1
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Palianina D, Mietz J, Stühler C, Arnold B, Bantug G, Münz C, Chijioke O, Khanna N. Stem cell memory EBV-specific T cells control EBV tumor growth and persist in vivo. SCIENCE ADVANCES 2024; 10:eado2048. [PMID: 39178248 PMCID: PMC11343021 DOI: 10.1126/sciadv.ado2048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Adoptive T cell therapy (ACT), the therapeutic transfer of defined T cell immunity to patients, offers great potential in the fight against different human diseases including difficult-to-treat viral infections, but persistence and longevity of the cells are areas of concern. Very-early-differentiated stem cell memory T cells (TSCMs) have superior self-renewal, engraftment, persistence, and anticancer efficacy, but their potential for antiviral ACT remains unknown. Here, we developed a clinically scalable protocol for expanding Epstein-Barr virus (EBV)-specific TSCM-enriched T cells with high proportions of CD4+ T cells and broad EBV antigen coverage. These cells showed tumor control in a xenograft model of EBV-induced lymphoma and were superior to previous ACT protocols in terms of tumor infiltration, in vivo proliferation, persistence, proportion of functional CD4+ T cells, and diversity of EBV antigen specificity. Thus, our protocol may pave the way for the next generation of potent unmodified antigen-specific cell therapies for EBV-associated diseases, including tumors, and other indications.
Collapse
Affiliation(s)
- Darya Palianina
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Claudia Stühler
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Brice Arnold
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
3
|
Gu X, Zhu Y, Su J, Wang S, Su X, Ding X, Jiang L, Fei X, Zhang W. Lactate-induced activation of tumor-associated fibroblasts and IL-8-mediated macrophage recruitment promote lung cancer progression. Redox Biol 2024; 74:103209. [PMID: 38861833 PMCID: PMC11215341 DOI: 10.1016/j.redox.2024.103209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Alterations in the tumor microenvironment are closely associated with the metabolic phenotype of tumor cells. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor growth and metastasis. Existing studies have suggested that lactate produced by tumor cells can activate CAFs, yet the precise underlying mechanisms remain largely unexplored. In this study, we initially identified that lactate derived from lung cancer cells can promote nuclear translocation of NUSAP1, subsequently leading to the recruitment of the transcriptional complex JUNB-FRA1-FRA2 near the DESMIN promoter and facilitating DESMIN transcriptional activation, thereby promoting CAFs' activation. Moreover, DESMIN-positive CAFs, in turn, secrete IL-8, which recruits TAMs or promotes M2 polarization of macrophages, further contributing to the alterations in the tumor microenvironment and facilitating lung cancer progression. Furthermore, we observed that the use of IL-8 receptor antagonists, SB225002, or Navarixin, significantly reduced TAM infiltration and enhanced the therapeutic efficacy of anti-PD-1 or anti-PD-L1 treatment. This finding indicates that inhibiting IL-8R activity can attenuate the impact of CAFs on the tumor microenvironment, thus restraining the progression of lung cancer.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yifei Zhu
- Department of Oncology, Shanghai Medical College of Fudan University, Shanghai 200032, China; Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jincheng Su
- School of Medicine, Shihezi University, Shihezi 832002, China
| | - Sheng Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiangyu Su
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Xu Ding
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Lei Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Xiang Fei
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Wentian Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
4
|
Ferrari V, Lo Cascio A, Melacarne A, Tanasković N, Mozzarelli AM, Tiraboschi L, Lizier M, Salvi M, Braga D, Algieri F, Penna G, Rescigno M. Sensitizing cancer cells to immune checkpoint inhibitors by microbiota-mediated upregulation of HLA class I. Cancer Cell 2023; 41:1717-1730.e4. [PMID: 37738976 DOI: 10.1016/j.ccell.2023.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 04/07/2023] [Accepted: 08/31/2023] [Indexed: 09/24/2023]
Abstract
Recent data have shown that gut microbiota has a major impact on the clinical response to immune checkpoint inhibitors (ICIs) in the context of solid tumors. ICI-based therapy acts by unlocking cognate cytotoxic T lymphocyte (CTL) effector responses, and increased sensitivity to ICIs is due to an enhancement of patients' tumor antigen (TA)-specific CTL responses. Cancer clearance by TA-specific CTL requires expression of relevant TAs on cancer cells' HLA class I molecules, and reduced HLA class I expression is a common mechanism used by cancer cells to evade the immune system. Here, we show that metabolites released by bacteria, in particular, phytosphingosine, can upregulate HLA class I expression on cancer cells, sensitizing them to TA-specific CTL lysis in vitro and in vivo, in combination with immunotherapy. This effect is mediated by postbiotic-induced upregulation of NLRC5 in response to upstream MYD88-NF-κB activation, thus significantly controlling tumor growth.
