1
|
Thérèse DV, Nour ER, Caroline D, Romain A, Didier S, Benoit T, Nicolas A, Gabriel RR. Upfront immunotherapy for synchronous high-grade glioma and B-lymphoma in a pediatric patient with CMMRD syndrome. Pediatr Blood Cancer 2024:e31399. [PMID: 39425484 DOI: 10.1002/pbc.31399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024]
Affiliation(s)
- De Vanssay Thérèse
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | - El Riachy Nour
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | - Donze Caroline
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- REMAP4KIDS, CNRS, INSERM, CRCM, Aix-Marseille University, Marseille, France
| | - Appay Romain
- Aix-Marseille University, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France
- Service d'Anatomie Pathologique et de Neuropathologie, APHM, CHU Timone, Marseille, France
| | - Scavarda Didier
- Department of Pediatric Neurosurgery, APHM, La Timone Children's hospital, Marseille, France
- Aix-Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Testud Benoit
- Department of Neuroradiology, APHM, La Timone, Marseille, France
| | - Andre Nicolas
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- REMAP4KIDS, CNRS, INSERM, CRCM, Aix-Marseille University, Marseille, France
| | - Revon-Rivière Gabriel
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- REMAP4KIDS, CNRS, INSERM, CRCM, Aix-Marseille University, Marseille, France
| |
Collapse
|
2
|
Singh S, Fang J, Jin H, Van de Velde LA, Wu Q, Cortes A, Morton CL, Woolard MA, Quarni W, Steele JA, Connelly JP, He L, Thorne R, Turner G, Confer T, Johnson M, Caufield WV, Freeman BB, Lockey T, Pruett-Miller SM, Wang R, Davidoff AM, Thomas PG, Yang J. RBM39 degrader invigorates natural killer cells to eradicate neuroblastoma despite cancer cell plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586157. [PMID: 38585889 PMCID: PMC10996557 DOI: 10.1101/2024.03.21.586157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.
Collapse
|
3
|
Marjańska A, Pawińska-Wąsikowska K, Wieczorek A, Drogosiewicz M, Dembowska-Bagińska B, Bobeff K, Młynarski W, Adamczewska-Wawrzynowicz K, Wachowiak J, Krawczyk MA, Irga-Jaworska N, Węcławek-Tompol J, Kałwak K, Sawicka-Żukowska M, Krawczuk-Rybak M, Raciborska A, Mizia-Malarz A, Sobocińska-Mirska A, Łaguna P, Balwierz W, Styczyński J. Anti-PD-1 Therapy in Advanced Pediatric Malignancies in Nationwide Study: Good Outcome in Skin Melanoma and Hodgkin Lymphoma. Cancers (Basel) 2024; 16:968. [PMID: 38473329 DOI: 10.3390/cancers16050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND/AIM The role of immune checkpoint inhibitors (ICIs; anti-PD1) in the treatment of childhood cancers is still evolving. The aim of this nationwide retrospective study was to assess the safety and effectiveness of ICIs used in a group of 42 patients, with a median age of 13.6 years, with various types of advanced malignancies treated in pediatric oncology centers in Poland between 2015 and 2023. RESULTS The indications for treatment with anti-PD1 were as follows: Hodgkin lymphoma (11); malignant skin melanoma (9); neuroblastoma (8); and other malignancies (14). At the end of follow-up, complete remission (CR) was observed in 37.7% (15/42) of children and disease stabilization in 9.5% (4/42), with a mean survival 3.6 (95% CI = 2.6-4.6) years. The best survival (OS = 1.0) was observed in the group of patients with Hodgkin lymphoma. For malignant melanoma of the skin, neuroblastoma, and other rare malignancies, the estimated 3-year OS values were, respectively, 0.78, 0.33, and 0.25 (p = 0.002). The best progression-free survival value (0.78) was observed in the group with malignant melanoma. Significantly better effects of immunotherapy were confirmed in patients ≥ 14 years of age and good overall performance ECOG status. Severe adverse events were observed in 30.9% (13/42) patients.
