maglio
- Azienda Sanitaria Universitaria Friuli Centrale, Pathology Department, Santa Maria della Misericordia Hospital, Udine, Italy
| | - Giuseppe Giannini
- Department Molecular Medicine, Università di Roma La Sapienza, Rome, Italy
| | - Lionel Habran
- Anatomopathology Department, CHU Liège, Liège, Belgium
| | - Marina Tarsitano
- Di Laboratorio, A.O.R.N. Cardarelli, Medical Genetics Laboratory, and Ospedale Antonio Cardarelli, U.O.C. di Genetica Medica, Naples, Italy
| | - Massimiliano Chetta
- Di Laboratorio, A.O.R.N. Cardarelli, Medical Genetics Laboratory, and Ospedale Antonio Cardarelli, U.O.C. di Genetica Medica, Naples, Italy
| | - David Cappellen
- Service de Biologie des Tumeurs, Centre Hospitalier Universitaire de Bordeaux, Hôpital du Haut Lévêque, Pessac, France
| | - Alexandra Lespagnol
- CHU de Rennes, Laboratoire de Génétique Somatique des Cancers, Rennes, France
| | - Cecile Le Naoures
- CHU de Rennes, Service d’Anatomie et Cytologie Pathologiques, Rennes, France
| | - Gabriella Massazza
- Dipartimento Medicina di Laboratorio Anatomia Patologica, ASST Papa Giovanni XXIII, Bergamo, BG, Italy
| | - Annarita Destro
- Pathology Department, Humanitas Clinical and Research Center—IRCCS, Milan, Italy
| | - Irina Bonzheim
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Achim Rau
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Achim Battmann
- Institut für Pathologie und Zytodiagnostik am Krankenhaus Nordwest, Frankfurt, Germany
| | - Bettina Kah
- Institut für Hämatopathologie Hamburg, Hamburg, Germany
| | | | - Michael Hummel
- Charité-Universitätsmedizin Berlin, Institute of Pathology and Berlin Institute of Health, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Michael Hummel,
| |
Collapse
|
6
|
Pujol N, Heeke S, Bontoux C, Boutros J, Ilié M, Hofman V, Marquette CH, Hofman P, Benzaquen J. Molecular Profiling in Non-Squamous Non-Small Cell Lung Carcinoma: Towards a Switch to Next-Generation Sequencing Reflex Testing. J Pers Med 2022; 12:1684. [PMID: 36294823 PMCID: PMC9605324 DOI: 10.3390/jpm12101684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
Molecular diagnosis of lung cancer is a constantly evolving field thanks to major advances in precision oncology. The wide range of actionable molecular alterations in non-squamous non-small cell lung carcinoma (NS-NSCLC) and the multiplicity of mechanisms of resistance to treatment resulted in the need for repeated testing to establish an accurate molecular diagnosis, as well as to track disease evolution over time. While assessing the increasing complexity of the molecular composition of tumors at baseline, as well as over time, has become increasingly challenging, the emergence and implementation of next-generation sequencing (NGS) testing has extensively facilitated molecular profiling in NS-NSCLC. In this review, we discuss recent developments in the molecular profiling of NS-NSCLC and how NGS addresses current needs, as well as how it can be implemented to address future challenges in the management of NS-NSCLC.