Collapse
Affiliation(s)
- Valentina Ferrari
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Antonino Lo Cascio
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Alessia Melacarne
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Alessandro M Mozzarelli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Luca Tiraboschi
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Michela Lizier
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Marta Salvi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Daniele Braga
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy
| | | | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy; Postbiotica S.r.l, Milan 20123, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
5
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
6
|
Okobi TJ, Uhomoibhi TO, Akahara DE, Odoma VA, Sanusi IA, Okobi OE, Umana I, Okobi E, Okonkwo CC, Harry NM. Immune Checkpoint Inhibitors as a Treatment Option for Bladder Cancer: Current Evidence. Cureus 2023; 15:e40031. [PMID: 37425564 PMCID: PMC10323982 DOI: 10.7759/cureus.40031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Bladder cancer is a prevalent disease, and treatment options for advanced bladder cancer remain limited. However, immune checkpoint inhibitors (ICIs) targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) have shown promise in treating bladder cancer. These drugs work by blocking receptors and ligands, disrupting signaling, and allowing T cells to recognize and attack cancer cells. ICIs have been found to be effective in treating bladder cancer, especially in cases of metastatic urothelial carcinoma (UC) that have progressed after chemotherapy. Furthermore, combination therapy with ICIs and chemotherapy or radiation therapy has shown promise in treating bladder cancer. While there are challenges associated with ICIs, including adverse effects, immune-related adverse events, and lack of efficacy in some patients, they remain a promising option for bladder cancer treatment, especially in cases where other treatment options have failed. This review paper focuses on the current role, challenges, and future trends of immunotherapy in the management of bladder cancer.
Collapse
Affiliation(s)
| | - Trinitas Oserefuamen Uhomoibhi
- Internal Medicine, Georgetown University, Washington, D.C., USA
- Internal Medicine, University of the District of Columbia, Washington, D.C., USA
| | | | | | | | - Okelue E Okobi
- Family Medicine, Medficient Health Systems, Laurel, USA
- Family Medicine, Lakeside Medical Center, Belle Glade, USA
| | - Ifiok Umana
- Urology, Jos University Teaching Hospital, Jos, NGA
| | - Emeka Okobi
- Dentistry, Ahmadu Bello University Teaching Hospital Zaria, Abuja, NGA
| | - Chinwe C Okonkwo
- Family Medicine, Caribbean Medical University School of Medicine, Willemstad, CUW
| | | |
Collapse
|
7
|
Lybaert L, Thielemans K, Feldman SA, van der Burg SH, Bogaert C, Ott PA. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer 2023; 9:503-519. [PMID: 37055237 PMCID: PMC10414146 DOI: 10.1016/j.trecan.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/15/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy have brought immunotherapy to the forefront of cancer treatment; however, only subsets of patients benefit from current approaches. Neoantigen-driven therapeutics specifically redirect the immune system of the patient to enable or reinduce its ability to recognize and eliminate cancer cells. The tumor specificity of this strategy spares healthy and normal cells from being attacked. Consistent with this concept, initial clinical trials have demonstrated the feasibility, safety, and immunogenicity of neoantigen-directed personalized vaccines. We review neoantigen-driven therapy strategies as well as their promise and clinical successes to date.
Collapse
Affiliation(s)
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
Chen L, Huang L, Dong B, Gu Y, Cang W, Li C, Sun P, Xiang Y. ADCY7 mRNA Is a Novel Biomarker in HPV Infection and Cervical High-Grade Squamous Lesions or Higher. Biomedicines 2023; 11:biomedicines11030868. [PMID: 36979847 PMCID: PMC10045083 DOI: 10.3390/biomedicines11030868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
The effect of cervical cancer immunotherapy is limited. Combination therapy will be a new direction for cervical cancer. Thus, it is essential to discover a novel and available predictive biomarker to stratify patients who may benefit from immunotherapy for cervical cancer. In this study, 563 participants were enrolled. Adenylate cyclase 7 (ADCY7) mRNA was detected by real-time quantitative PCR (qPCR) with cervical cytology specimens. The relationship between ADCY7 and cervical intraepithelial neoplasia in grade 2 and higher (CIN2+) was analyzed, and the optimal cut-off values of the relative expression of ADCY7 mRNA to predict CIN2+ were calculated. In addition, the clinical significance of ADCY7 in cervical cancer was determined by the Kaplan–Meier Cox regression based on the TCGA database. The mean ADCY7 mRNA expression increased significantly with cervical lesion development, especially compared with CIN2+ (p < 0.05). Moreover, the expression of ADCY7 increased significantly in high-risk human papillomavirus (HR-HPV) infection but not in HPV-A5/6 species. The area under the receiver operating characteristic curve (AUC) of ADCY7 was 0.897, and an optimal cut-off was 0.435. Furthermore, ADCY7 had the highest OR (OR= 8.589; 95% CI (2.281–22.339)) for detecting CIN 2+, followed by HPV genotyping, TCT, and age (OR = 4.487, OR = 2.071, and OR = 1.345; 95% CI (1.156–10.518), (0.370–8.137), and (0.171–4.694), respectively). Moreover, this study indicated that higher ADCY7 levels could be a suitable predictor for poor prognosis in cervical cancer due to immune cell infiltration. A new auxiliary predictor of CIN2+ in cervical cytology specimens is ADCY7 ≥ 0.435. Furthermore, it may be a promising prognosis predictor and potential immunotherapy target for the combined treatment of cervical cancer and possibly further block HR-HPV persistent infection.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Lixiang Huang
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fujian Maternity and Child Health Hospital (Fujian Women and Children’s Hospital), Fuzhou 350001, China
- Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital (Fujian Obstetrics and Gynecology Hospital), Fuzhou 350001, China
- Correspondence: (P.S.); (Y.X.); Tel.: +86-591-87558732 (P.S.); +86-01065296068 (Y.X.); Fax: +86-591-87551247 (P.S.); +86-01065296218 (Y.X.)