Collapse
Affiliation(s)
- Agata Marjańska
- Department of Pediatric, Hematology and Oncology, Jurasz University Hospital, Collegium Medicum, Nicolaus Copernicus University Toruń, 85-094 Bydgoszcz, Poland
| | | | - Aleksandra Wieczorek
- Department of Pediatric, Oncology and Hematology, Jagiellonian University Medical College, 30-663 Cracow, Poland
| | - Monika Drogosiewicz
- Department of Oncology, The Children's Memorial Health Institute, 04-730 Warsaw, Poland
| | | | - Katarzyna Bobeff
- Department of Pediatrics, Oncology and Hematology, Medical University of Łodz, 91-738 Łodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Łodz, 91-738 Łodz, Poland
| | - Katarzyna Adamczewska-Wawrzynowicz
- Department of Pediatric Oncology, Hematology and Transplantology, Jonscher Clinical Hospital, Marcinkowski University of Medical Sciences in Poznań, 60-572 Poznań, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Jonscher Clinical Hospital, Marcinkowski University of Medical Sciences in Poznań, 60-572 Poznań, Poland
| | - Małgorzata A Krawczyk
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jadwiga Węcławek-Tompol
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Mikulicz-Radecki University Clinical Hospital, 50-556 Wrocław, Poland
| | - Krzysztof Kałwak
- Department of Bone Marrow Transplantation, Pediatric Oncology and Hematology, Mikulicz-Radecki University Clinical Hospital, 50-556 Wrocław, Poland
| | | | - Maryna Krawczuk-Rybak
- Department of Pediatric Oncology and Hematology, Medical University of Białystok, 15-274 Białystok, Poland
| | - Anna Raciborska
- Department of Oncology and Surgical Oncology for Children and Youth, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Agnieszka Mizia-Malarz
- Department of Pediatric, Oncology, Hematology and Chemotherapy, Upper Silesia Children's Care Health Centre, Medical University of Silesia, 40-752 Katowice, Poland
| | - Agata Sobocińska-Mirska
- Department of Oncology, Children's Hematology, Clinical Transplantology and Pediatrics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł Łaguna
- Department of Oncology, Children's Hematology, Clinical Transplantology and Pediatrics, University Clinical Center, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Walentyna Balwierz
- Department of Pediatric, Oncology and Hematology, Jagiellonian University Medical College, 30-663 Cracow, Poland
| | - Jan Styczyński
- Department of Pediatric, Hematology and Oncology, Jurasz University Hospital, Collegium Medicum, Nicolaus Copernicus University Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
4
|
Du Y, Qi Z, Liang X, Dai J, Wei X, Bai X, Mao L, Chi Z, Cui C, Lian B, Tang B, Wang X, Chen Y, Guo J, Si L. Pembrolizumab Versus High-Dose Interferon-α2b as Adjuvant Therapy for Pediatric Melanoma: A Retrospective Study. Dermatol Pract Concept 2024; 14:dpc.1401a26. [PMID: 38364395 PMCID: PMC10868960 DOI: 10.5826/dpc.1401a26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Pembrolizumab is well-tolerated in pediatric patients with advanced tumors, consistent with results in adults. However, information on the safety and efficacy of adjuvant pembrolizumab in children and adolescents with melanoma is lacking. OBJECTIVES To compare pembrolizumab versus high-dose interferon-α2b (HDI) as adjuvant therapy in pediatric patients with melanoma. METHODS We performed a retrospective study of pediatric patients diagnosed with melanoma between January 2008 and April 2022. Relapse-free survival (RFS) and the 1-year RFS rate were compared between patients receiving adjuvant pembrolizumab or HDI. RESULTS Seventy-five pediatric patients with melanoma were screened from a database of 6,013 patients. Twenty-four patients were finally enrolled, of whom 9 received pembrolizumab and 15 received HDI as adjuvant therapy. By August 31, 2022, the median follow-up times were 23.6 months and 98.7 months in the pembrolizumab and HDI groups, respectively. There was no significant difference in median RFS between two groups (not reached versus 38.7 months, P = 0.11). The median overall survival was not reached in either group. The 1-year RFS rates were 88.9% and 66.7% in the pembrolizumab and HDI groups, respectively. All adverse events in the pembrolizumab group were grade 1 or 2, but grade 3-5 adverse events occurred in two (13%) patients receiving HDI. CONCLUSIONS RFS was similar in pediatric patients with melanoma receiving adjuvant pembrolizumab or HDI, but pembrolizumab was associated with a reduced risk of recurrence and a more favorable safety profile. However, due to the small sample size and differences in follow-up time, larger and prospective studies are still warranted to explore better adjuvant therapies for pediatric melanoma.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhonghui Qi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xianbin Liang