Collapse
Affiliation(s)
- Nina Pujol
- Centre Antoine-Lacassagne, Department of Radiation Oncology, Côte d’Azur University, 06000 Nice, France
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Biobank BB-0033-00025, 06000 Nice, France
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
| | - Jacques Boutros
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, 06000 Nice, France
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Biobank BB-0033-00025, 06000 Nice, France
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Biobank BB-0033-00025, 06000 Nice, France
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
| | - Charles-Hugo Marquette
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, 06000 Nice, France
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Biobank BB-0033-00025, 06000 Nice, France
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
| | - Jonathan Benzaquen
- CNRS UMR 7284, INSERM U1081, Institute of Research on Cancer and Aging, Côte d’Azur University, 06000 Nice, France
- Department of Pulmonary Medicine and Thoracic Oncology, Côte d’Azur University, Pasteur 1 Hospital, Centre Hospitalier Universitaire de Nice, FHU OncoAge, 06000 Nice, France
| |
Collapse
|
7
|
Shields MD, Chen K, Dutcher G, Patel I, Pellini B. Making the Rounds: Exploring the Role of Circulating Tumor DNA (ctDNA) in Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23169006. [PMID: 36012272 PMCID: PMC9408840 DOI: 10.3390/ijms23169006] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Advancements in the clinical practice of non-small cell lung cancer (NSCLC) are shifting treatment paradigms towards increasingly personalized approaches. Liquid biopsies using various circulating analytes provide minimally invasive methods of sampling the molecular content within tumor cells. Plasma-derived circulating tumor DNA (ctDNA), the tumor-derived component of cell-free DNA (cfDNA), is the most extensively studied analyte and has a growing list of applications in the clinical management of NSCLC. As an alternative to tumor genotyping, the assessment of oncogenic driver alterations by ctDNA has become an accepted companion diagnostic via both single-gene polymerase chain reactions (PCR) and next-generation sequencing (NGS) for advanced NSCLC. ctDNA technologies have also shown the ability to detect the emerging mechanisms of acquired resistance that evolve after targeted therapy. Furthermore, the detection of minimal residual disease (MRD) by ctDNA for patients with NSCLC after curative-intent treatment may serve as a prognostic and potentially predictive biomarker for recurrence and response to therapy, respectively. Finally, ctDNA analysis via mutational, methylation, and/or fragmentation multi-omic profiling offers the potential for improving early lung cancer detection. In this review, we discuss the role of ctDNA in each of these capacities, namely, for molecular profiling, treatment response monitoring, MRD detection, and early cancer detection of NSCLC.
Collapse
Affiliation(s)
- Misty Dawn Shields
- Department of Internal Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA
| | - Kevin Chen
- Department of Radiation Oncology, Division of Cancer Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Giselle Dutcher
- Department of Medicine, Division of Solid Tumor Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ishika Patel
- Department of Public Health, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
8
|
de Alava E, Pareja MJ, Carcedo D, Arrabal N, García JF, Bernabé-Caro R. Cost-effectiveness analysis of molecular diagnosis by next-generation sequencing versus sequential single testing in metastatic non-small cell lung cancer patients from a south Spanish hospital perspective. Expert Rev Pharmacoecon Outcomes Res 2022; 22:1033-1042. [PMID: 35593180 DOI: 10.1080/14737167.2022.2078310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND To assess the cost-effectiveness of using next-generation sequencing (NGS) compared to sequential single-testing (SST) for molecular diagnostic and treatment of patients with advanced non-small cell lung cancer (NSCLC) from a Spanish single-center perspective, the Hospital Universitario Virgen del Rocio (HUVR). RESEARCH DESIGN AND METHODS A decision-tree model was developed to assess the alterations detection alterations and diagnostic cost in patients with advanced NSCLC, comparing NGS versus SST. Model inputs such as testing, positivity rates, or treatment allocation were obtained from the literature and the clinical practice of HUVR experts through consultation. Several sensitivity analyses were performed to test the robustness of the model. RESULTS Using NGS for molecular diagnosis of a 100-patients hypothetical cohort, 30 more alterations could be detected and 3 more patients could be enrolled in clinical-trials than using SST. On the other hand, diagnostic costs were increased up to €20,072 using NGS instead of SST. Using NGS time-to-results would be reduced from 16.7 to 9 days. CONCLUSIONS The implementation of NGS at HUVR for the diagnostic of patients with advanced NSCLC provides significant clinical benefits compared to SST in terms of alterations detected, treatment with targeted-therapies and clinical-trial enrollment, and could be considered a cost-effective strategy.
