1
|
Xu Y, Zhang A, Liu A, Hu Q. Clinical analysis of immune reconstitution after chemotherapy in children with acute lymphoblastic leukemia. BMC Pediatr 2024; 24:557. [PMID: 39215273 PMCID: PMC11363366 DOI: 10.1186/s12887-024-05030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES The aim of this retrospective study was to investigate the influence of chemotherapy on the immune status of individual patients diagnosed with acute lymphoblastic leukemia (ALL) and to elucidate the clinical characteristics of immune reconstitution in ALL patients following chemotherapy. METHODS Clinical data of children with ALL were gathered, including information on the number of lymphocyte subsets prior to chemotherapy, at the end of therapy, six months, and one year after the end of the treatment. RESULTS A total of 146 children with ALL were included, and T cells, B cells, and NK cells all decreased to various degrees prior to treatment. The abnormal CD3 + T cell numbers group experienced a considerably higher mortality (21.9% vs. 6.1%) and recurrence rate (31.3% vs. 11.4%) compared to the normal group (P < 0.05). T cells, B cells, and NK cells were all significantly compromised at the end of therapy compared to the beginning of chemotherapy, with B cells being more severely compromised (P < 0.001). At the end of treatment, levels of B cells, CD4 + T cells, CD4/CD8, IgG and IgM in low risk (LR) group were significantly higher than those in intermediate risk (IR) group (P < 0.01), and levels of NK cells in LR group were evidently lower than those in IR group (P < 0.001). Six months after the end of therapy, all the above indicators recovered (P < 0.001) except CD4/CD8 ratio (P = 0.451). CONCLUSIONS The immune systems of the ALL patients were severely compromised upon therapy withdrawal, particularly the B cells. At six months after the therapy ended, the B cells were basically restored to normal level, while the T-cell compartment was not. The impaired numbers of CD3 + T cell may contribute to a weakened anti-tumor response, potentially leading to a poorer prognosis.
Collapse
Affiliation(s)
- Yuting Xu
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Zhang
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Liu
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Hu
- Department of Pediatric Hematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Chehab L, Doody DR, Esbenshade AJ, Guilcher GM, Dvorak CC, Fisher BT, Mueller BA, Chow EJ, Rossoff J. A Population-Based Study of the Long-Term Risk of Infections Associated With Hospitalization in Childhood Cancer Survivors. J Clin Oncol 2023; 41:364-372. [PMID: 35878085 PMCID: PMC9839247 DOI: 10.1200/jco.22.00230] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Infections pose a significant risk during therapy for childhood cancer. However, little is known about the risk of infection in long-term survivors of childhood cancer. METHODS We performed a retrospective observational study of children and adolescents born in Washington State diagnosed with cancer before age 20 years and who survived at least 5 years after diagnosis. Survivors were categorized as having a hematologic or nonhematologic malignancy and were matched to individuals without cancer in the state birth records by birth year and sex with a comparator:survivor ratio of 10:1. The primary outcome was incidence of any infection associated with a hospitalization using diagnostic codes from state hospital discharge records. Incidence was reported as a rate (IR) per 1,000 person-years. Multivariate Poisson regression was used to calculate incidence rate ratios (IRR) for cancer survivors versus comparators. RESULTS On the basis of 382 infection events among 3,152 survivors and 771 events among 31,519 comparators, the IR of all hospitalized infections starting 5 years after cancer diagnosis was 12.6 (95% CI, 11.4 to 13.9) and 2.4 (95% CI, 2.3 to 2.6), respectively, with an IRR 5.1 (95% CI, 4.5 to 5.8). The survivor IR during the 5- to 10-year (18.1, 95% CI, 15.9 to 20.5) and > 10-year postcancer diagnosis (8.3, 95% CI, 7.0 to 9.7) periods remained greater than comparison group IRs for the same time periods (2.3, 95% CI, 2.1 to 2.6 and 2.5, 95% CI, 2.3 to 2.8, respectively). When potentially vaccine-preventable infections were evaluated, survivors had a greater risk of infection relative to comparators (IRR, 13.1; 95% CI, 7.2 to 23.9). CONCLUSION Infectious complications continue to affect survivors of childhood cancer many years after initial diagnosis. Future studies are needed to better understand immune reconstitution to determine specific factors that may mitigate this risk.