- Department of Oncology, The Third People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou, Fujian Province, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
5
|
Ciurej A, Lewis E, Gupte A, Al-Antary E. Checkpoint Immunotherapy in Pediatric Oncology: Will We Say Checkmate Soon? Vaccines (Basel) 2023; 11:1843. [PMID: 38140246 PMCID: PMC10748105 DOI: 10.3390/vaccines11121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a relatively new class of immunotherapy which bolsters the host immune system by "turning off the brakes" of effector cells (e.g., CTLA-4, PD-1, PD-L1). Although their success in treating adult malignancy is well documented, their utility in pediatric cancer has not yet been shown to be as fruitful. We review ICIs, their use in pediatric malignancies, and active pediatric clinical trials, exemplifying some of adult efforts that could be related to pediatric future trials and complications of ICI therapy. Through our review, we propose the consideration of ICI as standard therapy in lymphoma and various solid tumor types, especially in relapsed or refractory (R/R) disease. However, further studies are needed to demonstrate ICI effectiveness in pediatric leukemia.
Collapse
Affiliation(s)
- Alexander Ciurej
- Pediatric Department, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (A.C.)
| | - Elizabeth Lewis
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Avanti Gupte
- Pediatric Department, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (A.C.)
- Pediatric Blood and Marrow Transplantation Program, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt Clemons, MI 48859, USA
| | - Eman Al-Antary
- Pediatric Department, Children’s Hospital of Michigan, Detroit, MI 48201, USA; (A.C.)
- Pediatric Blood and Marrow Transplantation Program, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Children’s Hospital of Michigan, Detroit, MI 48201, USA
- Department of Pediatrics, Central Michigan University College of Medicine, Mt Clemons, MI 48859, USA
| |
Collapse
|
6
|
Moreno L, Teira P, Croop JM, Gerber NU, André N, Aerts I, Gros Subias L, De Wilde B, Bautista F, Turpin B, Kunduri S, Hamidi A, Lawrence T, Streby KA. A phase 1, first-in-child, multicenter study to evaluate the safety and efficacy of the oncolytic herpes virus talimogene laherparepvec in pediatric patients with advanced solid tumors. Front Pediatr 2023; 11:1183295. [PMID: 37292376 PMCID: PMC10244735 DOI: 10.3389/fped.2023.1183295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Background The survival rates for pediatric patients with relapsed and refractory tumors are poor. Successful treatment strategies are currently lacking and there remains an unmet need for novel therapies for these patients. We report here the results of a phase 1 study of talimogene laherparepvec (T-VEC) and explore the safety of this oncolytic immunotherapy for the treatment of pediatric patients with advanced non-central nervous system tumors. Methods T-VEC was delivered by intralesional injection at 106 plaque-forming units (PFU)/ml on the first day, followed by 108 PFU/ml on the first day of week 4 and every 2 weeks thereafter. The primary objective was to evaluate the safety and tolerability as assessed by the incidence of dose-limiting toxicities (DLTs). Secondary objectives included efficacy indicated by response and survival per modified immune-related response criteria simulating the Response Evaluation Criteria in Solid Tumors (irRC-RECIST). Results Fifteen patients were enrolled into two cohorts based on age: cohort A1 (n = 13) 12 to ≤21 years old (soft-tissue sarcoma, n = 7; bone sarcoma, n = 3; neuroblastoma, n = 1; nasopharyngeal carcinoma, n = 1; and melanoma, n = 1) and cohort B1 (n = 2) 2 to <12 years old (melanoma, n = 2). Overall, patients received treatment for a median (range) of 5.1 (0.1, 39.4) weeks. No DLTs were observed during the evaluation period. All patients experienced at least one treatment-emergent adverse event (TEAE), and 53.3% of patients reported grade ≥3 TEAEs. Overall, 86.7% of patients reported treatment-related TEAEs. No complete or partial responses were observed, and three patients (20%) overall exhibited stable disease as the best response. Conclusions T-VEC was tolerable as assessed by the observation of no DLTs. The safety data were consistent with the patients' underlying cancer and the known safety profile of T-VEC from studies in the adult population. No objective responses were observed. Trial Registration ClinicalTrials.gov: NCT02756845. https://clinicaltrials.gov/ct2/show/NCT02756845.