Collapse
Affiliation(s)
- Enrique de Alava
- Pathology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - María Jesús Pareja
- Managing Director of the Health Management Area of South Sevilla, Spain.,Coordinator of the Clinical Laboratory Network of Andalucia
| | | | | | | | - Reyes Bernabé-Caro
- Institute for Biomedical Research in Seville (IBIS/ SNRC/Seville University), Sevilla, Spain
| |
Collapse
|
9
|
Chen S, Zhu H, Jin M, Yuan H, Liu Z, Li J, Zhang X, Meng L, Li T, Diao Y, Gao H, Hong C, Zhu X, Zheng J, Li F, Niu Y, Ma T, Li X. Molecular and clinical characteristics of
IDH
mutations in Chinese
NSCLC
patients and potential treatment strategies. Cancer Med 2022; 11:4122-4133. [PMID: 35526267 DOI: 10.1002/cam4.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shuchen Chen
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Honglin Zhu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd. Hangzhou China
| | - Meizi Jin
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Hongling Yuan
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd. Hangzhou China
| | - Zhenzhen Liu
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Jielin Li
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Xiang Zhang
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd. Hangzhou China
| | - Lihui Meng
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Ting Li
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Yuzhu Diao
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Hong Gao
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Chengyu Hong
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Xinjiang Zhu
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Jian Zheng
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Fei Li
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| | - Yanling Niu
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd. Hangzhou China
| | - Tonghui Ma
- Hangzhou Jichenjunchuang Medical Laboratory, Co., Ltd. Hangzhou China
| | - Xiaoling Li
- Cancer Hospital of China Medical University Shenyang China
- Liaoning Cancer Hospital & Institute Shenyang China
| |
Collapse
|
10
|
Lee K, Choi YJ, Kim JS, Kim DS, Lee SY, Shin BK, Kang EJ. Association between PD-L1 expression and initial brain metastasis in patients with non-small cell lung cancer and its clinical implications. Thorac Cancer 2021; 12:2143-2150. [PMID: 34121347 PMCID: PMC8327696 DOI: 10.1111/1759-7714.14006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background Brain metastases frequently occur in patients with non‐small cell lung cancer (NSCLC) resulting in a poor prognosis. Here, we investigated the association between PD‐L1 expression and brain metastasis in patients with NSCLC and its clinical significance. Methods A total of 270 patients diagnosed with metastatic NSCLC who underwent PD‐L1 testing on their tumor tissue between January 2017 and March 2019 were retrospectively reviewed. The VENTANA PD‐L1 (SP263) assay was used, and positive PD‐L1 expression was defined as staining in ≥1% of tumor cells. Results Positive PD‐L1 expression was observed in 181 (67.0%) patients, and 74 (27.4%) patients had brain metastasis at diagnosis. Synchronous brain metastases were more frequently observed in PD‐L1‐positive compared with PD‐L1‐negative patients (31.5% vs. 19.1%, p = 0.045). Multiple logistic regression analysis identified positive PD‐L1 expression (odds ratio [OR]: 2.24, p = 0.012) as an independent factor associated with synchronous brain metastasis, along with the histological subtype of nonsquamous cell carcinoma (OR: 2.84, p = 0.003). However, the incidence of central nervous system (CNS) progression was not associated with PD‐L1 positivity, with a two‐year cumulative CNS progression rate of 26.3% and 28.4% in PD‐L1‐positive and PD‐L1‐negative patients, respectively (log rank p = 0.944). Furthermore, positive PD‐L1 expression did not affect CNS progression or overall survival in patients with synchronous brain metastasis (long rank p = 0.513 and 0.592, respectively). Conclusions Initial brain metastases are common in NSCLC patients with positive PD‐L1 expression. Further studies are necessary to understand the relationship between early brain metastasis and cancer immunity.
Collapse
Affiliation(s)
- Kyoungmin Lee
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Yoon J Choi
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Anam Hospital, Seoul, South Korea
| | - Jung S Kim
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Ansan Hospital, Seoul, South Korea
| | - Dae S Kim
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Sung Y Lee
- Division of Pulmonology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Bong K Shin
- Department of Pathology, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun J Kang
- Division of Hemato-oncology, Department of Internal Medicine, Korea University College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| |
Collapse
|
11
|
Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. Mol Cell 2020; 80:562-577. [PMID: 33217316 PMCID: PMC8399907 DOI: 10.1016/j.molcel.2020.10.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Intratumoral heterogeneity can occur via phenotype transitions, often after chronic exposure to targeted anticancer agents. This process, termed lineage plasticity, is associated with acquired independence to an initial oncogenic driver, resulting in treatment failure. In non-small cell lung cancer (NSCLC) and prostate cancers, lineage plasticity manifests when the adenocarcinoma phenotype transforms into neuroendocrine (NE) disease. The exact molecular mechanisms involved in this NE transdifferentiation remain elusive. In small cell lung cancer (SCLC), plasticity from NE to nonNE phenotypes is driven by NOTCH signaling. Herein we review current understanding of NE lineage plasticity dynamics, exemplified by prostate cancer, NSCLC, and SCLC.