Collapse
Affiliation(s)
- Leena Chehab
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David R. Doody
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Adam J. Esbenshade
- Vanderbilt University Medical Center and Vanderbilt Ingram Cancer Center, Nashville, TN
| | - Gregory M.T. Guilcher
- Section of Pediatric Oncology/Cellular Therapy, Departments of Oncology and Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Christopher C. Dvorak
- Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, University of California San Francisco, San Francisco, CA
| | - Brian T. Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA
| | - Beth A. Mueller
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, University of Washington (UW), Seattle, WA
| | - Eric J. Chow
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jenna Rossoff
- Division of Hematology/Oncology/Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
3
|
Nierves L, Guo J, Chen S, Tsui J, Uzozie AC, Bush JW, Huan T, Lange PF. Multi-omic profiling of the leukemic microenvironment shows bone marrow interstitial fluid is distinct from peripheral blood plasma. Exp Hematol Oncol 2022; 11:56. [PMID: 36109804 PMCID: PMC9476264 DOI: 10.1186/s40164-022-00310-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Background The bone marrow is the place of hematopoiesis with a microenvironment that supports lifelong maintenance of stem cells and high proliferation. It is not surprising that this environment is also favourable for malignant cells emerging in the bone marrow or metastasizing to it. While the cellular composition of the bone marrow microenvironment has been extensively studied, the extracellular matrix and interstitial fluid components have received little attention. Since the sinusoids connect the bone marrow interstitial fluid to the circulation, it is often considered to have the same composition as peripheral blood plasma. Stark differences in the cellular composition of the bone marrow and peripheral blood with different secretory capacities would however suggest profound differences. Methods In this study we set out to better define if and how the bone marrow interstitial fluid (BMIF) compares to the peripheral blood plasma (PBP) and how both are remodeled during chemotherapy. We applied a multi-omic strategy to quantify the metabolite, lipid and protein components as well as the proteolytic modification of proteins to gain a comprehensive understanding of the two compartments. Results We found that the bone marrow interstitial fluid is clearly distinct from peripheral blood plasma, both during active pediatric acute lymphoblastic leukemia and following induction chemotherapy. Either compartment was shaped differently by active leukemia, with the bone marrow interstitial fluid being rich in extracellular vesicle components and showing protease dysregulation while the peripheral blood plasma showed elevation of immune regulatory proteins. Following chemotherapy, the BMIF showed signs of cellular remodeling and impaired innate immune activation while the peripheral blood plasma was characterized by restored lipid homeostasis. Conclusion This study provides a comprehensive examination of the fluid portion of the acute lymphoblastic leukemia microenvironment and finds the contribution of either microenvironment to tumourigenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00310-0.
Collapse
|
4
|
Gupta S, Sutradhar R, Alexander S, Science M, Lau C, Nagamuthu C, Agha M, Nathan PC, Hodgson D. Risk of COVID-19 Infections and of Severe Complications Among Survivors of Childhood, Adolescent, and Young Adult Cancer: A Population-Based Study in Ontario, Canada. J Clin Oncol 2022; 40:1281-1290. [PMID: 35226549 DOI: 10.1200/jco.21.02592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Survivors of childhood, adolescent, and young adult cancer are at risk of late effects, including pulmonary and infectious complications. Whether survivors are at increased risk of COVID-19 infection and severe complications is unknown. METHODS Population-based registries in Ontario, Canada, identified all 5-year survivors of childhood cancer diagnosed age 0-17 years between 1985 and 2014, and of six common adolescent and young adult cancers diagnosed age 15-21 years between 1992 and 2012. Each survivor alive on January 1, 2020, was randomly matched by birth year, sex, and residence to 10 cancer-free population controls. Individuals were linked to population-based laboratory and health care databases to identify COVID-19 tests, vaccinations, infections, and severe outcomes (emergency department [ED] visits, hospitalizations, intensive care unit admissions, and death within 60 days). Demographic, disease, and treatment-related variables were examined as possible predictors of outcomes. RESULTS Twelve thousand four hundred ten survivors were matched to 124,100 controls. Survivors were not at increased risk of receiving a positive COVID-19 test (386 [3.1%] v 3,946 [3.2%]; P = .68) and were more likely to be fully vaccinated (hazard ratio, 1.23; 95 CI, 1.20 to 1.37). No increase in risk among survivors was seen in emergency department visits (adjusted odds ratio, 1.2; 95 CI, 0.9 to 1.6; P = .19) or hospitalization (adjusted odds ratio, 1.8; 95 CI, 1.0 to 3.5; P = .07). No survivor experienced intensive care unit admission or died after COVID-19 infection. Pulmonary radiation or chemotherapies associated with pulmonary toxicity were not associated with increased risk. CONCLUSION Cancer survivors were not at increased risk of COVID-19 infections or severe sequelae. These results can inform risk-counseling of survivors and their caregivers. Further study is warranted to determine risk in older survivors, specific subsets of survivors, and that associated with novel COVID-19 variants.
