1
|
Patel KR, van der Heide UA, Kerkmeijer LGW, Schoots IG, Turkbey B, Citrin DE, Hall WA. Target Volume Optimization for Localized Prostate Cancer. Pract Radiat Oncol 2024; 14:522-540. [PMID: 39019208 PMCID: PMC11531394 DOI: 10.1016/j.prro.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024]
Abstract
PURPOSE To provide a comprehensive review of the means by which to optimize target volume definition for the purposes of treatment planning for patients with intact prostate cancer with a specific emphasis on focal boost volume definition. METHODS Here we conduct a narrative review of the available literature summarizing the current state of knowledge on optimizing target volume definition for the treatment of localized prostate cancer. RESULTS Historically, the treatment of prostate cancer included a uniform prescription dose administered to the entire prostate with or without coverage of all or part of the seminal vesicles. The development of prostate magnetic resonance imaging (MRI) and positron emission tomography (PET) using prostate-specific radiotracers has ushered in an era in which radiation oncologists are able to localize and focally dose-escalate high-risk volumes in the prostate gland. Recent phase 3 data has demonstrated that incorporating focal dose escalation to high-risk subvolumes of the prostate improves biochemical control without significantly increasing toxicity. Still, several fundamental questions remain regarding the optimal target volume definition and prescription strategy to implement this technique. Given the remaining uncertainty, a knowledge of the pathological correlates of radiographic findings and the anatomic patterns of tumor spread may help inform clinical judgement for the definition of clinical target volumes. CONCLUSION Advanced imaging has the ability to improve outcomes for patients with prostate cancer in multiple ways, including by enabling focal dose escalation to high-risk subvolumes. However, many questions remain regarding the optimal target volume definition and prescription strategy to implement this practice, and key knowledge gaps remain. A detailed understanding of the pathological correlates of radiographic findings and the patterns of local tumor spread may help inform clinical judgement for target volume definition given the current state of uncertainty.
Collapse
Affiliation(s)
- Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Linda G W Kerkmeijer
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ivo G Schoots
- Department of Radiation Oncology, The Netherlands Cancer Institute (NKI-AVL), Amsterdam, The Netherlands
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - William A Hall
- Froedtert and the Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Kawase M, Nakane K, Iinuma K, Kawase K, Taniguchi T, Tomioka M, Tobisawa Y, Koie T. Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review. J Clin Med 2024; 13:5561. [PMID: 39337047 PMCID: PMC11432447 DOI: 10.3390/jcm13185561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The overall survival (OS) of patients with prostate cancer (PCa) who receive locally definitive therapy is generally better than that of patients who do not receive definitive therapy. There is no difference in the incidence of local recurrence or distant metastasis between treatment modalities. Because the prognosis of PCa is relatively good, many studies have focused on quality of life after treatment as an endpoint. However, a limited number of patients develop biochemical recurrence after definitive treatment for PCa and subsequently develop distant metastasis or die from PCa. Therefore, we believe that preventing local recurrence and distant metastasis and prolonging the OS should be emphasized when selecting a treatment modality for PCa. In this review, the significance and usefulness of radical prostatectomy and radiation therapy as the main modalities of definitive therapies for local PCa and locally advanced PCa were evaluated, as well as the outcomes of OS and PCa-specific mortality and the treatment options after biochemical recurrence to improve the oncological outcomes.
Collapse
Affiliation(s)
- Makoto Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Keita Nakane
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Koji Iinuma
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Kota Kawase
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Tomoki Taniguchi
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Masayuki Tomioka
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Yuki Tobisawa
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| | - Takuya Koie
- Department of Urology, Graduate School of Medicine, Gifu University, Gifu 5011194, Japan
| |
Collapse
|
3
|
Niazi T, Nabid A, Malagon T, Tisseverasinghe S, Bettahar R, Dahmane R, Martin AG, Jolicoeur M, Yassa M, Barkati M, Igidbashian L, Bahoric B, Archambault R, Villeneuve H, Mohiuddin M. Hypofractionated Dose Escalation Radiotherapy for High-risk Prostate Cancer: The Survival Analysis of the Prostate Cancer Study 5, a Groupe de Radio-oncologie Génito-urinaire du Quebec-led Phase 3 Trial. Eur Urol 2024:S0302-2838(24)02574-0. [PMID: 39271420 DOI: 10.1016/j.eururo.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Prostate Cancer Study 5 (PCS5) compared conventional fractionated radiotherapy (CFRT) with hypofractionated radiotherapy (HFRT) in high-risk prostate cancer (PCa) patients, hypothesizing similar toxicity and survival outcomes. This report presents the efficacy analysis. METHODS PCS5 is a Canadian multicenter, open-label, phase 3 randomized control trial. Men with histologically proven, clinically localized PCa with one or more high-risk features (T3/T4, Gleason score ≥8, and prostate-specific antigen >20) were eligible. Patients were randomized 1:1 to CFRT (76 Gy/38 fractions [Fx] to the prostate and 46 Gy/23 Fx to the pelvic lymph nodes [PLNs]) or HFRT (68 Gy/25 Fx to the prostate and 45 Gy/25 Fx to the PLNs) and 28 mo of androgen suppression. The primary endpoint was toxicity; secondary endpoints included survival outcomes. KEY FINDINGS AND LIMITATIONS Of 329 patients, 164 were randomized to HFRT and 165 to CFRT, with 159 in the HFRT arm and 160 in the CFRT arm included in survival analyses. At the 5-yr median follow-up, there were no significant differences in overall survival (OS; 90.3% vs 89.7%; risk ratio [RR]: 1.01; 95% confidence interval [CI]: 0.93-1.09), PCa-specific survival (PCSS; 97.4% vs 97.5%; RR: 1.00; 95% CI: 0.93-1.07), biochemical recurrence-free survival (BCRFS; 85.2% vs 85.2%; RR: 1.00; 95% CI: 0.91-1.10), or distant metastasis-free survival (DMFS; 87.1% vs 87.1%; RR: 1.00; 95% CI: 0.92-1.09). Hazard ratios were 0.92 (95% CI: 0.56-1.53) for OS, 1.31 (95% CI: 0.46-3.78) for PCSS, 0.85 (95% CI: 0.56-1.30) for BCRFS, and 0.90 (95% CI: 0.56-1.43) for DMFS. Sample size was a limiting factor. CONCLUSIONS AND CLINICAL IMPLICATIONS There were no differences in survival outcomes between HFRT (68 Gy/25 Fx) and CFRT (76 Gy/38 Fx). HFRT, including PLN radiotherapy and long-term androgen deprivation therapy, should be considered a new standard of care for high-risk PCa patients undergoing external beam radiotherapy.