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100006, China
- Correspondence: (P.S.); (Y.X.); Tel.: +86-591-87558732 (P.S.); +86-01065296068 (Y.X.); Fax: +86-591-87551247 (P.S.); +86-01065296218 (Y.X.)
| |
Collapse
|
9
|
Lin Y, Huang S, Qi Y, Xie L, Jiang J, Li H, Chen Z. PSGL-1 is a novel tumor microenvironment prognostic biomarker with cervical high-grade squamous lesions and more. Front Oncol 2023; 13:1052201. [PMID: 36969026 PMCID: PMC10030516 DOI: 10.3389/fonc.2023.1052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundMacrophages secrete many cytokines and chemokines, which can provoke either an anti-tumor or pro-tumor immune response. P-selectin glycoprotein ligand-1 (PSGL-1) is expressed in macrophages and plays a vital role in synergizing for a more robust anti-tumor response. However, there are few studies about PSGL-1 expression status and clinical value of biological function in cervical cancer.MethodsIn this study, 565 participants were enrolled. PSGL-1 mRNA was detected by real-time quantitative PCR (qPCR) with cervical cytology specimens. The relationship between PSGL-1 and cervical intraepithelial neoplasia in two grades and more (CIN2+) was analyzed, and the optimal cut-off values of PSGL-1 to predict CIN2+ were calculated. In addition, the clinical significance of PSGL-1 in cervical cancer was determined by Kaplan-Meier Cox regression based on the database.ResultsThe mean PSGL-1 increased significantly with cervical lesion development, especially compared with CIN2+ (p<0.05). Moreover, the expression of PSGL-1 increased significantly in HPV-16/18 positive and HPV-18 positive, but not in HPV-16 positive and other HR-HPV positive. And then, it demonstrated that the area under the receiver operating characteristic curve (AUC) of PSGL-1 was 0.820, and an optimal cut-off 0.245. Furthermore, the PSGL-1 had the highest odds ratio and highest OR (OR= 8.707; 95% CI (.371-19.321)) for the detection of CIN 2+. In addition, our result also indicated that higher PSGL-1 expression was significantly related to a better prognosis in cervical cancer due to immune cell infiltration.ConclusionsPSGL-1≥0.245 in cervical cytology specimens is a new auxiliary biomarker of CIN2+, and it may be a promising prognosis predictor and potential immunotherapy target linked with immune infiltration of cervical cancer.
Collapse
Affiliation(s)
- Yingying Lin
- Department of Healthcare, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Shan Huang
- Department of Traditional Chinese Medicine, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Yuanjie Qi
- Department of Gynecologic, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Li Xie
- Department of Gynecologic, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Junying Jiang
- Department of Gynecologic, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Hua Li
- Department of Gynecologic, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhiwei Chen, ; Hua Li,
| | - Zhiwei Chen
- Department of Gynecologic, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
- *Correspondence: Zhiwei Chen, ; Hua Li,
| |
Collapse
|
10
|
Kazemi MH, Sadri M, Najafi A, Rahimi A, Baghernejadan Z, Khorramdelazad H, Falak R. Tumor-infiltrating lymphocytes for treatment of solid tumors: It takes two to tango? Front Immunol 2022; 13:1018962. [PMID: 36389779 PMCID: PMC9651159 DOI: 10.3389/fimmu.2022.1018962] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs), frontline soldiers of the adaptive immune system, are recruited into the tumor site to fight against tumors. However, their small number and reduced activity limit their ability to overcome the tumor. Enhancement of TILs number and activity against tumors has been of interest for a long time. A lack of knowledge about the tumor microenvironment (TME) has limited success in primary TIL therapies. Although the advent of engineered T cells has revolutionized the immunotherapy methods of hematologic cancers, the heterogeneity of solid tumors warrants the application of TILs with a wide range of specificity. Recent advances in understanding TME, immune exhaustion, and immune checkpoints have paved the way for TIL therapy regimens. Nowadays, TIL therapy has regained attention as a safe personalized immunotherapy, and currently, several clinical trials are evaluating the efficacy of TIL therapy in patients who have failed conventional immunotherapies. Gaining favorable outcomes following TIL therapy of patients with metastatic melanoma, cervical cancer, ovarian cancer, and breast cancer has raised hope in patients with refractory solid tumors, too. Nevertheless, TIL therapy procedures face several challenges, such as high cost, timely expansion, and technical challenges in selecting and activating the cells. Herein, we reviewed the recent advances in the TIL therapy of solid tumors and discussed the challenges and perspectives.