Collapse
Affiliation(s)
- Sumit Gupta
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Cancer Research Program, ICES, Toronto, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Toronto, Canada
| | - Rinku Sutradhar
- Cancer Research Program, ICES, Toronto, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Toronto, Canada
| | - Sarah Alexander
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Michelle Science
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Division of Infectious Diseases, The Hospital for Sick Children, Toronto, Canada
| | - Cindy Lau
- Cancer Research Program, ICES, Toronto, Canada
| | | | - Mohammad Agha
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Pediatric Oncology Group of Ontario, Toronto, Canada.,Primary Care & Health Systems Research Program, ICES, Toronto, Canada
| | - Paul C Nathan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Cancer Research Program, ICES, Toronto, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Toronto, Canada
| | - David Hodgson
- Pediatric Oncology Group of Ontario, Toronto, Canada.,Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Gupta S, Sutradhar R, Pequeno P, Hitzler JK, Liu N, Nathan PC. Risks of late mortality and morbidity among survivors of childhood acute leukemia with Down syndrome: A population-based cohort study. Cancer 2021; 128:1294-1301. [PMID: 34847248 DOI: 10.1002/cncr.34042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Children with leukemia and Down syndrome (DS) are at higher risk of acute treatment toxicities than those without DS. Whether late toxicity risks are also elevated is unknown. METHODS The authors identified all patients diagnosed with leukemia before the age of 18 years in Ontario, Canada between 1987 and 2013 and who survived greater than 5 years since their last pediatric cancer event. Survivors were divided into those with and without DS, matched by birth year, sex, leukemia type, and receipt of radiation. DS survivors were matched to individuals with DS without childhood cancer (DS controls) in a 1:10 ratio. Outcomes were identified through linkage to population-based health services databases. RESULTS DS survivors (n = 79) experienced inferior overall survival compared to non-DS survivors (n = 231) (20-year overall survival, 81.7% ± 6.8% vs 98.3% ± 1.2%; hazard ratio [HR], 12.8; P < .0001) and to DS controls (n = 790; 96.3% ± 1.2%; HR, 5.4 P < .0001). Pulmonary and infectious deaths were noted among DS survivors. There was no difference in the incidence of congestive heart failure between DS survivors and either control cohort, nor of hearing loss or dementia between DS survivors and DS controls. CONCLUSIONS DS survivors were at substantially higher risk of late mortality than non-DS survivors or DS controls. This excess risk was not attributable to cardiac- or subsequent malignant neoplasm-related late effects, historically main causes of premature death among non-DS survivors. Chronic morbidities associated with DS were not increased compared to DS controls. DS-specific surveillance guidelines may be warranted.