Collapse
Affiliation(s)
- Mark A Rubin
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland; Bern Center for Precision Medicine, University of Bern and Inselspital, 3010 Bern, Switzerland.
| | - Robert G Bristow
- Manchester Cancer Research Centre and Cancer Research UK Manchester Institute, University of Manchester, Macclesfield SK10 4TG, UK
| | - Phillip D Thienger
- Department for BioMedical Research, University of Bern and Inselspital, 3010 Bern, Switzerland
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Macclesfield SK10 4TG, UK
| | - Marcin Imielinski
- Pathology and Laboratory Medicine and Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
12
|
Zou L, Chu L, Xia F, Zhou L, Yang X, Ni J, Chen J, Zhu Z. Is clinical target volume necessary?-a failure pattern analysis in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy using intensity-modulated radiotherapy technique. Transl Lung Cancer Res 2020; 9:1986-1995. [PMID: 33209618 PMCID: PMC7653148 DOI: 10.21037/tlcr-20-523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Our previous dosimetric study showed that for locally advanced non-small cell lung cancer (LA-NSCLC), radiotherapy with intensity-modulated radiotherapy (IMRT) technique could deliver sufficient dose coverage to subclinical regions and reduce the dose to normal tissues with the omission of clinical target volume (CTV). To further clinically validate this strategy, we conducted the current study to analyze the failure pattern for patients with LA-NSCLC treated with concurrent chemotherapy and CTV-omitted IMRT. We also investigated the effects of target volumes on lymphopenia during radiotherapy to further test the potential benefits of CTV omission in anti-tumor immunotherapy. Methods A total of 63 patients with LA-NSCLC treated with CTV-omitted IMRT with concurrent chemotherapy were enrolled in this study. Their planning target volume (PTV) (also PTV-g) was expanded directly from gross tumor volume (GTV). A virtual CTV was expanded from GTV, and the PTV generated from virtual CTV was named planning target volume with CTV expansion (PTV-c). Treatment failures were divided into local, regional, and distant failures, and local–regional recurrences were classified into inside PTV-g (IN-PTV-g), between PTV-g and PTV-c (PTV-g-c), and outside PTV-c (OUT-PTV-c). The relationship between lymphopenia during radiotherapy and the target volumes was also evaluated using Spearman’s correlation analysis. Results Among the 60 patients with detailed follow-up data for recurrences, 46 (76.7%) experienced recurrences, with 18 (30.0%) being local recurrence, 5 (8.4%) being regional failure, and 33 (55.0%) being distant failure. For the 21 patients with local–regional recurrences, 16, 6, and 1 were IN-PTV-g, OUT-PTV-c, and PTV-g-c recurrences, respectively. Lymphopenia during radiotherapy was associated with both GTV and PTV, with larger volumes linked to severe lymphopenia. Conclusions CTV omission is feasible for LA-NSCLC treated with concurrent chemoradiotherapy and does not compromise failure inside the subclinical region. The radiation volumes were associated with lymphopenia during radiotherapy, with larger volumes related to severe lymphopenia. This finding supports the further exploration of CTV omission for immunotherapy.