Collapse
Affiliation(s)
- Mohammad Hossein Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
chen L, Huang Y, Dong B, Gu Y, Li Y, Cang W, Sun P, Xiang Y. Low Level FLT3LG is a Novel Poor Prognostic Biomarker for Cervical Cancer with Immune Infiltration. J Inflamm Res 2022; 15:5889-5904. [PMID: 36274829 PMCID: PMC9579815 DOI: 10.2147/jir.s384908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction The FMS-related tyrosine kinase 3 (FLT3) ligand (FLT3LG), a growth factor, binds to FLT3 on dendritic cell (DCs) to enhance their differentiation and expansion. It has shown great potential as an immunotherapy target for cancers. However, the expression and function of FLT3LG in cervical cancer remain largely unknown. Materials and Methods In this study, we obtained the expression of FLT3LG, the clinical prognosis in cervical cancer, via multiple databases, including The Cancer Genome Atlas (TCGA), the TISIDB database, and Tumor Immune Estimate Resource (TIMER). The results were further investigated using real-time quantitative PCR (qPCR) cytology specimens in 489 patients. Furthermore, Kaplan-Meier Cox regression and prognostic nomogram analyses were used to assess FLT3LG's clinical significance in cervical cancer patients. All calculations used the R package. Results As a result, FLT3LG expression decreased in cervical cancer compared with standard samples. And the low expression of FLT3LG was associated with a poor prognosis. Furthermore, Receiver Operating Characteristics (ROC) analysis indicated that FLT3LG might serve as a valuable diagnostic biomarker for cervical cancer. Additionally, it indicated that the FLT3LG had the highest odds ratio (OR=10.519; (7.371-27.071)) for detecting CIN 2+. In addition, our result also demonstrated that expression of FLT3LG was closely related to immune cells, immune inhibitors, immunostimulators, receptors, and chemokines in CESC. Conclusion Research on FLT3LG provided insight into its critical function. Hence, the low expression of FLT3LG may be a valuable biomarker in CESC patients linked with immune infiltration.
Collapse
Affiliation(s)
- Lihua chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Yuxuan Huang
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Binhua Dong
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Ye Li
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China,Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China,Pengming Sun, Fujian Provincial Maternity and Child Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, Fujian, 350001, People’s Republic of China, Tel +86-591-87558732; +86-591-97279671, Fax +86-591-87551247, Email
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People’s Republic of China,Correspondence: Yang Xiang, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuai Fu Yuan Wang Fu Jing, Dong Cheng District, Beijing, 100730, People’s Republic of China, Tel +86-1065296068, Fax +86-1065296218, Email
| |
Collapse
|
12
|
Neoantigens in precision cancer immunotherapy: from identification to clinical applications. Chin Med J (Engl) 2022; 135:1285-1298. [PMID: 35838545 PMCID: PMC9433083 DOI: 10.1097/cm9.0000000000002181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies targeting cancer neoantigens are safe, effective, and precise. Neoantigens can be identified mainly by genomic techniques such as next-generation sequencing and high-throughput single-cell sequencing; proteomic techniques such as mass spectrometry; and bioinformatics tools based on high-throughput sequencing data, mass spectrometry data, and biological databases. Neoantigen-related therapies are widely used in clinical practice and include neoantigen vaccines, neoantigen-specific CD8+ and CD4+ T cells, and neoantigen-pulsed dendritic cells. In addition, neoantigens can be used as biomarkers to assess immunotherapy response, resistance, and prognosis. Therapies based on neoantigens are an important and promising branch of cancer immunotherapy. Unremitting efforts are needed to unravel the comprehensive role of neoantigens in anti-tumor immunity and to extend their clinical application. This review aimed to summarize the progress in neoantigen research and to discuss its opportunities and challenges in precision cancer immunotherapy.
Collapse
|
13
|
Kloetzel PM. Neo-Splicetopes in Tumor Therapy: A Lost Case? Front Immunol 2022; 13:849863. [PMID: 35265089 PMCID: PMC8898901 DOI: 10.3389/fimmu.2022.849863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Proteasome generates spliced peptides by ligating two distant cleavage products in a reverse proteolysis reaction. The observation that CD8+ T cells recognizing a spliced peptide induced T cell rejection in a melanoma patient following adoptive T cell transfer (ATT), raised some hopes with regard to the general therapeutic and immune relevance of spliced peptides. Concomitantly, the identification of spliced peptides was also the start of a controversy with respect to their frequency, abundancy and their therapeutic applicability. Here I review some of the recent evidence favoring or disfavoring an immune relevance of splicetopes and discuss from a theoretical point of view the potential usefulness of tumor specific splicetopes and why against all odds it still may seem worth trying to identify such tumor and patient-specific neosplicetopes for application in ATT.
Collapse
Affiliation(s)
- Peter M Kloetzel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| |
Collapse
|
14
|
Song Q, Yang B, Sheng W, Zhou Z, Zhang T, Qin B, Ji L, Li P, Wang D, Zhang X, Sun S, Zhang G, Zhao X, Gan Q, Xiong Q, Guan Y, Xia X, Yi X, Chen X, Guo W, Jiao S. Safety and efficacy of mutant neoantigen-specific T-cell treatment combined anti-PD-1 therapy in stage IV solid tumors. Immunotherapy 2022; 14:553-565. [PMID: 35321561 DOI: 10.2217/imt-2021-0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: This trial explored the safety and efficacy of neoantigen-specific T cells (Nas-Ts) combined with anti-PD-1 (Nas-T + anti-PD-1). Patients & methods: This non-randomized trial recruited participants with solid tumors treated with at least two prior systemic treatment lines. For comparison, 1:1-matched controls who received anti-PD-1 alone were recruited. The primary end point was safety. Results: 15 participants were enrolled in the Nas-T + anti-PD-1 group, the objective response rate was 33.3%, and the disease control rate was 93.3%. The median progression-free survival was significantly different between the Nas-T + anti-PD-1 and control groups (13.8 vs 4.2 months; p = 0.024), but no difference in overall survival was found (p = 0.126). The most common adverse events were maculopapular skin reaction (53.3%), rash (53.3%), hepatotoxicity (53.3%) and fever (53.3%) in the Nas-T + anti-PD-1 group. No serious safety issues were experienced. Conclusion: Nas-Ts combined with anti-PD-1 could be more effective than anti-PD-1 alone in prolonging progression-free survival, with good safety.