Collapse
Affiliation(s)
- Sumit Gupta
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Cancer Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Ontario, Toronto, Canada
| | - Rinku Sutradhar
- Cancer Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Ontario, Toronto, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Priscila Pequeno
- Cancer Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Johann K Hitzler
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Ning Liu
- Cancer Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Paul C Nathan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Cancer Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada.,Institute for Health Policy, Evaluation and Management, University of Toronto, Ontario, Toronto, Canada
| |
Collapse
|
6
|
Oldenburg M, Rüchel N, Janssen S, Borkhardt A, Gössling KL. The Microbiome in Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13194947. [PMID: 34638430 PMCID: PMC8507905 DOI: 10.3390/cancers13194947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
For almost 30 years, the term "holobiont" has referred to an ecological unit where a host (e.g., human) and all species living in or around it are considered together. The concept highlights the complex interactions between the host and the other species, which, if disturbed may lead to disease and premature aging. Specifically, the impact of microbiome alterations on the etiology of acute lymphoblastic leukemia (ALL) in children is not fully understood, but has been the focus of much research in recent years. In ALL patients, significant reductions in microbiome diversity are already observable at disease onset. It remains unclear whether such alterations at diagnosis are etiologically linked with leukemogenesis or simply due to immunological alteration preceding ALL onset. Regardless, all chemotherapeutic treatment regimens severely affect the microbiome, accompanied by severe side effects, including mucositis, systemic inflammation, and infection. In particular, dominance of Enterococcaceae is predictive of infections during chemotherapy. Long-term dysbiosis, like depletion of Faecalibacterium, has been observed in ALL survivors. Modulation of the microbiome (e.g., by fecal microbiota transplant, probiotics, or prebiotics) is currently being researched for potential protective effects. Herein, we review the latest microbiome studies in pediatric ALL patients.
Collapse
Affiliation(s)
- Marina Oldenburg
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Nadine Rüchel
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Stefan Janssen
- Algorithmic Bioinformatics, Department of Biology and Chemistry, Justus Liebig University Gießen, 35390 Gießen, Germany;
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
| | - Katharina L. Gössling
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (M.O.); (N.R.); (A.B.)
- Correspondence:
| |
Collapse
|
7
|
Top KA, Vaudry W, Morris SK, Pham-Huy A, Pernica JM, Tapiéro B, Gantt S, Price VE, Rassekh SR, Sung L, McConnell A, Rubin E, Chawla R, Halperin SA. Waning Vaccine Immunity and Vaccination Responses in Children Treated for Acute Lymphoblastic Leukemia: A Canadian Immunization Research Network Study. Clin Infect Dis 2021; 71:e439-e448. [PMID: 32067048 PMCID: PMC7713683 DOI: 10.1093/cid/ciaa163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/13/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND There is no uniform guideline for postchemotherapy vaccination of children with acute lymphoblastic leukemia (ALL). We evaluated waning immunity to 14 pneumococcal serotypes, pertussis toxin (PT), tetanus toxoid (TT) and varicella, and immunogenicity of postchemotherapy diphtheria, tetanus, pertussis, hepatitis B, polio, and Haemophilus influenzae type b (DTaP-IPV-Hib) and pneumococcal vaccination among previously vaccinated children treated for ALL. METHODS This was a multicenter trial of children with ALL enrolled 4-12 months postchemotherapy completion. Exclusion criteria included: infant ALL, relapsed ALL, and stem cell transplant recipients. Immunocompetent children were recruited as controls. Postchemotherapy participants received DTaP-IPV-Hib and 13-valent pneumococcal conjugate vaccine (PCV13) concurrently, followed by 23-valent pneumococcal polysaccharide vaccine (PPV23) 2 months later. Serology was measured at baseline, 2 and 12 months postvaccination. Adverse events were captured via surveys. RESULTS At enrollment, postchemotherapy participants (n = 74) were less likely than controls (n = 78) to be age-appropriately immunized with DTaP (41% vs 89%, P < .001) and PCV (59% vs 79%, P = .008). Geometric mean concentrations (GMCs) to TT, PT, PCV serotypes, and varicella were lower in postchemotherapy participants than controls after adjusting for previous vaccine doses (P < .001). Two months postvaccination, GMCs to TT, PT, and PCV serotypes increased from baseline (P < .001 for all antigens) and remained elevated at 12 months postvaccination. Antibody levels to PPV23 serotypes also increased postvaccination (P < .001). No serious adverse events were reported. CONCLUSIONS Children treated for ALL had lower antibody levels than controls against pneumococcal serotypes, tetanus, pertussis, and varicella despite previous vaccination. Postchemotherapy vaccination with DTaP-IPV-Hib, PCV13, and PPV23 was immunogenic and well tolerated. Children with ALL would benefit from systematic revaccination postchemotherapy. CLINICAL TRIALS REGISTRATION NCT02447718.