Collapse
Affiliation(s)
- Liqing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Chu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Lijun Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Junchao Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Fudan University Shanghai Medical College, Shanghai, China.,Institute of Thoracic Oncology, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Sebastião MM, Ho RS, de Carvalho JPV, Nussbaum M. Diagnostic Accuracy of Next Generation Sequencing Panel using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2020; 7:158-163. [PMID: 33043062 PMCID: PMC7539761 DOI: 10.36469/jheor.2020.17088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVES Until now, no meta-analysis has been published to evaluate the diagnostic performance of next-generation sequencing (NGS) panel using circulating tumor (ctDNA) in patients with advanced non-small cell lung cancer (aNSCLC). The aim of the study was to carry out a systematic review and a meta-analysis in order to determine the accuracy of NGS of ctDNA to detect six oncogenic driver alterations: epidermal growth factor receptor (EGFR); anaplastic lymphoma kinase (ALK); ROS proto-oncogene 1, receptor tyrosine kinase (ROS-1); serine/threonine-protein kinase B-RAF (BRAF); RET proto-oncogene (RET); and MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 in patients with aNSCLC. METHODS MEDLINE/PubMed, Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), and Centre for Reviews and Dissemination databases and articles obtained from other sources were searched for relevant studies that evaluate the accuracy (sensitivity and specificity) of NGS using ctDNA in patients with aNSCLC. The studies were eligible when NGS of ctDNA was compared with tissue tests to detect at least one of the six oncogenic driver alterations. Diagnostic measures (sensitivity and specificity) were pooled with a bivariate diagnostic random effect. All statistical analyses were performed with software R, v.4.0.0. RESULTS Ten studies were eligible for data extraction. The overall pooled estimates of sensitivity and specificity were 0.766 (95% CI: 0.678-0.835); 0.999 (95% CI: 0.990-1.000), respectively. CONCLUSIONS The analysis has demonstrated that the NGS panel using ctDNA has a high accuracy to identify the six actionable oncogenic driver alterations in patients with aNSCLC. Therefore, it can be considered a reliable alternative to guide the patients with aNSCLC to the right treatment who cannot undergo an invasive procedure or have insufficient tissue material for molecular tests.
Collapse
|
14
|
Berghmans T, Lievens Y, Aapro M, Baird AM, Beishon M, Calabrese F, Dégi C, Delgado Bolton RC, Gaga M, Lövey J, Luciani A, Pereira P, Prosch H, Saar M, Shackcloth M, Tabak-Houwaard G, Costa A, Poortmans P. European Cancer Organisation Essential Requirements for Quality Cancer Care (ERQCC): Lung cancer. Lung Cancer 2020; 150:221-239. [PMID: 33227525 DOI: 10.1016/j.lungcan.2020.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022]
Abstract
European Cancer Organisation Essential Requirements for Quality Cancer Care (ERQCC) are written by experts representing all disciplines involved in cancer care in Europe. They give patients, health professionals, managers and policymakers a guide to essential care throughout the patient journey. Lung cancer is the leading cause of cancer mortality and has a wide variation in treatment and outcomes in Europe. It is a major healthcare burden and has complex diagnosis and treatment challenges. Care must only be carried out in lung cancer units or centres that have a core multidisciplinary team (MDT) and an extended team of health professionals detailed here. Such units are far from universal in European countries. To meet European aspirations for comprehensive cancer control, healthcare organisations must consider the requirements in this paper, paying particular attention to multidisciplinarity and patient-centred pathways from diagnosis, to treatment, to survivorship.
Collapse
Affiliation(s)
- Thierry Berghmans
- European Organisation for Research and Treatment of Cancer (EORTC); Thoracic Oncology Clinic, Institut Jules Bordet, Brussels, Belgium
| | - Yolande Lievens
- European Society for Radiotherapy and Oncology (ESTRO); Radiation Oncology Department, Ghent University Hospital, Belgium
| | - Matti Aapro
- European Cancer Organisation; Genolier Cancer Center, Genolier, Switzerland
| | - Anne-Marie Baird
- European Cancer Organisation Patient Advisory Committee; Central Pathology Laboratory, St James's Hospital, Dublin, Ireland
| | - Marc Beishon
- Cancer World, European School of Oncology (ESO), Milan, Italy.