Collapse
Affiliation(s)
- Qi Song
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Bo Yang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Sheng
- Department of Tissue Repair & Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Zishan Zhou
- Beijing DCTY Biotech Co., Ltd, Beijing, China
| | | | - Boyu Qin
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | | | - Dan Wang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoling Zhang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shengjie Sun
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guoqing Zhang
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhao
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Quan Gan
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | - Wei Guo
- BeiGene Co., Ltd, Beijing, China
| | - Shunchang Jiao
- Department of Oncology, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
15
|
Hong Y, Kim IS. The therapeutic potential of immune cell-derived exosomes as an alternative to adoptive cell transfer. BMB Rep 2022. [PMCID: PMC8810551 DOI: 10.5483/bmbrep.2022.55.1.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2410:649-670. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neoantigens are tumor-specific proteins and peptides that can be highly immunogenic. Immune-mediated tumor rejection is strongly associated with cytotoxic responses to neoantigen-derived peptides in noncovalent association with self-HLA molecules. Neoantigen-based therapies, such as adoptive T cell transfer, have shown the potential to induce remission of treatment-resistant metastatic disease in select patients. Cancer vaccines are similarly designed to elicit or amplify antigen-specific T cell populations and stimulate directed antitumor immunity, but the selection and prioritization of the neoantigens remains a challenge. Bioinformatic algorithms can predict tumor neoantigens from somatic mutations, insertion-deletions, and other aberrant peptide products, but this often leads to hundreds of potential neoepitopes, all unique for that tumor. Selecting neoantigens for cancer vaccines is complicated by the technical challenges of neoepitope discovery, the diversity of HLA molecules, and intratumoral heterogeneity of passenger mutations leading to immune escape. Despite strong preclinical evidence, few neoantigen cancer vaccines tested in vivo have generated epitope-specific T cell populations, suggesting suboptimal immune system activation. In this chapter, we review factors affecting the prioritization and delivery of candidate neoantigens in the design of therapeutic and preventive cancer vaccines and consider synergism with standard chemotherapies.
Collapse
Affiliation(s)
- Alexander S Roesler
- School of Medicine, Duke University, Durham, NC, USA
- Mayo Clinic, Scottsdale, AZ, USA
| | - Karen S Anderson
- Mayo Clinic, Scottsdale, AZ, USA.
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Nelson A, Lukacs JD, Johnston B. The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers (Basel) 2021; 13:cancers13205174. [PMID: 34680322 PMCID: PMC8533824 DOI: 10.3390/cancers13205174] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Natural killer T (NKT) cells are a subset of lipid-reactive T cells that enhance anti-tumor immunity. While preclinical studies have shown NKT cell immunotherapy to be safe and effective, clinical studies lack predictable therapeutic efficacy and no approved treatments exist. In this review, we outline the current strategies, challenges, and outlook for NKT cell immunotherapy. Abstract NKT cells are a specialized subset of lipid-reactive T lymphocytes that play direct and indirect roles in immunosurveillance and anti-tumor immunity. Preclinical studies have shown that NKT cell activation via delivery of exogenous glycolipids elicits a significant anti-tumor immune response. Furthermore, infiltration of NKT cells is associated with a good prognosis in several cancers. In this review, we aim to summarize the role of NKT cells in cancer as well as the current strategies and status of NKT cell immunotherapy. This review also examines challenges and future directions for improving the therapy.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Jordan D. Lukacs
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.N.); (J.D.L.)
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
- Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
18
|
Pandey K, Ramarathinam SH, Purcell AW. Isolation of HLA Bound Peptides by Immunoaffinity Capture and Identification by Mass Spectrometry. Curr Protoc 2021; 1:e92. [PMID: 33769717 DOI: 10.1002/cpz1.92] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article describes the purification of HLA-bound peptides and their subsequent sequencing by mass spectrometry. These methods can be used for both HLA class I and class II molecules and can be adapted to different species depending on the availability of specific antibodies. Peptides can be successfully isolated from a variety of sample types, including in vitro cultured cells and primary tissues. The method involves the affinity capture of HLA-peptide complexes and separation of peptides from HLA heavy chains, followed by tailored interrogation by mass spectrometry to take into account the non-tryptic nature of endogenously derived HLA-bound peptides. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of immunoaffinity column Alternate Protocol 1: Preparation of microscale immunoaffinity column Basic Protocol 2: Generation of cell lysate and HLA immunoaffinity purification Alternate Protocol 2: Microscale immunoaffinity purification Basic Protocol 3: Separation of HLA peptides by reverse-phase high-performance liquid chromatography (RP-HPLC) Alternate Protocol 3: Isolation of HLA peptides using molecular weight cutoff (MWCO) filter Basic Protocol 4: Mass spectrometry and data analysis.