Collapse
Affiliation(s)
- Tamim Niazi
- Jewish General Hospital, McGill University, Montreal, Quebec, Canada.
| | - Abdenour Nabid
- Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | - Talia Malagon
- Department of Oncology, McGill University, Montréal, Quebec, Canada; St Mary's Research Centre, Montréal West Island CIUSSS, Montréal, Quebec, Canada
| | | | - Redouane Bettahar
- Centre Hospitalier Régional de Rimouski-Centre de Cancer, Rimouski, Quebec, Canada
| | - Rafika Dahmane
- Pavillon Ste-Marie Centre Hospitalier Régional de Trois-Rivières (CHRTR), Trois-Rivières, Quebec, Canada
| | - Andre-Guy Martin
- Centre Hospitalier Universitaire de Québec (CHUQ)-L'Hôtel-Dieu de Québec, Quebec City, Quebec, Canada
| | | | - Michael Yassa
- Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Maroie Barkati
- Centre Hospitalier de l'Université de Montréal (CHUM) (MB), Montreal, Quebec, Canada
| | | | - Boris Bahoric
- Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | - Md Mohiuddin
- Saint John Regional Hospital (MM), Saint John, New Brunswick, Canada
| |
Collapse
|
4
|
Haas R, Frame G, Khan S, Neilsen BK, Hong BH, Yeo CPX, Yamaguchi TN, Ong EHW, Zhao W, Carlin B, Yeo ELL, Tan KM, Bugh YZ, Zhu C, Hugh-White R, Livingstone J, Poon DJJ, Chu PL, Patel Y, Tao S, Ignatchenko V, Kurganovs NJ, Higgins GS, Downes MR, Loblaw A, Vesprini D, Kishan AU, Chua MLK, Kislinger T, Boutros PC, Liu SK. The Proteogenomics of Prostate Cancer Radioresistance. CANCER RESEARCH COMMUNICATIONS 2024; 4:2463-2479. [PMID: 39166898 PMCID: PMC11411600 DOI: 10.1158/2767-9764.crc-24-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Prostate cancer is frequently treated with radiotherapy. Unfortunately, aggressive radioresistant relapses can arise, and the molecular underpinnings of radioresistance are unknown. Modern clinical radiotherapy is evolving to deliver higher doses of radiation in fewer fractions (hypofractionation). We therefore analyzed genomic, transcriptomic, and proteomic data to characterize prostate cancer radioresistance in cells treated with both conventionally fractionated and hypofractionated radiotherapy. Independent of fractionation schedule, resistance to radiotherapy involved massive genomic instability and abrogation of DNA mismatch repair. Specific prostate cancer driver genes were modulated at the RNA and protein levels, with distinct protein subcellular responses to radiotherapy. Conventional fractionation led to a far more aggressive biomolecular response than hypofractionation. Testing preclinical candidates identified in cell lines, we revealed POLQ (DNA Polymerase Theta) as a radiosensitizer. POLQ-modulated radioresistance in model systems and was predictive of it in large patient cohorts. The molecular response to radiation is highly multimodal and sheds light on prostate cancer lethality. SIGNIFICANCE Radiation is standard of care in prostate cancer. Yet, we have little understanding of its failure. We demonstrate a new paradigm that radioresistance is fractionation specific and identified POLQ as a radioresistance modulator.
Collapse
Affiliation(s)
- Roni Haas
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Gavin Frame
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Beth K Neilsen
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Boon Hao Hong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Celestia P X Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Enya H W Ong
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Wenyan Zhao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Benjamin Carlin
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Eugenia L L Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Kah Min Tan
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Yuan Zhe Bugh
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Chenghao Zhu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Rupert Hugh-White
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Julie Livingstone
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Dennis J J Poon
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Pek Lim Chu
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
| | - Yash Patel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | - Shu Tao
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
| | | | | | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michelle R Downes
- Division of Anatomic Pathology, Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Loblaw
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Danny Vesprini
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, California
| | - Melvin L K Chua
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
- Department of Urology, University of California, Los Angeles, Los Angeles, California
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, California
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Swensen S, Liao JJ, Chen JJ, Kim K, Ma TM, Weg ES. The expanding role of radiation oncology across the prostate cancer continuum. Abdom Radiol (NY) 2024; 49:2693-2705. [PMID: 38900319 DOI: 10.1007/s00261-024-04408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Radiotherapy is used in the treatment of prostate cancer in a variety of disease states with significant reliance on imaging to guide clinical decision-making and radiation delivery. In the definitive setting, the choice of radiotherapy treatment modality, dose, and fractionation for localized prostate cancer is determined by the patient's initial risk stratification and other clinical considerations. Radiation is also an option as salvage therapy in patients with locoregionally recurrent disease after prior definitive radiation or surgery. In recent years, the role of radiation has expanded for patients with metastatic disease, including prostate-directed radiotherapy in de novo low volume metastatic disease, metastasis-directed therapy for oligorecurrent disease, and palliative management of symptomatic metastases in the advanced setting. Here we review the expanding role of radiation in the treatment of prostate cancer in the definitive, locoregionally recurrent, and metastatic settings, as well as highlight the role of imaging in clinical reasoning, radiation planning, and treatment delivery.
Collapse
Affiliation(s)
- Sasha Swensen
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Jay J Liao
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Jonathan J Chen
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Katherine Kim
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Ting Martin Ma
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Emily S Weg
- Department of Radiation Oncology, University of Washington, Fred Hutchinson Cancer Center, 1959 NE Pacific St, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Mattes MD. Overview of Radiation Therapy in the Management of Localized and Metastatic Prostate Cancer. Curr Urol Rep 2024; 25:181-192. [PMID: 38861238 DOI: 10.1007/s11934-024-01217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The goal is to describe the evolution of radiation therapy (RT) utilization in the management of localized and metastatic prostate cancer. RECENT FINDINGS Long term data for a variety of hypofractionated definitive RT dose-fractionation schemes has matured, allowing patients and providers many standard-of-care options to choose from. Post-prostatectomy, adjuvant RT has largely been replaced by an early salvage approach. Multiparametric MRI and PSMA PET have enabled increasingly targeted RT delivery to the prostate and oligometastatic tumors. Areas of active investigation include determining the value of proton beam therapy and perirectal spacers, and optimally incorporate genomic tumor profiling and next generation hormonal therapies with RT in the curative setting. The use of radiation therapy to treat prostate cancer is rapidly evolving. In the coming years, there will be continued improvements in a variety of areas to enhance the value of RT in multidisciplinary prostate cancer management.
Collapse
Affiliation(s)
- Malcolm D Mattes
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
7
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
8
|
Lukez A, Handorf E, Mendenhall NP, Henderson RH, Stish BJ, Davis BJ, Hallman M, Horwitz EM, Vapiwala N, Wong JK. A pooled patient-reported outcomes analysis of moderately hypofractionated proton beam therapy and photon-based intensity modulated radiation therapy for low- or intermediate-risk prostate cancer. Prostate 2024; 84:395-402. [PMID: 38108113 DOI: 10.1002/pros.24660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND We sought to characterize and compare late patient-reported outcomes (PROs) after moderately hypofractionated intensity modulated radiation therapy (IMRT) and proton beam therapy (PBT) for localized prostate cancer (PC). METHODS This multi-institutional analysis included low- or intermediate-risk group PC patients treated with moderately hypofractionated radiation to an intact prostate stratified by treatment modality: IMRT or PBT. The primary outcomes were prospectively collected patient-reported late gastrointestinal (GI) and genitourinary (GU) toxicity assessed by International Prostate Symptom Score (IPSS) and Expanded PC Index Composite (EPIC). Multivariable regression analysis (MVA) controlling for age, race, and risk group tested the effect of time, treatment, and their interaction. RESULTS 287 IMRT and 485 PBT patients were included. Intermediate risk group (81.2 vs. 68.2%; p < 0.001) and median age at diagnosis (70 vs. 67 years; p < 0.001) were higher in the IMRT group. On MVA, there was no significant difference between modalities. PBT IPSS did not differ from IMRT IPSS at 12 months (odds ratio [OR], 1.19; p = 0.08) or 24 months (OR, 0.99; p = 0.94). PBT EPIC overall GI function at 12 months (OR, 3.68; p = 0.085) and 24 months (OR 2.78; p = 0.26) did not differ from IMRT EPIC overall GI function. At 24 months, urinary frequency was no different between PBT and IMRT groups (OR 0.35; p = 0.096). CONCLUSIONS This multi-institutional analysis of low- or intermediate-risk PC treated with moderately hypofractionated PBT and IMRT demonstrated low rates of late patient-reported GI and GU toxicities. After covariate adjustment, late GI and GU PROs were not significantly different between PBT or IMRT cohorts.