Collapse
Affiliation(s)
- Lucas Moreno
- Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Pierre Teira
- Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - James M. Croop
- Division of Hematology and Oncology, Riley Hospital for Children, Indianapolis, IN, United States
| | - Nicolas U. Gerber
- Department of Oncology, University Children’s Hospital, Zurich, Switzerland
| | - Nicolas André
- SMARTC Unit Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Aix Marseille University, Marseille, France
- Service d'Hématologie & Oncologie Pédiatrique, Timone Hospital, AP-HM, Marseille, France
| | | | | | | | - Francisco Bautista
- Division of Pediatric Hematology and Oncology, Hospital Universitario Niño Jesús, Madrid, Spain
| | - Brian Turpin
- Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | | | - Ali Hamidi
- Amgen Inc., Thousand Oaks, CA, United States
| | | | - Keri A. Streby
- Department of Hematology/Oncology/BMT, Nationwide Children's Hospital/The Ohio State University, Columbus, OH, United States
| |
Collapse
|
7
|
Parisi R, Patel RR, Rood G, Bowden A, Turco G, Korones DN, Andolina JR, Comito M, Barth M, Weintraub L. Multi-institution analysis of tumor mutational burden and outcomes in pediatric central nervous system tumor patients. Pediatr Blood Cancer 2023; 70:e30139. [PMID: 36573296 DOI: 10.1002/pbc.30139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pediatric central nervous system (CNS) tumors are the leading cause of pediatric cancer mortality. Research addressing genomic biomarkers and clinical outcomes is needed to inform therapeutic decision-making. METHODS We conducted a retrospective analysis of pediatric patients (age <21) diagnosed with a primary CNS tumor at four upstate New York hospitals from 2008 to 2021. Clinical and histopathologic data were identified from each patient, including genomic analysis of somatic mutations and tumor mutational burden (TMB) where available. These variables were each compared with overall survival using Cox regression analyses. Multivariable analysis was conducted to identify patient characteristics that may independently predict survival. RESULTS We identified 119 patients. Common tumor types included low-grade glioma (N = 51), high-grade glioma (N = 29), and medulloblastoma (N = 11). Common driver mutations included TP53 inactivation (N = 16), BRAF-KIAA1549 fusion (N = 16), FGFR1 amplification (N = 12), BRAF V600E mutation (N = 12), NF1 loss (N = 12), and H3F3A K28M mutation (N = 6). Median TMB was one mutation/megabase (mut/Mb, range = 0-132). Overall survival was 79.9%. Variables associated with poorer survival on univariable analysis were higher TMB (p = .002, HR 4.97), high-grade tumors (p = .009, HR 84.3), and high-grade glioma histology (p = .021, HR 3.14). Multivariable analyses further identified TMB (p = .011, HR 4.46) and high-grade histology (p = .015, HR 5.28) as independently predictive of worse survival. Tumor progression was more common in high-TMB (N = 15, 44%) than in low-TMB tumors (N = 19, 35%). CONCLUSIONS High TMB is correlated with higher rates of progression and death as compared to low-TMB tumors. These findings may help identify patients who may benefit from alternative treatments, such as immunotherapies.