Collapse
Affiliation(s)
- Kirti Pandey
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sri H Ramarathinam
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
McKean WB, Moser JC, Rimm D, Hu-Lieskovan S. Biomarkers in Precision Cancer Immunotherapy: Promise and Challenges. Am Soc Clin Oncol Educ Book 2021; 40:e275-e291. [PMID: 32453632 DOI: 10.1200/edbk_280571] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rapid expansion of modern cancer immunotherapeutics has led to a dramatic improvement in patient survival and sustained remission for otherwise refractory malignancies. However, a significant limitation behind these current treatment modalities is an irregularity in clinical response, which is especially pronounced among checkpoint inhibition. This unpredictability leads to significant side effects, financial costs, and health care burden, with unsatisfactory clinical benefit in the majority of treated patients. Additionally, although ongoing studies and trials investigate the use of multiple biomarkers predictive of patient response or harm, none of these are comprehensive in predicting potential benefit. This unmet need for validated biomarkers is largely secondary to a prohibitive complexity within tumor parenchyma and microenvironment, dynamic clonal and proteomic changes to therapy, heterogenous host immune defects, and varied standardization among sample preparation and reporting. Herein, we discuss current advantages of predictive biomarkers, as well as limitations in their clinical use and application. We also review future directions, ideal characteristics, and trial design needed for proper precision immuno-oncology and biomarker development.
Collapse
Affiliation(s)
- William B McKean
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | | | - David Rimm
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
20
|
Eddy K, Chen S. Overcoming Immune Evasion in Melanoma. Int J Mol Sci 2020; 21:E8984. [PMID: 33256089 PMCID: PMC7730443 DOI: 10.3390/ijms21238984] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive and dangerous form of skin cancer that develops from transformed melanocytes. It is crucial to identify melanoma at its early stages, in situ, as it is "curable" at this stage. However, after metastasis, it is difficult to treat and the five-year survival is only 25%. In recent years, a better understanding of the etiology of melanoma and its progression has made it possible for the development of targeted therapeutics, such as vemurafenib and immunotherapies, to treat advanced melanomas. In this review, we focus on the molecular mechanisms that mediate melanoma development and progression, with a special focus on the immune evasion strategies utilized by melanomas, to evade host immune surveillances. The proposed mechanism of action and the roles of immunotherapeutic agents, ipilimumab, nivolumab, pembrolizumab, and atezolizumab, adoptive T- cell therapy plus T-VEC in the treatment of advanced melanoma are discussed. In this review, we implore that a better understanding of the steps that mediate melanoma onset and progression, immune evasion strategies exploited by these tumor cells, and the identification of biomarkers to predict treatment response are critical in the design of improved strategies to improve clinical outcomes for patients with this deadly disease.
Collapse
Affiliation(s)
- Kevinn Eddy
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
| | - Suzie Chen
- Graduate Program in Cellular and Molecular Pharmacology, School of Graduate Studies Rutgers University, Piscataway, NJ 08854, USA;
- Susan Lehman Cullman Laboratory for Cancer Research, Rutgers University, Piscataway, NJ 08854, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
- Environmental & Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
21
|
Le Saux O, Ray-Coquard I, Labidi-Galy SI. Challenges for immunotherapy for the treatment of platinum resistant ovarian cancer. Semin Cancer Biol 2020; 77:127-143. [DOI: 10.1016/j.semcancer.2020.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
|
22
|
Crosby EJ, Acharya CR, Haddad AF, Rabiola CA, Lei G, Wei JP, Yang XY, Wang T, Liu CX, Wagner KU, Muller WJ, Chodosh LA, Broadwater G, Hyslop T, Shepherd JH, Hollern DP, He X, Perou CM, Chai S, Ashby BK, Vincent BG, Snyder JC, Force J, Morse MA, Lyerly HK, Hartman ZC. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clin Cancer Res 2020; 26:4670-4681. [PMID: 32732224 DOI: 10.1158/1078-0432.ccr-20-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite promising advances in breast cancer immunotherapy, augmenting T-cell infiltration has remained a significant challenge. Although neither individual vaccines nor immune checkpoint blockade (ICB) have had broad success as monotherapies, we hypothesized that targeted vaccination against an oncogenic driver in combination with ICB could direct and enable antitumor immunity in advanced cancers. EXPERIMENTAL DESIGN Our models of HER2+ breast cancer exhibit molecular signatures that are reflective of advanced human HER2+ breast cancer, with a small numbers of neoepitopes and elevated immunosuppressive markers. Using these, we vaccinated against the oncogenic HER2Δ16 isoform, a nondriver tumor-associated gene (GFP), and specific neoepitopes. We further tested the effect of vaccination or anti-PD-1, alone and in combination. RESULTS We found that only vaccination targeting HER2Δ16, a driver of oncogenicity and HER2-therapeutic resistance, could elicit significant antitumor responses, while vaccines targeting a nondriver tumor-specific antigen or tumor neoepitopes did not. Vaccine-induced HER2-specific CD8+ T cells were essential for responses, which were more effective early in tumor development. Long-term tumor control of advanced cancers occurred only when HER2Δ16 vaccination was combined with αPD-1. Single-cell RNA sequencing of tumor-infiltrating T cells revealed that while vaccination expanded CD8 T cells, only the combination of vaccine with αPD-1 induced functional gene expression signatures in those CD8 T cells. Furthermore, we show that expanded clones are HER2-reactive, conclusively demonstrating the efficacy of this vaccination strategy in targeting HER2. CONCLUSIONS Combining oncogenic driver targeted vaccines with selective ICB offers a rational paradigm for precision immunotherapy, which we are clinically evaluating in a phase II trial (NCT03632941).