Collapse
Affiliation(s)
- Alexander Lukez
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Elizabeth Handorf
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida, Gainesville, Florida, USA
| | - Randal H Henderson
- Department of Radiation Oncology, UF Health Proton Therapy Institute, Jacksonville, Florida, USA
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Hallman
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Karen Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Santos M, Chavez-Nogueda J, Galvis JC, Merino T, Oliveira e Silva L, Rico M, Sarria G, Sisamon I, Garay O. Hypofractionation as a solution to radiotherapy access in latin america: expert perspective. Rep Pract Oncol Radiother 2022; 27:1094-1105. [PMID: 36632306 PMCID: PMC9826647 DOI: 10.5603/rpor.a2022.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Limited radiation therapy resources have resulted in an interest in developing time and cost-saving innovations to expand access to cancer treatment, in Latin America. Therefore, hypofractionated radiotherapy (HRT) is a possible solution, as this modality delivers radiation over a shorter period of time. Materials and methods A selected panel of Latin American (LA) experts in fields related to HRT were provided with a series of relevant questions to address, prior to the multi-day conference. Within this meeting, each narrative was discussed and edited, through numerous rounds of discussion, until agreement was achieved. Results The challenges identified in increasing the adoption of HRT in LA include a lack of national and regional clinical practice guidelines and cancer registries; a lack of qualified human resources and personnel education; high up-front costs of equipment; disparate resource distribution and scarce HRT research. An analysis for these overarching challenges was developed and answered with recommendations. Conclusion Extending the adoption of HRT in LA can provide a path forward to increase access to radiotherapy and overcome the shortage of equipment. HRT has the potential to improve population health outcomes and patient centered care, while offering comparable local control, toxicity, palliation, and late effects for multiple indications, when compared to conventional RT. Concerted efforts from all involved stakeholders are needed to overcome the barriers in adopting this strategy in LA countries. The recommendations presented in this article can serve as a plan of action for HRT adoption in other countries in a similar situation.
Collapse
Affiliation(s)
- Marcos Santos
- ALATRO — Latin America Society of Therapeutic Radiation Oncology, Goiânia, Brasil
| | - Jessica Chavez-Nogueda
- Radiation Oncology Department, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| | - Juan Carlos Galvis
- Division of Radiation Oncology, Clinica Los Nogales, Division of Clinical Research Clinica Los Nogales, Bogota, Colombia
| | - Tomas Merino
- Hemato-Oncology Department, Pontifícia Universidad Católica de Chile, Santiago, Chile
| | - Luis Oliveira e Silva
- Brasilia University Hospital (Hospital Universitário de Brasília — HUB), Brasília, Brasil
| | - Mariana Rico
- Americas Health Foundation (AHF), Washington, United States
| | - Gustavo Sarria
- Radiation Therapy Department, Oncosalud — AUNA, Lima, Peru
| | - Ignacio Sisamon
- Centro de Oncologia y Radioterapia and Hospital Privado de Comunidad, Mar del Plata, Argentina,School of Medicine, FASTA University, Mar del Plata, Argentina
| | - Onix Garay
- National Autonomous University of Mexico (UNAM)/Mexican Social Security Institute (IMSS), México City, Mexico
| |
Collapse
|
10
|
Soni A, Jadhav GK, Manocha S, Chauhan S, Goswami B, Verma M. Comparative evaluation of hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate and high risk prostate cancer. Rep Pract Oncol Radiother 2022; 27:1001-1009. [PMID: 36632300 PMCID: PMC9826658 DOI: 10.5603/rpor.a2022.0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 12/12/2022] Open
Abstract
Background The purpose of this study was to comparatively evaluate an efficacy and toxicity profile of hypofractionated radiotherapy (67.5 Gy in 25 fractions) to conventionally fractionated radiotherapy (78 Gy in 39 fractions) in prostate cancer patients with intermediate and high-risk disease. Materials and methods From January 2015 to December 2018, 168 patients were randomized to hypofractionated radiation treatment and conventional fractionated radiation treatment schedules of volumetric modulated arc therapy (VMAT) to the prostate and seminal vesicles. All the patients also received androgen deprivation therapy (ADT) and radiation therapy started after ADT. Results The median (range) follow-up was 51 (31-63) and 53 (33-64) months in the hypofractionated and conventionally fractionated regimes, respectively. The 3-year biochemical no evidence of disease (bNED) rates were 86.9% and 73.8% in the hypofractionated and conventionally fractionated groups, respectively (p = 0.032, significant). The 3-year bNED rates in patients at a high risk [i.e., pretreatment prostate-specific antigen (PSA) > 20 ng/mL, Gleason score ≥ 8, or T ≥ 2 c], were 87.9% and 73.5% (p = 0.007, significant) in the hypofractionated and conventionally fractionated radiotherapy groups, respectively. No statistically significant difference was found for late toxicity between the two groups, with 3-year grade 2 gastrointestinal toxicity rates of 19% and 16.7% and 3-year grade 2 genitourinary toxicity rates of 15.5% and 11.9% in the hypofractionated and conventionally fractionated radiotherapy groups, respectively. Conclusion Hypofractionated schedule is superior to the conventional fractionation schedule of radiation treatment in terms of bNED in intermediate and high grade prostate cancer patients. Also, the late toxicity is found to be equivalent between the two treatment groups.
Collapse
Affiliation(s)
- Abhishek Soni
- Department of Radiation Oncology, PT Bhagwat Dayal Sharma, Rohtak, India
| | - Ganesh K Jadhav
- Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Sapna Manocha
- Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Sunil Chauhan
- Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Brijesh Goswami
- Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India
| | - Monica Verma
- Department of Radiation Oncology, PT Bhagwat Dayal Sharma, Rohtak, India
| |
Collapse
|
11
|
Moradi S, Hashemi B, Bakhshandeh M, Banaei A, Mofid B. Introducing new plan evaluation indices for prostate dose painting IMRT plans based on apparent diffusion coefficient images. Radiat Oncol 2022; 17:193. [PMID: 36419067 PMCID: PMC9685857 DOI: 10.1186/s13014-022-02163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Dose painting planning would be more complicated due to different levels of prescribed doses and more complex evaluation with conventional plan quality indices considering uniform dose prescription. Therefore, we tried to introduce new indices for evaluating the dose distribution conformity and homogeneity of treatment volumes based on the tumoral cell density and relative volumes of each lesion in prostate IMRT. METHODS CT and MRI scans of 20 male patients having local prostate cancer were used for IMRT DP planning. Apparent diffusion coefficient (ADC) images were imported to a MATLAB program to identify lesion regions based on ADC values automatically. Regions with ADC values lower than 750 mm2/s and regions with ADC values higher than 750 and less than 1500 mm2/s were considered CTV70Gy (clinical tumor volume with 70 Gy prescribed dose), and CTV60Gy, respectively. Other regions of the prostate were considered as CTV53Gy. New plan evaluation indices based on evaluating the homogeneity (IOE(H)), and conformity (IOE(C)) were introduced, considering the relative volume of each lesion and cellular density obtained from ADC images. These indices were compared with conventional homogeneity and conformity indices and IOEs without considering cellular density. Furthermore, tumor control probability (TCP) was calculated for each patient, and the relationship of the assessed indices were evaluated with TCP values. RESULTS IOE (H) and IOE (C) with considering cellular density had significantly lower values compared to conventional indices and IOEs without considering cellular density. (P < 0.05). TCP values had a stronger relationship with IOE(H) considering cell density (R2 = -0.415), and IOE(C) without considering cell density (R2 = 0.624). CONCLUSION IOE plan evaluation indices proposed in this study can be used for evaluating prostate IMRT dose painting plans. We suggested to consider cell densities in the IOE(H) calculation formula and it's appropriate to calculate IOE(C) without considering cell density values.