Collapse
Affiliation(s)
- Karina A Top
- Departments of Pediatrics and Community Health & Epidemiology, and the Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Wendy Vaudry
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Shaun K Morris
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Anne Pham-Huy
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeffrey M Pernica
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Bruce Tapiéro
- Centre Hospitalier Universitaire de Ste-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Soren Gantt
- Vaccine Evaluation Centre, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Victoria E Price
- Department of Pediatrics, Dalhousie University and IWK Health Centre, Halifax, Nova Scotia, Canada
| | - S Rod Rassekh
- British Columbia, Children's Hospital, Vancouver, British Columbia, Canada
| | - Lillian Sung
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Earl Rubin
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Rupesh Chawla
- Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Scott A Halperin
- Departments of Pediatrics and Microbiology & Immunology and the Canadian Center for Vaccinology, Dalhousie University, and the IWK Health Centre, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Zheng J, Zhang T, Guo W, Zhou C, Cui X, Gao L, Cai C, Xu Y. Integrative Analysis of Multi-Omics Identified the Prognostic Biomarkers in Acute Myelogenous Leukemia. Front Oncol 2020; 10:591937. [PMID: 33363022 PMCID: PMC7758482 DOI: 10.3389/fonc.2020.591937] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Background Acute myelogenous leukemia (AML) is a common pediatric malignancy in children younger than 15 years old. Although the overall survival (OS) has been improved in recent years, the mechanisms of AML remain largely unknown. Hence, the purpose of this study is to explore the differentially methylated genes and to investigate the underlying mechanism in AML initiation and progression based on the bioinformatic analysis. Methods Methylation array data and gene expression data were obtained from TARGET Data Matrix. The consensus clustering analysis was performed using ConsensusClusterPlus R package. The global DNA methylation was analyzed using methylationArrayAnalysis R package and differentially methylated genes (DMGs), and differentially expressed genes (DEGs) were identified using Limma R package. Besides, the biological function was analyzed using clusterProfiler R package. The correlation between DMGs and DEGs was determined using psych R package. Moreover, the correlation between DMGs and AML was assessed using varElect online tool. And the overall survival and progression-free survival were analyzed using survival R package. Results All AML samples in this study were divided into three clusters at k = 3. Based on consensus clustering, we identified 1,146 CpGs, including 40 hypermethylated and 1,106 hypomethylated CpGs in AML. Besides, a total 529 DEGs were identified, including 270 upregulated and 259 downregulated DEGs in AML. The function analysis showed that DEGs significantly enriched in AML related biological process. Moreover, the correlation between DMGs and DEGs indicated that seven DMGs directly interacted with AML. CD34, HOXA7, and CD96 showed the strongest correlation with AML. Further, we explored three CpG sites cg03583857, cg26511321, cg04039397 of CD34, HOXA7, and CD96 which acted as the clinical prognostic biomarkers. Conclusion Our study identified three novel methylated genes in AML and also explored the mechanism of methylated genes in AML. Our finding may provide novel potential prognostic markers for AML.
Collapse
Affiliation(s)
- Jiafeng Zheng
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Tongqiang Zhang
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Wei Guo
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Caili Zhou
- Department of Science and Education, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Xiaojian Cui
- Department of Clinical Lab, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Long Gao
- Department of Pediatric Endocrinology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Chunquan Cai
- Tianjin Institute of Pediatrics (Tianjin Key Laboratory of Birth Defects for Prevention and Treatment), Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| | - Yongsheng Xu
- Department of Pediatric Respiratory Medicine, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China
| |
Collapse
|
9
|
Pelland-Marcotte MC, Pole JD, Nathan PC, Sutradhar R, Sung L. Severe infections following treatment for childhood cancer: a report from CYP-C. Leuk Lymphoma 2020; 61:2876-2884. [PMID: 32654563 DOI: 10.1080/10428194.2020.1789626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Little is known about infections occurring after childhood cancer treatment. We assessed the risk of severe infection postcancer therapy in survivors of leukemia compared to other cancer types. We performed a population-based cohort study of children <15 years of age diagnosed with cancer (2001-2016), alive and relapse-free 30 days after treatment completion. The risk of severe infection in both groups was estimated using subdistribution proportional hazard regression. We identified 6148 survivors (1960 with leukemia). The cumulative incidence (95% confidence interval) of severe infections at 3 years was 0.70% (0.40-1.2%) in leukemia and 0.51% (0.32-0.79%) in other cancers. The risk of severe infection was not statistically different in leukemia survivors compared to other cancer types in univariate and multivariate analysis (adjusted hazard ratio: 1.40, 95% CI: 0.69-2.85). No significant association was found between a history of leukemia and an increased risk of severe infection after treatment, compared to other cancer types.