Collapse
Affiliation(s)
- Rose Parisi
- Albany Medical College, Albany, New York, USA
| | - Roshal R Patel
- Albany Medical College, Albany, New York, USA.,Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gavrielle Rood
- Upstate Medical University College of Medicine, Syracuse, New York, USA
| | - Acacia Bowden
- University of Rochester School of Medicine, Rochester, New York, USA
| | - George Turco
- Pediatric Hematology/Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - David N Korones
- Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeffrey R Andolina
- Pediatric Hematology/Oncology, University of Rochester Medical Center, Rochester, New York, USA
| | - Melanie Comito
- Pediatric Hematology/Oncology, Upstate University Hospital, Syracuse, New York, USA
| | - Matthew Barth
- Pediatric Hematology/Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Lauren Weintraub
- Pediatric Hematology/Oncology, Albany Medical Center, Albany, New York, USA
| |
Collapse
|
8
|
Butters C, Thursky K, Hanna DT, Cole T, Davidson A, Buttery J, Haeusler G. Adverse effects of antibiotics in children with cancer: are short-course antibiotics for febrile neutropenia part of the solution? Expert Rev Anti Infect Ther 2023; 21:267-279. [PMID: 36694289 DOI: 10.1080/14787210.2023.2171987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Febrile neutropenia is a common complication experienced by children with cancer or those undergoing hematopoietic stem cell transplantation. Repeated episodes of febrile neutropenia result in cumulative exposure to broad-spectrum antibiotics with potential for a range of serious adverse effects. Short-course antibiotics, even in patients with high-risk febrile neutropenia, may offer a solution. AREAS COVERED This review addresses the known broad effects of antibiotics, highlights developments in understanding the relationship between cancer, antibiotics, and the gut microbiome, and discusses emerging evidence regarding long-term adverse antibiotic effects. The authors consider available evidence to guide the duration of empiric antibiotics in pediatric febrile neutropenia and directions for future research. EXPERT OPINION Broad-spectrum antibiotics are associated with antimicrobial resistance, Clostridioides difficile infection, invasive candidiasis, significant disturbance of the gut microbiome and may seriously impact outcomes in children with cancer or undergoing allogenic hematopoietic stem cell transplant. Short-course empiric antibiotics are likely safe in most children with febrile neutropenia and present a valuable opportunity to reduce the risks of antibiotic exposure.
Collapse
Affiliation(s)
- Coen Butters
- Department of General Paediatrics and Adolescent Medicine, John Hunter Children's Hospital, Newcastle, Australia.,Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Karin Thursky
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Australia.,National Centre for Antimicrobial Stewardship, Department of Infectious Diseases, The University of Melbourne, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Diane T Hanna
- Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Theresa Cole
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Allergy and Immunology, Royal Children's Hospital, Parkville, Australia
| | - Andrew Davidson
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Department of Anaesthesia, Royal Children's Hospital, Parkville, Australia.,Department of Critical Care, The University of Melbourne, Parkville, Australia.,Infectious Diseases Unit, Royal Children's Hospital, Parkville, Australia.,Melbourne Children's Trials Centre, Murdoch Children's Research Institute, Parkville, Australia
| | - Jim Buttery
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Infectious Diseases Unit, Royal Children's Hospital, Parkville, Australia.,Centre for Health Analytics, Melbourne Children's Campus, Parkville, Australia.,Health Informatics Group and SAEFVIC, Murdoch Children's Research Institute, Parkville, Australia
| | - Gabrielle Haeusler
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Parkville, Australia.,National Centre for Antimicrobial Stewardship, Department of Infectious Diseases, The University of Melbourne, Parkville, Australia.,Infectious Diseases Unit, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|