Collapse
Affiliation(s)
- Saman Moradi
- grid.412266.50000 0001 1781 3962Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116 Iran
| | - Bijan Hashemi
- grid.412266.50000 0001 1781 3962Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116 Iran
| | - Mohsen Bakhshandeh
- grid.411600.2Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443 Iran
| | - Amin Banaei
- grid.412266.50000 0001 1781 3962Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 1411713116 Iran
| | - Bahram Mofid
- grid.411600.2Department of Radiation Oncology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1985717443 Iran
| |
Collapse
|
12
|
Murgić J, Fröbe A, Kiang Chua ML. RECENT ADVANCES IN RADIOTHERAPY MODALITIES FOR PROSTATE CANCER. Acta Clin Croat 2022; 61:57-64. [PMID: 36938553 PMCID: PMC10022407 DOI: 10.20471/acc.2022.61.s3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Radiotherapy is the attractive treatment option for prostate cancer and has a clear role in all stages of the disease. Over the last decade, advances in technology, imaging capabilities, and improved radiobiological understanding have deeply transformed radiotherapy for prostate cancer, allowing dose escalation and wide adoption of hypofractionation. Furthermore, the integration of magnetic resonance imaging (MRI) and improved physical precision of dose delivery have given an impetus to additionally target intraprostatic tumor lesions, previously agnostic to conventional radiotherapy target definition concept. The emerging data from randomized clinical trials and observation research show that ultra-hypofractionation is a safe approach while further follow-up is needed to assess its efficacy compared to standard fractionation. There is an ongoing uncertainty surrounding true alpha/beta ratio for prostate cancer since hypofractionation has so far failed to yield theoretically envisioned superior biochemical control outcomes. Finally, recently published randomized trial settled ongoing controversy regarding the role of elective pelvic lymph node radiotherapy in patients with high-risk prostate cancer, showing clear benefit when pelvic nodes were treated to 50 Gy. The role of partial gland dose escalation/tumor boosting is evolving, and more data is needed to adopt this approach in routine clinical care. Going forward, molecular imaging will be crucial to assess biology of the disease, predict a response potentially, and optimally personalize radiotherapy treatment decisions. In this narrative review, we critically analyzed the published literature and provided practical summary of recent prostate radiotherapy advances for busy clinicians.
Collapse
Affiliation(s)
- Jure Murgić
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
- School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Melvin Lee Kiang Chua
- Department of Head and Neck and Thoracic Cancers, Division of Radiation Oncology and Division of Medical Sciences, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
| |
Collapse
|
13
|
Algohary A, Alhusseini M, Breto AL, Kwon D, Xu IR, Gaston SM, Castillo P, Punnen S, Spieler B, Abramowitz MC, Dal Pra A, Kryvenko ON, Pollack A, Stoyanova R. Longitudinal Changes and Predictive Value of Multiparametric MRI Features for Prostate Cancer Patients Treated with MRI-Guided Lattice Extreme Ablative Dose (LEAD) Boost Radiotherapy. Cancers (Basel) 2022; 14:cancers14184475. [PMID: 36139635 PMCID: PMC9496901 DOI: 10.3390/cancers14184475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the longitudinal changes in multiparametric MRI (mpMRI) (T2-weighted, Apparent Diffusion Coefficient (ADC), and Dynamic Contrast Enhanced (DCE-)MRI) of prostate cancer patients receiving Lattice Extreme Ablative Dose (LEAD) radiotherapy (RT) and the capability of their imaging features to predict RT outcome based on endpoint biopsies. Ninety-five mpMRI exams from 25 patients, acquired pre-RT and at 3-, 9-, and 24-months post-RT were analyzed. MRI/Ultrasound-fused biopsies were acquired pre- and at two-years post-RT (endpoint). Five regions of interest (ROIs) were analyzed: Gross tumor volume (GTV), normally-appearing tissue (NAT) and peritumoral volume in both peripheral (PZ) and transition (TZ) zones. Diffusion and perfusion radiomics features were extracted from mpMRI and compared before and after RT using two-tailed Student t-tests. Selected features at the four scan points and their differences (Δ radiomics) were used in multivariate logistic regression models to predict the endpoint biopsy positivity. Baseline ADC values were significantly different between GTV, NAT-PZ, and NAT-TZ (p-values < 0.005). Pharmaco-kinetic features changed significantly in the GTV at 3-month post-RT compared to baseline. Several radiomics features at baseline and three-months post-RT were significantly associated with endpoint biopsy positivity and were used to build models with high predictive power of this endpoint (AUC = 0.98 and 0.89, respectively). Our study characterized the RT-induced changes in perfusion and diffusion. Quantitative imaging features from mpMRI show promise as being predictive of endpoint biopsy positivity.
Collapse
Affiliation(s)
- Ahmad Algohary
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mohammad Alhusseini
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Adrian L. Breto
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Deukwoo Kwon
- Biostatistics and Bioinformatics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Isaac R. Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sandra M. Gaston
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Patricia Castillo
- Department of Radiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sanoj Punnen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Benjamin Spieler
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Matthew C. Abramowitz
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Dal Pra
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oleksandr N. Kryvenko
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alan Pollack
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Radka Stoyanova
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-5856
| |
Collapse
|
14
|
Valeriani M, Di Staso M, Facondo G, Vullo G, De Sanctis V, Gravina GL, di Genesio Pagliuca M, Osti MF, Bonfili P. Hypofractionated Radiotherapy in Intermediate-Risk Prostate Cancer Patients: Long-Term Results. J Clin Med 2022; 11:jcm11164783. [PMID: 36013023 PMCID: PMC9410091 DOI: 10.3390/jcm11164783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: To evaluate outcomes in terms of survival and toxicity in a series of intermediate-risk prostate cancer (PCa) patients treated with hypofractionated radiotherapy (HyRT) + hormonal therapy (HT) with or without image guidance (IGRT) and to investigate the impact of different variables. Methods: This is a multi-centric study. From January 2005 to December 2019, we treated 313 intermediate-risk PCa patients (T2b−T2c, Gleason score 7, or pre-treatment PSA 10 to 20 ng/mL) with HyRT. Patients received 54.75 Gy in 15 fractions in 5 weeks plus 9 months of neo-adjuvant, concomitant, and adjuvant HT with or without IGRT. Results: Median follow-up was 91.6 months (range 5.1−167.8 months). Median OS was not reached, and the 8- and 10-year OS was 81.9% and 72.4%, respectively. Median CSS was not reached, and the 8- and 10-year CSS was 97.9% and 94.5%, respectively. PSA at first follow-up <0.8 ng/mL was significantly related to better oncological outcomes (CSS, bRFS, LRFS, cPFS, and MFS) in both univariate and multivariate analysis. After Propensity Score matching, grade 2−3 acute and cumulative late GU (p = 0.153 and p = 0.581, respectively) and GI (p = 0.196 and p = 0.925, respectively) toxicity were not statistically different in patients treated with or without IGRT. Conclusions: HyRT is effective and safe regardless of the use of IGRT. PSA at first follow-up is an easily accessible prognostic factor that may help the clinicians to identify patients who require a treatment intensification.