| | - Fiorella Calabrese
- European Society of Pathology (ESP); Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova Medical School, Padova, Italy
| | - Csaba Dégi
- International Psycho-Oncology Society (IPOS); Faculty of Sociology and Social Work, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Roberto C Delgado Bolton
- European Association of Nuclear Medicine (EANM); Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, San Pedro Hospital and Centre for Biomedical Research of La Rioja (CIBIR); University of La Rioja, Logroño, La Rioja, Spain
| | - Mina Gaga
- European Respiratory Society (ERS); 7th Respiratory Medicine Department, Athens Chest Hospital Sotiria, Athens, Greece
| | - József Lövey
- Organisation of European Cancer Institutes (OECI); National Institute of Oncology, Budapest, Hungary
| | - Andrea Luciani
- International Society of Geriatric Oncology (SIOG); Medical Oncology, Ospedale S. Paolo, Milan, Italy
| | - Philippe Pereira
- Cardiovascular and Interventional Radiological Society of Europe (CIRSE); Clinic for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK-Kliniken, Heilbronn, Germany
| | - Helmut Prosch
- European Society of Radiology (ESR); Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Marika Saar
- European Society of Oncology Pharmacy (ESOP); Tartu University Hospital, Tartu, Estonia
| | - Michael Shackcloth
- European Society of Surgical Oncology (ESSO); Department of Thoracic Surgery, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | | | | | - Philip Poortmans
- European Cancer Organisation; Iridium Kankernetwerk and University of Antwerp, Wilrijk-Antwerp, Belgium
| |
Collapse
|
15
|
Zhou X, Xu X, Tian Z, Xu WY, Cui Y. Mutational profiling of lung adenocarcinoma in China detected by next-generation sequencing. J Cancer Res Clin Oncol 2020; 146:2277-2287. [DOI: 10.1007/s00432-020-03284-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
|
16
|
Shikano K, Ishiwata T, Saegusa F, Terada J, Sakayori M, Abe M, Kawasaki T, Ikari J, Kawata N, Tada Y, Tatsumi K. Feasibility and accuracy of rapid on-site evaluation of touch imprint cytology during transbronchial biopsy. J Thorac Dis 2020; 12:3057-3064. [PMID: 32642228 PMCID: PMC7330746 DOI: 10.21037/jtd-20-671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Rapid on-site evaluation (ROSE) of cytologic material is widely performed because it provides clinicians with instant diagnostic information. However, the utility of ROSE of touch imprint cytology (ROSE-TIC) during transbronchial biopsy (TBB) remains unclear. The aim of this study was to evaluate the feasibility and accuracy of ROSE-TIC for TBB. Methods A retrospective study was performed on patients who underwent diagnostic bronchoscopy combined with ROSE-TIC. The results of ROSE-TIC, diagnosed as either positive or negative for malignancy, were compared with the histological findings and final diagnosis. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were calculated. The success rate of molecular testing on TBB specimens was also assessed. Results Overall, 460 patients underwent bronchoscopy with ROSE-TIC. Of these, 377 cases (82.0%) were malignant and 83 cases (18.0%) were non-malignant in the final diagnosis. Compared with the histological findings, ROSE-TIC showed sensitivity, specificity, PPV, NPV, and diagnostic accuracy values of 91.1%, 90.4%, 94.8%, 84.0%, and 90.9%, respectively. Compared with the final diagnosis, ROSE-TIC showed sensitivity, specificity, PPV, NPV, and diagnostic accuracy values of 75.3%, 91.6%, 97.6%, 45.0%, and 78.3%, respectively. Seven discordant cases (1.5%) were positive on ROSE-TIC and negative on final diagnosis. The success rates for molecular analysis from TBB samples were 96.6% for EGFR mutation, 87.3% for ALK rearrangement, 93.1% for ROS1 rearrangement, and 96.2% for PD-L1 expression. Conclusions The accuracy of ROSE-TIC is high. It can be useful for obtaining instant diagnosis, contributing to a high success rate of molecular analysis for targeted therapy.
Collapse
Affiliation(s)
- Kohei Shikano
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Ishiwata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumie Saegusa
- Division of Endoscopic Diagnostics and Therapeutics, Chiba University Hospital, Chiba University, Chiba, Japan
| | - Jiro Terada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masashi Sakayori
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsuhiro Abe
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Kawasaki
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Ikari
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Kawata
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Rassy E, Pavlidis N. Progress in refining the clinical management of cancer of unknown primary in the molecular era. Nat Rev Clin Oncol 2020; 17:541-554. [PMID: 32350398 DOI: 10.1038/s41571-020-0359-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Cancer of unknown primary (CUP) is an enigmatic disease entity encompassing heterogeneous malignancies without a detectable primary tumour, despite a thorough diagnostic workup. A minority of patients with CUP (15-20%) can be assigned a putative primary tissue of origin according to clinical and histopathological findings and typically have a more favourable prognosis with the use of corresponding tumour type-specific therapies. Thus, the majority of patients with CUP have disease that cannot be assigned to a culprit primary tumour, are treated with empirical chemotherapy and have a poor prognosis. In the molecular era, the use of (epi)genomic or transcriptomic CUP classifiers and DNA or RNA sequencing offers two, sometimes overlapping, therapeutic strategies: tumour type-specific therapy and biomarker-guided therapy. Published data reveal that the accuracy of site-of-origin predictions made using CUP classifiers ranges between 54% and 98% when compared with the assignment made according to the recommended clinicopathological criteria. These advances have led to promising results in non-randomized prospective studies evaluating the efficacy of tumour type-specific therapy; however, the favourable outcomes were not confirmed in randomized controlled studies comparing this approach with standard empirical chemotherapy. Currently, the evidence supporting the use of biomarker-guided therapies is limited to case reports and small case series. In this Review, we discuss the clinical management of CUP in the era of precision medicine. We focus on the advances in understanding the biology of CUP, the implications for the diagnosis and classification of CUP according to the tissue of origin and the shift away from empirical therapy towards tailored therapy.