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Chaitanya R Acharya
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Anthony-Fayez Haddad
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Christopher A Rabiola
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Jun-Ping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Kay U Wagner
- Department of Oncology, Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - William J Muller
- Departments of Biochemistry and Medicine, Goodman Cancer Center, McGill University, Montreal, Quebec
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jonathan H Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin K Ashby
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina.,Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Michael A Morse
- Department of Medicine, Duke University, Durham, North Carolina
| | - Herbert K Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Immunology, Duke University, Durham, North Carolina.,Department of Pathology, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina. .,Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
23
|
Sepesi B, Cascone T, Chun SG, Altan M, Le X. Emerging Therapies in Thoracic Malignancies-Immunotherapy, Targeted Therapy, and T-Cell Therapy in Non-Small Cell Lung Cancer. Surg Oncol Clin N Am 2020; 29:555-569. [PMID: 32883458 PMCID: PMC7388816 DOI: 10.1016/j.soc.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Mehmet Altan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
24
|
Wu D, Liu Y, Li X, Liu Y, Yang Q, Liu Y, Wu J, Tian C, Zeng Y, Zhao Z, Xiao Y, Gu F, Zhang K, Hu Y, Liu L. Identification of Clonal Neoantigens Derived From Driver Mutations in an EGFR-Mutated Lung Cancer Patient Benefitting From Anti-PD-1. Front Immunol 2020; 11:1366. [PMID: 32793190 PMCID: PMC7390822 DOI: 10.3389/fimmu.2020.01366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been recommended as the first-line therapy for non-small cell lung cancer (NSCLC) patients harboring EGFR mutations. However, acquired resistance to EGFR-TKIs is inevitable. Although immune checkpoint blockades (ICBs) targeting the programmed cell death 1 (PD-1)/PD-ligand (L)1 axis have achieved clinical success for many cancer types, the clinical efficacy of anti-PD-1/PD-L1 blockades in EGFR mutated NSCLC patients has been demonstrated to be lower than those without EGFR mutations. Here, we reported an advanced NSCLC patient with EGFR driver mutations benefitting from anti-PD-1 blockade therapy after acquiring resistance to EGFR-TKI. We characterized the mutational landscape of the patient with next-generation sequencing (NGS) and successfully identified specific T-cell responses to clonal neoantigens encoded by EGFR exon 19 deletion, TP53 A116T and DENND6B R398Q mutations. Our findings support the potential application of immune checkpoint blockades in NSCLC patients with acquired resistance to EGFR-TKIs in the context of specific clonal neoantigens with high immunogenicity. Personalized immunomodulatory therapy targeting these neoantigens should be explored for better clinical outcomes in EGFR mutated NSCLC patients.
Collapse
Affiliation(s)
- Di Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoting Li
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yiying Liu
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhikun Zhao
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Yajie Xiao
- YuceBio Technology Co., Ltd., Shenzhen, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Leoni G, D'Alise AM, Cotugno G, Langone F, Garzia I, De Lucia M, Fichera I, Vitale R, Bignone V, Tucci FG, Mori F, Leuzzi A, Di Matteo E, Troise F, Abbate A, Merone R, Ruzza V, Diodoro MG, Yadav M, Gordon-Alonso M, Vanhaver C, Panigada M, Soprana E, Siccardi A, Folgori A, Colloca S, van der Bruggen P, Nicosia A, Lahm A, Catanese MT, Scarselli E. A Genetic Vaccine Encoding Shared Cancer Neoantigens to Treat Tumors with Microsatellite Instability. Cancer Res 2020; 80:3972-3982. [PMID: 32690723 DOI: 10.1158/0008-5472.can-20-1072] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/01/2020] [Accepted: 07/15/2020] [Indexed: 11/16/2022]
Abstract
Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristophe Vanhaver
- de Duve Institute and the Université catholique de Louvain, Brussels, Belgium
| | - Maddalena Panigada
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Elisa Soprana
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | - Antonio Siccardi
- Molecular Immunology Unit, San Raffaele Research Institute, Milan, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Via Comunale Margherita, Naples, Italy
| | | | | | | |
Collapse
|
26
|
Melzer MK, Arnold F, Stifter K, Zengerling F, Azoitei N, Seufferlein T, Bolenz C, Kleger A. An Immunological Glance on Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21093345. [PMID: 32397303 PMCID: PMC7246613 DOI: 10.3390/ijms21093345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has still a dismal prognosis. Different factors such as mutational landscape, intra- and intertumoral heterogeneity, stroma, and immune cells impact carcinogenesis of PDAC associated with an immunosuppressive microenvironment. Different cell types with partly opposing roles contribute to this milieu. In recent years, immunotherapeutic approaches, including checkpoint inhibitors, were favored to treat cancers, albeit not every cancer entity exhibited benefits in a similar way. Indeed, immunotherapies rendered little success in pancreatic cancer. In this review, we describe the communication between the immune system and pancreatic cancer cells and propose some rationale why immunotherapies may fail in the context of pancreatic cancer. Moreover, we delineate putative strategies to sensitize PDAC towards immunological therapeutics and highlight the potential of targeting neoantigens.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Frank Arnold
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Friedemann Zengerling
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Ninel Azoitei
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081 Ulm, Germany; (M.K.M.); (F.Z.); (C.B.)