Collapse
Affiliation(s)
- Maurizio Valeriani
- Department of Medicine and Surgery and Translational Medicine, Sapienza University of Rome, Radiotherapy Oncology, St Andrea Hospital, 00189 Rome, Italy
- Correspondence:
| | - Mario Di Staso
- Radiotherapy Oncology Unit, University of L’Aquila, St Salvatore Hospital, 67100 L’Aquila, Italy
| | - Giuseppe Facondo
- Department of Medicine and Surgery and Translational Medicine, Sapienza University of Rome, Radiotherapy Oncology, St Andrea Hospital, 00189 Rome, Italy
| | - Gianluca Vullo
- Department of Medicine and Surgery and Translational Medicine, Sapienza University of Rome, Radiotherapy Oncology, St Andrea Hospital, 00189 Rome, Italy
| | - Vitaliana De Sanctis
- Department of Medicine and Surgery and Translational Medicine, Sapienza University of Rome, Radiotherapy Oncology, St Andrea Hospital, 00189 Rome, Italy
| | - Giovanni Luca Gravina
- Radiotherapy Oncology Unit, University of L’Aquila, St Salvatore Hospital, 67100 L’Aquila, Italy
| | | | - Mattia Falchetto Osti
- Department of Medicine and Surgery and Translational Medicine, Sapienza University of Rome, Radiotherapy Oncology, St Andrea Hospital, 00189 Rome, Italy
| | | |
Collapse
|
15
|
A Phase I Trial of Highly Conformal, Hypofractionated Post-Prostatectomy Radiotherapy. Adv Radiat Oncol 2022; 7:101024. [DOI: 10.1016/j.adro.2022.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
|
16
|
Espenel S, Chargari C, Blanchard P, Bockel S, Morel D, Rivera S, Levy A, Deutsch E. Practice changing data and emerging concepts from recent radiation therapy randomised clinical trials. Eur J Cancer 2022; 171:242-258. [PMID: 35779346 DOI: 10.1016/j.ejca.2022.04.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Oncology treatments are constantly and rapidly evolving. We aimed at highlighting the latest radiation therapy practice changing trials and emerging concepts, through an overview of recent randomised clinical trials (RCTs). MATERIALS AND METHODS Requests were performed in the Medline database to identify all publications reporting radiation therapy RCTs from 2018 to 2021. RESULTS Recent RCTs sustained the role of newer combinatorial strategies through radioimmunotherapy for early stage or metastatic lung cancer, newer pro-apoptotic agents (e.g. debio 1143 in locoregionally advanced head and neck squamous cell carcinoma) or nanoparticles (e.g. NBTXR3 in locally advanced soft-tissue sarcoma). High-tech radiotherapy allows intensifying treatments and gaining ground in some indications through the development of stereotactic body radiotherapy for example. First randomised evidence on personalised radiation therapy through imaging-based (18FDG positron emission tomography-computed tomography for lung cancer or early stage unfavourable Hodgkin lymphoma, PMSA positron emission tomography-computed tomography or magnetic resonance imaging for high-risk prostate cancer) or biological biomarkers (PSA for prostate cancer, HPV for head and neck cancer, etc) were conducted to more tailored treatments, with more favourable outcomes. Patients' quality of life and satisfaction appeared to be increasing aims. RCTs have validated (ultra)hypofractionated schemes in many indications as for breast, prostate or rectal cancer, resulting in equivalent outcomes and toxicities, more convenient for patients and favouring shared decision making. CONCLUSION Radiation therapy is a dynamic field of research, and many RCTs have greatly impacted therapeutic standards over the last years. Investments in radiotherapy research should facilitate the transfer of innovation to clinic.
Collapse
Affiliation(s)
- Sophie Espenel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Cyrus Chargari
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Institut de Recherche Biomédicale des Armées, F-91220, Brétigny sur Orge, France.
| | - Pierre Blanchard
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Oncostat, Inserm U-1018, F-94805, Villejuif, France.
| | - Sophie Bockel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Daphne Morel
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France.
| | - Sofia Rivera
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| | - Antonin Levy
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| | - Eric Deutsch
- Gustave Roussy, Département de Radiothérapie, F-94805, Villejuif, France; Université Paris-Saclay, Faculté de Médecine, F-94270, Le Kremlin Bicêtre, France; Université Paris-Saclay, Inserm U-1030, Laboratoire de Radiothérapie Moléculaire et d'Innovation Thérapeutique, F-94805, Villejuif, France.
| |
Collapse
|
17
|
Lazo A, de la Torre-Luque A, Arregui G, Rivas D, Serradilla A, Gómez J, Jurado F, Núñez MI, López E. Long-Term Outcomes of Dose-Escalated Hypofractionated Radiotherapy in Localized Prostate Cancer. BIOLOGY 2022; 11:435. [PMID: 35336808 PMCID: PMC8945092 DOI: 10.3390/biology11030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This retrospective study aimed to provide some clinical outcomes regarding effectiveness, toxicity, and quality of life in PCa patients treated with dose-escalated moderately hypofractionated radiation therapy (HFRT). Patients received HFRT to a total dose of 66 Gy in 22 fractions (3 Gy/fraction) delivered via volume modulated arc therapy (VMAT) in 2011-2016. Treatment effectiveness was measured by the biochemical failure-free survival rate. Toxicity was assessed according to the criteria of the Radiation Therapy Oncology Group (RTOG) and quality of life according to the criteria of the European Organization for Research and Treatment of Cancer (EORTC). In this regard, quality of life (QoL) was measured longitudinally, at a median of 2 and 5 years after RT. Enrolled patients had low-risk (40.2%), intermediate-risk (47.5%), and high-risk (12.3%) PCa. Median follow-up was 75 months. The biochemical failure-free survival rate was 94.2%. The incidence of acute grade 2 or higher gastrointestinal (GI) and genitourinary (GU) toxicity was 9.84% and 28.69%, respectively. The incidence rate of late grade 2 or higher GI and GU toxicity was 1.64% and 4.10%, respectively. Expanded Prostate Cancer Index Composite (EPIC) scores showed that the majority of patients maintained their QoL. HFRT to 66 Gy with VMAT was associated with adequate biochemical control, low toxicity and good reported GU and GI quality of life.