Collapse
Affiliation(s)
- Elie Rassy
- Department of Medical Oncology, Institut Gustave Roussy, Villejuif, Paris, France.
| | | |
Collapse
|
18
|
Rodriguez EF, De Marchi F, Lokhandwala PM, Belchis D, Xian R, Gocke CD, Eshleman JR, Illei P, Li MT. IDH1 and IDH2 mutations in lung adenocarcinomas: Evidences of subclonal evolution. Cancer Med 2020; 9:4386-4394. [PMID: 32333643 PMCID: PMC7300411 DOI: 10.1002/cam4.3058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background Selective IDH1 and IDH2 inhibitors have been approved for targeted therapy of acute myeloid leukemia. Clinical trials for solid tumors with IDH1 and IDH2 (IDH1/2) mutations are ongoing. Reports of IDH1/2‐mutated non–small cell lung cancers (NSCLCs), however, are limited. Methods We evaluated IDH1/2 mutations in 1,924 NSCLC specimens (92% adenocarcinoma) using a next‐generation sequencing assay. Results Retrospective quality assessments identified false detection of IDH1 c.395G>A (p.R132H) resulting from cytosine deamination (C:G→T:A) artifact in one specimen. IDH1/2 mutations were detected in 9 (0.5%) adenocarcinomas taken by fine‐needle aspiration (n = 3), thoracentesis (n = 2) or core biopsy (n = 4). All nine adenocarcinomas showed high‐grade features. Extensive clear cell change, however, was not observed. High expression (50% or greater) of PD‐L1 was observed in two of five specimens examined. IDH1/2 mutations were associated with old age, smoking history, and coexisting KRAS mutation. Lower than expected variant allele frequency of IDH1/2 mutants and coexistence of IDH1/2 mutations with known trunk drivers in the BRAF, EGFR, and KRAS genes suggest they could be branching drivers leading to subclonal evolution in lung adenocarcinomas. Multiregional analysis of an adenocarcinoma harboring two IDH2 mutations revealed parallel evolution originating from a KRAS‐mutated lineage, further supporting subclonal evolution promoted by IDH1/2 mutations. Conclusions IDH1/2 mutations in NSCLCs are uncommon. They occur in adenocarcinomas with high‐grade features and may be branching drivers leading to subclonal evolution. Accumulation of more IDH1/2‐mutated NSCLCs is needed to clarify their clinicopathological characteristics and implications for targeted therapy.
Collapse
Affiliation(s)
- Erika F Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Federico De Marchi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Parvez M Lokhandwala
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah Belchis
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rena Xian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Illei
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Tseh Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
van den Broek D, Hiltermann TJN, Biesma B, Dinjens WNM, 't Hart NA, Hinrichs JWJ, Leers MPG, Monkhorst K, van Oosterhout M, Scharnhorst V, Schuuring E, Speel EJM, van den Heuvel MM, van Schaik RHN, von der Thüsen J, Willems SM, de Visser L, Ligtenberg MJL. Implementation of Novel Molecular Biomarkers for Non-small Cell Lung Cancer in the Netherlands: How to Deal With Increasing Complexity. Front Oncol 2020; 9:1521. [PMID: 32039011 PMCID: PMC6987414 DOI: 10.3389/fonc.2019.01521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Abstract
The diagnostic landscape of non-small cell lung cancer (NSCLC) is changing rapidly with the availability of novel treatments. Despite high-level healthcare in the Netherlands, not all patients with NSCLC are tested with the currently relevant predictive tumor markers that are necessary for optimal decision-making for today's available targeted or immunotherapy. An expert workshop on the molecular diagnosis of NSCLC involving pulmonary oncologists, clinical chemists, pathologists, and clinical scientists in molecular pathology was held in the Netherlands on December 10, 2018. The aims of the workshop were to facilitate cross-disciplinary discussions regarding standards of practice, and address recent developments and associated challenges that impact future practice. This paper presents a summary of the discussions and consensus opinions of the workshop participants on the initial challenges of harmonization of the detection and clinical use of predictive markers of NSCLC. A key theme identified was the need for broader and active participation of all stakeholders involved in molecular diagnostic services for NSCLC, including healthcare professionals across all disciplines, the hospitals and clinics involved in service delivery, healthcare insurers, and industry groups involved in diagnostic and treatment innovations. Such collaboration is essential to integrate different technologies into molecular diagnostics practice, to increase nationwide patient access to novel technologies, and to ensure consensus-preferred biomarkers are tested.