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University Hospital, 89081 Ulm, Germany; (F.A.); (K.S.); (N.A.); (T.S.)
- Correspondence:
| |
Collapse
|
27
|
Stifter K, Dekhtiarenko I, Krieger J, Tissot AC, Seufferlein T, Wagner M, Schirmbeck R. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8 + T-cell responses by DNA vaccination. Vaccine 2020; 38:3711-3719. [PMID: 32278524 DOI: 10.1016/j.vaccine.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Iryna Dekhtiarenko
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Alain Charles Tissot
- Roche Pharma Research and Early Development, Therapeutic Modalities, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH; Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
28
|
Costa RLB, Czerniecki BJ. Clinical development of immunotherapies for HER2 + breast cancer: a review of HER2-directed monoclonal antibodies and beyond. NPJ Breast Cancer 2020; 6:10. [PMID: 32195333 PMCID: PMC7067811 DOI: 10.1038/s41523-020-0153-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Human epidermal growth factor receptor 2-positive (HER2+) breast cancer accounts for ~25% of breast cancer cases. Monoclonal antibodies (mAbs) against HER2 have led to unparalleled clinical benefit for a subset of patients with HER2+ breast cancer. In this narrative review, we summarize advances in the understanding of immune system interactions, examine clinical developments, and suggest rationales for future investigation of immunotherapies for HER2+ breast cancer. Complex interactions have been found between different branches of the immune system, HER2+ breast cancer, and targeted treatments (approved and under investigation). A new wave of immunotherapies, such as novel HER2-directed mAbs, antibody drug conjugates, vaccines, and adoptive T-cell therapies, are being studied in a broad population of patients with HER2-expressing tumors. The development of immunotherapies for HER2+ breast cancer represents an evolving field that should take into account interactions between different components of the immune system.
Collapse
Affiliation(s)
- Ricardo L B Costa
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Brian J Czerniecki
- Departments of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| |
Collapse
|
29
|
Kote S, Pirog A, Bedran G, Alfaro J, Dapic I. Mass Spectrometry-Based Identification of MHC-Associated Peptides. Cancers (Basel) 2020; 12:cancers12030535. [PMID: 32110973 PMCID: PMC7139412 DOI: 10.3390/cancers12030535] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neoantigen-based immunotherapies promise to improve patient outcomes over the current standard of care. However, detecting these cancer-specific antigens is one of the significant challenges in the field of mass spectrometry. Even though the first sequencing of the immunopeptides was done decades ago, today there is still a diversity of the protocols used for neoantigen isolation from the cell surface. This heterogeneity makes it difficult to compare results between the laboratories and the studies. Isolation of the neoantigens from the cell surface is usually done by mild acid elution (MAE) or immunoprecipitation (IP) protocol. However, limited amounts of the neoantigens present on the cell surface impose a challenge and require instrumentation with enough sensitivity and accuracy for their detection. Detecting these neopeptides from small amounts of available patient tissue limits the scope of most of the studies to cell cultures. Here, we summarize protocols for the extraction and identification of the major histocompatibility complex (MHC) class I and II peptides. We aimed to evaluate existing methods in terms of the appropriateness of the isolation procedure, as well as instrumental parameters used for neoantigen detection. We also focus on the amount of the material used in the protocols as the critical factor to consider when analyzing neoantigens. Beyond experimental aspects, there are numerous readily available proteomics suits/tools applicable for neoantigen discovery; however, experimental validation is still necessary for neoantigen characterization.
Collapse
|
30
|
Nishida T, Kataoka H. Glypican 3-Targeted Therapy in Hepatocellular Carcinoma. Cancers (Basel) 2019; 11:E1339. [PMID: 31510063 PMCID: PMC6770328 DOI: 10.3390/cancers11091339] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Glypican-3 (GPC3) is an oncofetal glycoprotein attached to the cell membrane by a glycophosphatidylinositol anchor. GPC3 is overexpressed in some kinds of tumors, particularly hepatocellular carcinoma (HCC). The prognostic significance of serum GPC3 levels and GPC3 immunoreactivity in tumor cells has been defined in patients with HCC. In addition to its usefulness as a biomarker, GPC3 has attracted attention as a novel therapeutic target molecule, and clinical trials targeting GPC3 are in progress. The major mechanism of anti-GPC3 antibody (GPC3Ab) against cancer cells is antibody-dependent cellular cytotoxicity and/or complement-dependent cytotoxicity. Since GPC3Ab is associated with immune responses, a combination of protocols with immune checkpoint inhibitors has also been investigated. Moreover, some innovative approaches for GPC3-targeting therapy have emerged in recent years. This review introduces the results of recent clinical trials targeting GPC3 in HCC and summarizes the latest knowledge regarding the role of GPC3 in HCC progression and clinical application targeting GPC3.
Collapse
Affiliation(s)
- Takahiro Nishida
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
- Division of Gastrointestinal, Endocrine and Pediatric Surgery, Department of Surgery, University of Miyazaki Faculty of Medicine, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|