Collapse
Affiliation(s)
- Antonio Lazo
- Department of Radiation Oncology, San Cecilio Clinical University Hospital, 18016 Granada, Spain;
| | - Alejandro de la Torre-Luque
- Department of Legal Medicine, Psychiatry and Pathology, CIBERSAM, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Daniel Rivas
- Department of Radiation Oncology, GenesisCare, 29018 Malaga, Spain;
| | - Ana Serradilla
- Department of Radiation Oncology, GenesisCare, 18004 Granada, Spain;
| | - Joaquin Gómez
- Department of Radiation Oncology, Torrecardenas Hospitalary Complex, 04009 Almeria, Spain;
| | - Francisca Jurado
- Department of Radiation Oncology, GenesisCare, 14012 Cordoba, Spain;
| | - María Isabel Núñez
- Department of Radiology and Physical Medicine, Granada University, 18012 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, Granada University, 18016 Granada, Spain
- Biosanitary Research Institute, ibs. Granada, 18012 Granada, Spain
| | - Escarlata López
- Department of Radiation Oncology, GenesisCare, 28043 Madrid, Spain;
| |
Collapse
|
18
|
Phuong C, Chan JW, Ni L, Wall P, Mohamad O, Wong AC, Hsu IC, Chang AJ. Safety of accelerated hypofractionated whole pelvis radiation therapy prior to high dose rate brachytherapy or stereotactic body radiation therapy prostate boost. Radiat Oncol 2022; 17:12. [PMID: 35057827 PMCID: PMC8772149 DOI: 10.1186/s13014-021-01976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
Background To evaluate acute and late genitourinary and gastrointestinal toxicities and patient reported urinary and sexual function following accelerated, hypofractionated external beam radiotherapy to the prostate, seminal vesicles and pelvic lymph nodes and high dose rate (HDR) brachytherapy or stereotactic body radiation therapy (SBRT) prostate boost. Methods Patients at a single institution with NCCN intermediate- and high-risk localized prostate cancer with logistical barriers to completing five weeks of whole pelvic radiotherapy (WPRT) were retrospectively reviewed for toxicity following accelerated, hypofractionated WPRT (41.25 Gy in 15 fractions of 2.75 Gy). Patients also received prostate boost radiotherapy with either HDR brachytherapy (1 fraction of 15 Gy) or SBRT (19 Gy in 2 fractions of 9.5 Gy). The duration of androgen deprivation therapy was at the discretion of the treating radiation oncologist. Toxicity was evaluated by NCI CTCAE v 5.0. Results Between 2015 and 2017, 22 patients with a median age of 71 years completed accelerated, hypofractionated WPRT. Median follow-up from the end of radiotherapy was 32 months (range 2–57). 5%, 73%, and 23% of patients had clinical T1, T2, and T3 disease, respectively. 86% of tumors were Gleason grade 7 and 14% were Gleason grade 9. 68% and 32% of patients had NCCN intermediate- and high-risk disease, respectively. 91% and 9% of patients received HDR brachytherapy and SBRT prostate boost following WPRT, respectively. Crude rates of grade 2 or higher GI and GU toxicities were 23% and 23%, respectively. 3 patients (14%) had late or persistent grade 2 toxicities of urinary frequency and 1 patient (5%) had late or persistent GI toxicity of diarrhea. No patient experienced grade 3 or higher toxicity at any time. No difference in patient-reported urinary or sexual function was noted at 12 months. Conclusions Accelerated, hypofractionated whole pelvis radiotherapy was associated with acceptable GU and GI toxicities and should be further validated for those at risk for harboring occult nodal disease.
Collapse
|
19
|
Bhangoo RS, Petersen MM, Bulman GF, Vargas CE, Thorpe CS, Shen J, Wong WW, Rwigema JCM, Daniels TB, Keole SR, Schild SE, Rong Y, DeWees TA. Biologically Effective Dose and Rectal Bleeding in Definitive Proton Therapy for Prostate Cancer. Int J Part Ther 2021; 8:37-46. [PMID: 35530190 PMCID: PMC9009455 DOI: 10.14338/ijpt-21-00007.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose and Objectives With increasing use of hypofractionation and extreme hypofractionation for prostate cancer, rectal dose-volume histogram (DVH) parameters that apply across dose fractionations may be helpful for treatment planning in clinical practice. We present an exploratory analysis of biologically effective rectal dose (BED) and equivalent rectal dose in 2 Gy fractions (EQD2) for rectal bleeding in patients treated with proton therapy across dose fractionations. Materials and Methods From 2016 to 2018, 243 patients with prostate cancer were treated with definitive proton therapy. Rectal DVH parameters were obtained from treatment plans, and rectal bleeding events were recorded. The BED and EQD2 transformations were applied to each rectal DVH parameter. Univariate analysis using logistic regression was used to determine DVH parameters that were significant predictors of grade ≥ 2 rectal bleeding. Youden index was used to determine optimum cutoffs for clinically meaningful DVH constraints. Stepwise model-selection criteria were then applied to fit a “best” multivariate logistic model for predicting Common Terminology Criteria for Adverse Events grade ≥ 2 rectal bleeding. Results Conventional fractionation, hypofractionation, and extreme hypofractionation were prescribed to 117 (48%), 84 (34%), and 42 (17.3%) patients, respectively. With a median follow-up of 20 (2.5-40) months, 10 (4.1%) patients experienced rectal bleeding. On univariate analysis, multiple rectal DVH parameters were significantly associated with rectal bleeding across BED, EQD2, and nominal doses. The BED volume receiving 55 Gy > 13.91% was found to be statistically and clinically significant. The BED volume receiving 55 Gy remained statistically significant for an association with rectal bleeding in the multivariate model (odds ratio, 9.81; 95% confidence interval, 2.4-40.5; P = .002). Conclusion In patients undergoing definitive proton therapy for prostate cancer, dose to the rectum and volume of the rectum receiving the dose were significantly associated with rectal bleeding across conventional fractionation, hypofractionation, and extreme hypofractionation when using BED and EQD2 transformations.