Collapse
Affiliation(s)
- Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - T. Jeroen N. Hiltermann
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bonne Biesma
- Department of Pulmonary Diseases, Jeroen Bosch Hospital, 's-Hertogenbosch, Netherlands
| | - Winand N. M. Dinjens
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nils A. 't Hart
- Department of Pathology, Isala Klinieken, Zwolle, Netherlands
| | - John W. J. Hinrichs
- Symbiant Pathology Expert Centre, Alkmaar, Netherlands
- Department of Pathology, University Medical Center, Utrecht, Netherlands
| | - Mathie P. G. Leers
- Department of Clinical Chemistry, Zuyderland Medical Center, Sittard-Geleen, Netherlands
| | - Kim Monkhorst
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | | | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ernst-Jan M. Speel
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Ron H. N. van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jan von der Thüsen
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Stefan M. Willems
- Department of Pathology, University Medical Center, Utrecht, Netherlands
| | | | - Marjolijn J. L. Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
20
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
21
|
Oh AC, Lee JK, Kim JY, Jin HO, Jung JW, Chang YH, Hong YJ. Utilization of Archived Plasma to Detect Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer Patients. Biopreserv Biobank 2019; 17:319-325. [PMID: 30888199 PMCID: PMC6703236 DOI: 10.1089/bio.2018.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Precision medicine has received increased attention as an effective approach for the treatment of cancer patients. Because of challenges associated with the availability of archived tissue, liquid biopsies are often performed to detect cancer-specific mutations. One of the major advantages of the liquid biopsy is that the treatment can be monitored longitudinally, even after the tumor tissue is no longer available. In a clinical setting, one component of precision medicine is the detection of cancer-specific mutations using archived samples. In this study, we evaluated the epidermal growth factor receptor (EGFR) mutation status of samples of lung cancer patients stored before introduction of the plasma EGFR test at our institution. The aim of this study was to validate the utility of archived plasma samples for detection of the EGFR mutation in nonsmall cell lung cancer (NSCLC) patients. The Cobas® EGFR Mutation Test v2 was the first liquid biopsy test approved as a companion diagnostic test for patients with NSCLC treated with tyrosine kinase inhibitors. We tested for the EGFR mutation in 116 plasma samples archived in the biobank, and the results were compared with those obtained in the tissue or cytology EGFR mutation test. The EGFR mutation-positive rate from archived plasma was lower than that determined from tissue or cytology at 19.0% and 53.4%, respectively, and the concordance rate between the two tests was 58.6%. Of interest, five (4.3%) samples showed the T790M mutation in the plasma test, whereas this mutation was only detected in two (1.7%) tissue/cytology samples. Five (4.3%) samples were additionally positive in the plasma test. Overall, these results indicate that archived plasma samples can serve as an alternative source for the plasma EGFR mutation test when tissue samples are not available, and can improve precision medicine and long-term follow-up in a noninvasive manner.
Collapse
Affiliation(s)
- Ae-Chin Oh
- 1Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Jin Kyung Lee
- 1Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Republic of Korea.,2KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ji-Young Kim
- 2KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- 2KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae Won Jung
- 1Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Yoon Hwan Chang
- 1Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Young Jun Hong
- 1Department of Laboratory Medicine, Korea Cancer Center Hospital, Seoul, Republic of Korea
| |
Collapse
|