Collapse
Affiliation(s)
- Marie-Claude Pelland-Marcotte
- Division of Hematology/Oncology, CHU de Québec - Centre Mère-Enfant Soleil, Quebec City, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Canada
| | - Jason D Pole
- ICES, Toronto, Canada.,Centre for Health Services Research, University of Queensland, Woolloongabba, Australia
| | - Paul C Nathan
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Canada
| | | | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada.,Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, Canada
| |
Collapse
|
10
|
Rotz SJ, Dandoy CE. The microbiome in pediatric oncology. Cancer 2020; 126:3629-3637. [PMID: 32533793 DOI: 10.1002/cncr.33030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The human microbiome comprises a diverse set of microorganisms, which play a mostly cooperative role in processes such as metabolism and host defense. Next-generation genomic sequencing of bacterial nucleic acids now can contribute a much broader understanding of the diverse organisms composing the microbiome. Emerging evidence has suggested several roles of the microbiome in pediatric hematology/oncology, including susceptibility to infectious diseases, immune response to neoplasia, and contributions to the tumor microenvironment as well as changes to the microbiome from chemotherapy and antibiotics with unclear consequences. In this review, the authors have examined the evidence of the role of the microbiome in pediatric hematology/oncology, discussed how the microbiome may be modulated, and suggested key questions in need of further exploration.
Collapse
Affiliation(s)
- Seth J Rotz
- Department of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Cleveland Clinic Children's Hospital, Cleveland, Ohio
| | - Christopher E Dandoy
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
11
|
Bochennek K, Luckowitsch M, Lehrnbecher T. Recent advances and future directions in the management of the immunocompromised host. Semin Oncol 2020; 47:40-47. [DOI: 10.1053/j.seminoncol.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
|
12
|
Pelland-Marcotte MC, Pole JD, Sutradhar R, Nathan PC, Sung L. Infections as a potential long-term risk following childhood leukemia. Med Hypotheses 2020; 137:109554. [PMID: 31945656 DOI: 10.1016/j.mehy.2020.109554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 12/01/2022]
Abstract
Leukemia is the most common childhood cancer. While infections are a frequent and potentially severe complication while on treatment, less is known about the risk for infections following therapy completion. In this article, we propose that leukemia survivors might be at increased risk of infections following therapy completion than the general population, independently of potential confounders such as age, sex and Down syndrome. This association is conceivably due to several factors. First, therapy-induced immune dysfunction of both the humoral and cellular compartments appears to last for several years following anti-cancer therapy and after hematopoietic stem cell transplantation. Second, clinical and epidemiological research has shown leukemia survivors are disproportionally affected by comorbidities related to leukemia treatment and its complications, such as diabetes and obesity, which may induce secondary immunodeficiency and infections. Last, differences in health-related behaviors between leukemia survivors and the general population (such as re-vaccination practices) may affect the baseline risk of infections. Although under-represented in the epidemiological literature as a possible late effect of childhood leukemia and its treatment, it is plausible that leukemia survivors are at increased risk of infections for several years when compared to the general population and their siblings. Further research is needed to empirically test these hypotheses.
Collapse
Affiliation(s)
- Marie-Claude Pelland-Marcotte
- Department of Pediatrics, CHU de Québec, 2705 Boulevard Laurier, Quebec City, Quebec, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.
| | - Jason D Pole
- Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, Toronto, Ontario, Canada; Pediatric Oncology Group of Ontario, 480, University Ave, Toronto, Ontario, Canada; ICES, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - Rinku Sutradhar
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, Toronto, Ontario, Canada; ICES, 2075 Bayview Avenue, Toronto, Ontario, Canada
| | - Paul C Nathan
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G 1X8, Canada; Program in Child Health Evaluative Sciences, The Hospital for Sick Children, 686, Bay St., Toronto, Ontario, Canada
| | - Lillian Sung
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, 555, University Avenue, Toronto, Ontario M5G 1X8, Canada; Program in Child Health Evaluative Sciences, The Hospital for Sick Children, 686, Bay St., Toronto, Ontario, Canada
| |
Collapse
|