Collapse
Affiliation(s)
| | - Molly M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| | | | | | | | - Jason Shen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - William W. Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | | | - Sameer R. Keole
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | | | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Todd A. DeWees
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
20
|
Kurganovs N, Wang H, Huang X, Ignatchenko V, Macklin A, Khan S, Downes MR, Boutros PC, Liu SK, Kislinger T. A proteomic investigation of isogenic radiation resistant prostate cancer cell lines. Proteomics Clin Appl 2021; 15:e2100037. [PMID: 34152685 PMCID: PMC8448965 DOI: 10.1002/prca.202100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 11/09/2022]
Abstract
To model the problem of radiation resistance in prostate cancer, cell lines mimicking a clinical course of conventionally fractionated or hypofractionated radiotherapy have been generated. Proteomic analysis of radiation resistant and radiosensitive DU145 prostate cancer cells detected 4410 proteins. Over 400 proteins were differentially expressed across both radiation resistant cell lines and pathway analysis revealed enrichment in epithelial to mesenchymal transition, glycolysis and hypoxia. From the radiation resistant protein candidates, the cell surface protein CD44 was identified in the glycolysis and epithelial to mesenchymal transition pathways and may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Natalie Kurganovs
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Hanzhi Wang
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Xiaoyong Huang
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | | | - Andrew Macklin
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Shahbaz Khan
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Michelle R. Downes
- Division of Anatomic PathologyLaboratory Medicine and Molecular DiagnosticsSunnybrook Health Sciences CentreTorontoCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
| | - Paul C. Boutros
- Departments of Human Genetics & UrologyJonsson Comprehensive Cancer CenterLos AngelesUSA
- Institute for Precision HealthUniversity of CaliforniaLos AngelesUSA
| | - Stanley K. Liu
- Sunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoCanada
| | - Thomas Kislinger
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| |
Collapse
|
21
|
Pirlamarla AK, Hansen CC, Deng M, Handorf E, Paly J, Wong JK, Hallman MA, Chen DYT, Geynisman DM, Kutikov A, Horwitz EM. Early PSA kinetics for low- and intermediate-risk prostate cancer treated with definitive radiation therapy. Pract Radiat Oncol 2021; 12:60-67. [PMID: 34303033 DOI: 10.1016/j.prro.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE This study uses a patient-specific model to characterize and compare ideal PSA kinetics for low- and intermediate-risk prostate cancer following definitive radiation treatment with conventionally fractionated (CFRT), hypofractionated (HFRT), stereotactic body radiation therapy (SbRT), or brachytherapy, both high-dose-rate (HDR) and low-dose-rate (LDR). METHODS AND MATERIALS This retrospective analysis includes low- and intermediate-risk prostate cancer patients treated between 1998 and 2018 at an NCI-designated Comprehensive Cancer Center. Demographics and treatment characteristics were prospectively collected. Patients had at least two PSA measurements within 24-months of treatment and were free from biochemical recurrence. The incidence of, time to, and risk factors for PSA nadir (nPSA) and bounce (bPSA) were analyzed at 24-months following radiotherapy. Ideal PSA kinetics were characterized for each modality and compared. RESULTS Of 1,042 patients, 45% had low-risk cancer, 37% favorable intermediate-risk, and 19% unfavorable intermediate-risk. nPSA were higher for ablative modalities, both as absolute nPSA and relative to initial PSA (iPSA). Median time to nPSA ranged from 14.8 to 17.1 months. Over 50% treated with non-ablative therapy (CFRT, HFRT, and LDR) reached an nPSA threshold of ≤0.5 ng/mL compared to 23% of SbRT and 33% of HDR cohorts. The incidence of bPSA was 13.3% and not affected by treatment modality, Gleason Score, or prostate volume. PSA decay rate was faster for ablative therapies in the 6-24 month period. CONCLUSIONS Analysis of PSA within 24-months following radiation therapy revealed ablative therapies are associated with a latent PSA response and higher nPSA. Multivariable logistics modeling revealed younger age, iPSA above the median, presence of bPSA, and ablative therapy as predictors for not achieving nPSA ≤0.5 ng/mL. PSA decay rate appears to be faster in ablative therapies following a latent period. Understanding the different PSA kinetic profiles is necessary to assess treatment response and survey for disease recurrence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David Y T Chen
- Departments of Urologic Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111
| | - Daniel M Geynisman
- Departments of Medical Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111
| | - Alexander Kutikov
- Departments of Urologic Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111
| | | |
Collapse
|
22
|
Vapiwala N, Wong JK, Handorf E, Paly J, Grewal A, Tendulkar R, Godfrey D, Carpenter D, Mendenhall NP, Henderson RH, Stish BJ, Vargas C, Salama JK, Davis BJ, Horwitz EM. A Pooled Toxicity Analysis of Moderately Hypofractionated Proton Beam Therapy and Intensity Modulated Radiation Therapy in Early-Stage Prostate Cancer Patients. Int J Radiat Oncol Biol Phys 2021; 110:1082-1089. [PMID: 33539968 PMCID: PMC9610030 DOI: 10.1016/j.ijrobp.2021.01.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/13/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Data comparing moderately hypofractionated intensity modulated radiation therapy (IMRT) and proton beam therapy (PBT) are lacking. We aim to compare late toxicity profiles of patients with early-stage prostate cancer treated with moderately hypofractionated PBT and IMRT. METHODS AND MATERIALS This multi-institutional analysis included patients with low- or intermediate-risk biopsy-proven prostate adenocarcinoma from 7 tertiary referral centers treated from 1998 to 2018. All patients were treated with moderately hypofractionated radiation, defined as 250 to 300 cGy per daily fraction given for 4 to 6 weeks, and stratified by use of IMRT or PBT. Primary outcomes were late genitourinary (GU) and gastrointestinal (GI) toxicity. Adjusted toxicity rates were calculated using inverse probability of treatment weighting, accounting for race, National Comprehensive Cancer Network risk group, age, pretreatment International Prostate Symptom Score (GU only), and anticoagulant use (GI only). RESULTS A total of 1850 patients were included: 1282 IMRT (median follow-up 80.0 months) and 568 PBT (median follow-up 43.9 months). Overall toxicity rates were low, with the majority of patients experiencing no late GU (56.6%, n = 1048) or late GI (74.4%, n = 1377) toxicity. No difference was seen in the rates of late toxicity between the groups, with late grade 3+ GU toxicity of 2.0% versus 3.9% (odds ratio [OR] 0.47; 95% confidence interval 0.17-1.28) and late grade 2+ GI toxicity of 14.6% versus 4.7% (OR 2.69; confidence interval 0.80-9.05) for the PBT and IMRT cohorts, respectively. On multivariable analysis, no factors were significantly predictive of GU toxicity, and only anticoagulant use was significantly predictive of GI toxicity (OR 1.90; P = .008). CONCLUSIONS In this large, multi-institutional analysis of 1850 patients with early-stage prostate cancer, treatment with moderately hypofractionated IMRT and PBT resulted in low rates of toxicity. No difference was seen in late GI and GU toxicity between the modalities during long-term follow-up. Both treatments are safe and well tolerated.
Collapse
Affiliation(s)
- Neha Vapiwala
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Karen Wong
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Elizabeth Handorf
- Department of Biostatistics, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Paly
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Amardeep Grewal
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahul Tendulkar
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Devon Godfrey
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - David Carpenter
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Nancy P Mendenhall
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Randal H Henderson
- Department of Radiation Oncology, UF Health Proton Therapy Institute, Jacksonville, Florida
| | - Bradley J Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Carlos Vargas
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Joseph K Salama
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Brian J Davis
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Eric M Horwitz
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
23
|
Choi SH, Kim YS, Yu J, Nam TK, Kim JS, Jang BS, Kim JH, Kim Y, Jeong BK, Chang AR, Park YH, Lee SU, Cho KH, Kim JH, Kim H, Choi Y, Kim YJ, Lee DS, Shin YJ, Shim SJ, Park W, Cho J. Optimizing External Beam Radiotherapy as per the Risk Group of Localized Prostate Cancer: A Nationwide Multi-Institutional Study (KROG 18-15). Cancers (Basel) 2021; 13:cancers13112732. [PMID: 34073100 PMCID: PMC8198120 DOI: 10.3390/cancers13112732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary This multi-institutional study analyzed the patterns of care and outcomes of external beam radiotherapy (EBRT) in localized prostate cancer to identify the optimal EBRT strategy for each risk-stratified patient subgroup for clinical practice implementation. In 1573 patients from 17 institutions, EBRT treated prostate cancer effectively. Also, among various risk classification tools, NCCN classification revealed the highest predictive power. The modern RT techniques and dose escalation (≥179 Gy1.5) enhanced therapeutic effects of RT significantly, especially in the high-risk group. On the other hand, modest doses (≥170 Gy1.5) was a significant factor in the intermediate-risk group and no significant impact of dose was observed in the low-risk group. IMRT+ ≥179 Gy1.5+ hypofractionation resulted in higher biochemical failure-free survival in all risk groups, and it translated into survival benefits in the high-risk group. Therefore, risk-adapted RT (more intense RT, high-risk patients; moderate-dose RT, low-risk patients) can be considered, although further prospective studies are warranted. Abstract Purpose: This nationwide multi-institutional study analyzed the patterns of care and outcomes of external beam radiotherapy (EBRT) in localized prostate cancer patients. We compared various risk classification tools and assessed the need for refinements in current radiotherapy (RT) schemes. Methods and Materials: We included non-metastatic prostate cancer patients treated with primary EBRT from 2001 to 2015 in this study. Data of 1573 patients from 17 institutions were analyzed and re-grouped using a risk stratification tool with the highest predictive power for biochemical failure-free survival (BCFFS). We evaluated BCFFS, overall survival (OS), and toxicity rates. Results: With a median follow-up of 75 months, 5- and 10-year BCFFS rates were 82% and 60%, and 5- and 10-year OS rates were 95% and 83%, respectively. NCCN risk classification revealed the highest predictive power (AUC = 0.556, 95% CI 0.524–0.588; p < 0.001). Gleason score, iPSA < 12 ng/mL, intensity-modulated RT (IMRT), and ≥179 Gy1.5 (EQD2, 77 Gy) were independently significant for BCFFS (all p < 0.05). IMRT and ≥179 Gy1.5 were significant factors in the high-risk group, whereas ≥170 Gy1.5 (EQD2, 72 Gy) was significant in the intermediate-risk group and no significant impact of dose was observed in the low-risk group. Both BCFFS and OS improved significantly when ≥179 Gy1.5 was delivered using IMRT and hypofractionation in the high-risk group without increasing toxicities. Conclusions: With NCCN risk classification, dose escalation with modern high-precision techniques might increase survivals in the high-risk group, but not in the low-risk group, although mature results of prospective studies are awaited.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea;
- Yonsei Cancer Center, Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Young Seok Kim
- Asan Medical Center, Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.K.); (J.Y.); (Y.J.K.)
| | - Jesang Yu
- Asan Medical Center, Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.K.); (J.Y.); (Y.J.K.)
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University College of Medicine, Gwangju 61469, Korea;
| | - Jae-Sung Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.-S.K.); (B.-S.J.)
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (J.-S.K.); (B.-S.J.)
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Youngkyong Kim
- Department of Radiation Oncology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul 02447, Korea;
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju 52727, Korea;
| | - Ah Ram Chang
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Korea; (A.R.C.); (Y.-H.P.)
| | - Young-Hee Park
- Department of Radiation Oncology, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul 04401, Korea; (A.R.C.); (Y.-H.P.)
| | - Sung Uk Lee
- The Proton Therapy Center, National Cancer Center, Research Institute and Hospital, Goyang 10408, Korea; (S.U.L.); (K.H.C.)
| | - Kwan Ho Cho
- The Proton Therapy Center, National Cancer Center, Research Institute and Hospital, Goyang 10408, Korea; (S.U.L.); (K.H.C.)
| | - Jin Hee Kim
- Keimyung University Dongsan Medical Center, Department of Radiation Oncology, Keimyung University School of Medicine, Daegu 42601, Korea;
| | - Hunjung Kim
- Department of Radiation Oncology, Inha University Hospital, Inha University School of Medicine, Incheon 22332, Korea;
| | - Youngmin Choi
- Department of Radiation Oncology, Dong-A University Hospital, Dong-A University School of Medicine, Busan 49201, Korea;
| | - Yeon Joo Kim
- Asan Medical Center, Department of Radiation Oncology, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.S.K.); (J.Y.); (Y.J.K.)
- Department of Radiation Oncology, Kangwon National University Hospital, Chuncheon 24289, Korea
| | - Dong Soo Lee
- Department of Radiation Oncology, College of Medicine, The Catholic University of Korea, Uijeongbu 11765, Korea;
| | - Young Ju Shin
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul 04551, Korea;
| | - Su Jung Shim
- Department of Radiation Oncology, Eulji Hospital, Eulji University School of Medicine, Seoul 01830, Korea;
| | - Won Park
- Samsung Medical Center, Department of Radiation Oncology, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
- Correspondence: (W.P.); (J.C.); Tel.: +82-2-3410-2616 (W.P.); +82-2-2228-8095 (J.C.); Fax: +82-2-3410-2619 (W.P.); +82-2-2227-7823 (J.C.)
| | - Jaeho Cho
- Yonsei Cancer Center, Department of Radiation Oncology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (W.P.); (J.C.); Tel.: +82-2-3410-2616 (W.P.); +82-2-2228-8095 (J.C.); Fax: +82-2-3410-2619 (W.P.); +82-2-2227-7823 (J.C.)
| |
Collapse
|
24
|
Taussky D, Delouya G. Is pelvic prophylactic radiotherapy in prostate cancer just right? Transl Androl Urol 2020; 9:2296-2298. [PMID: 33209698 PMCID: PMC7658169 DOI: 10.21037/tau-20-881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Daniel Taussky
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), Canada
| | - Guila Delouya
- Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal (CHUM), Canada
| |
Collapse
|
25
|
Jacobs BL, Hamm M, de Abril Cameron F, Luiggi-Hernandez JG, Heron DE, Kahn JM, Barnato AE. Radiation oncologists' attitudes and beliefs about intensity-modulated radiation therapy and stereotactic body radiation therapy for prostate cancer. BMC Health Serv Res 2020; 20:796. [PMID: 32843034 PMCID: PMC7449079 DOI: 10.1186/s12913-020-05656-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To better understand how radiation oncologists perceive intensity-modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) for prostate cancer and how these perceptions may influence treatment decisions. METHODS We conducted semi-structured interviews of radiation oncologists between January-May, 2016. We used a purposeful sampling technique to select participants across a wide range of experience, regions, and practice types. Two trained qualitative researchers used an inductive, iterative approach to code transcripts and identify themes. We then used content analysis and thematic analysis of the coded transcripts to understand radiation oncologists' attitudes and beliefs about IMRT and SBRT. RESULTS Thematic saturation was achieved after 20 interviews. Participants were affiliated with academic (n = 13; 65%), private (n = 5; 25%), and mixed (n = 2; 10%) practices and had a wide range of clinical experience (median 19 years; range 4-49 years). Analysis of interview transcripts revealed four general themes: 1) most radiation oncologists offered surgery, brachytherapy, IMRT, and active surveillance for low-risk patients; 2) there was no consensus on the comparative effectiveness of IMRT and SBRT; 3) key barriers to adopting SBRT included issues related to insurance, reimbursement, and practice inertia; and 4) despite these barriers, most participants envisioned SBRT use increasing over the next 5-10 years. CONCLUSIONS In the absence of strong opinions about effectiveness, nonclinical factors influence the choice of radiation treatment. Despite a lack of consensus, most participants agreed SBRT may become a standard of care in the future.
Collapse
Affiliation(s)
- Bruce L. Jacobs
- Department of Urology, University of Pittsburgh, 5200 Centre Avenue, Suite 209, Pittsburgh, PA 15232 USA
- Center for Research on Health Care, University of Pittsburgh, Pittsburgh, PA USA
| | - Megan Hamm
- Center for Research on Health Care, University of Pittsburgh, Pittsburgh, PA USA
- Qualitative Evaluation & Stakeholder Engagement Services (Qual EASE), University of Pittsburgh, Pittsburgh, PA USA
| | - Flor de Abril Cameron
- Center for Research on Health Care, University of Pittsburgh, Pittsburgh, PA USA
- Qualitative Evaluation & Stakeholder Engagement Services (Qual EASE), University of Pittsburgh, Pittsburgh, PA USA
| | | | - Dwight E. Heron
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeremy M. Kahn
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Amber E. Barnato
- Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH USA
- Geisel School of Medicine at Dartmouth, Hanover, NH USA
| |
Collapse
|