1
|
Patel L, Kolundzic N, Abedalthagafi M. Progress in personalized immunotherapy for patients with brain metastasis. NPJ Precis Oncol 2025; 9:31. [PMID: 39880875 PMCID: PMC11779815 DOI: 10.1038/s41698-025-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Brain metastasis leads to poor outcomes and CNS injury, significantly reducing quality of life and survival rates. Advances in understanding the tumor immune microenvironment have revealed the promise of immunotherapies, which, alongside surgery, chemotherapy, and radiation, offer improved survival for some patients. However, resistance to immunotherapy remains a critical challenge. This review explores the immune landscape of brain metastases, current therapies, clinical trials, and the need for personalized, biomarker-driven approaches to optimize outcomes.
Collapse
Affiliation(s)
- Lalit Patel
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikola Kolundzic
- Department of Women & Children's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- REPROCELL Europe Ltd., Glasgow, UK
| | - Malak Abedalthagafi
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Toropovskiy AN, Nikitin AG, Viktorov DA, Solov'ev AV, Khuzina RM, Pavlova ON. The role of KRAS and NRAS mutation detection in determining the therapy strategy for colorectal cancer. BULLETIN OF THE MEDICAL INSTITUTE "REAVIZ" (REHABILITATION, DOCTOR AND HEALTH) 2022. [DOI: 10.20340/vmi-rvz.2022.5.clin.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Colorectal cancer is one of the most frequently diagnosed malignant tumors in men and women, which is a highly heterogeneous group of neoplasms consisting of subclasses with different molecular and clinical characteristics, and, as a consequence, patients with different types of tumors require different treatment protocols. Among the predictive factors of treatment response in patients with metastatic colorectal cancer, the most studied are the genes of the RAS family (KRAS, NRAS). Determination of RAS status is the first step in individual selection of drug therapy in patients with metastatic colorectal cancer. Patients with certain mutations in KRAS and NRAS genes are resistant to anti-EGFR therapy and have a lower median survival than WT (wild type) genotypes, indicating a negative prognosis in the presence of mutations.
Collapse
|
3
|
Mjahed RB, Astaras C, Roth A, Koessler T. Where Are We Now and Where Might We Be Headed in Understanding and Managing Brain Metastases in Colorectal Cancer Patients? Curr Treat Options Oncol 2022; 23:980-1000. [PMID: 35482170 PMCID: PMC9174111 DOI: 10.1007/s11864-022-00982-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/01/2023]
Abstract
OPINION STATEMENT Compared to liver and lung metastases, brain metastases (BMs) from colorectal cancer (CRC) are rare and remain poorly investigated despite the anticipated rise in their incidence. CRC patients bearing BM have a dismal prognosis with a median survival of 3-6 months, significantly lower than that of patients with BM from other primary tumors, and of those with metastatic CRC manifesting extracranially. While liver and lung metastases from CRC have more codified treatment strategies, there is no consensus regarding the treatment of BM in CRC, and their management follows the approaches of BM from other solid tumors. Therapeutic strategies are driven by the number and localisation of the lesion, consisting in local treatments such as surgery, stereotactic radiosurgery, or whole-brain radiotherapy. Novel treatment modalities are slowly finding their way into this shy unconsented armatorium including immunotherapy, monoclonal antibodies, tyrosine kinase inhibitors, or a combination of those, among others.This article reviews the pioneering strategies aiming at understanding, diagnosing, and managing this disease, and discusses future directions, challenges, and potential innovations in each of these domains. HIGHLIGHTS • With the increasing survival in CRC, brain and other rare/late-onset metastases are rising. • Distal colon/rectal primary location, long-standing progressive lung metastases, and longer survival are risk factors for BM development in CRC. • Late diagnosis and lack of consensus treatment strategies make BM-CRC diagnosis very dismal. • Liquid biopsies using circulating tumor cells might offer excellent opportunities in the early diagnosis of BM-CRC and the search for therapeutic options. • Multi-modality treatment including surgical metastatic resection, postoperative SRS with/without WBRT, and chemotherapy is the best current treatment option. • Recent mid-sized clinical trials, case reports, and preclinical models show the potential of unconventional therapeutic approaches as monoclonal antibodies, targeted therapies, and immunotherapy. Graphical abstract.
Collapse
Affiliation(s)
- Ribal Bou Mjahed
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland.
- Département de médecine interne - CHUV, Rue du Bugnon 21, CH-1011, Lausanne, Switzerland.
| | - Christoforos Astaras
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| | - Arnaud Roth
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| | - Thibaud Koessler
- Department of Oncology, University hospital of Geneva (HUG), Geneva, Switzerland
| |
Collapse
|
4
|
Karlsen EA, Kahler S, Tefay J, Joseph SR, Simpson F. Epidermal Growth Factor Receptor Expression and Resistance Patterns to Targeted Therapy in Non-Small Cell Lung Cancer: A Review. Cells 2021; 10:1206. [PMID: 34069119 PMCID: PMC8156654 DOI: 10.3390/cells10051206] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/21/2022] Open
Abstract
Globally, lung cancer is the leading cause of cancer-related death. The majority of non-small cell lung cancer (NSCLC) tumours express epidermal growth factor receptor (EGFR), which allows for precise and targeted therapy in these patients. The dysregulation of EGFR in solid epithelial cancers has two distinct mechanisms: either a kinase-activating mutation in EGFR (EGFR-mutant) and/or an overexpression of wild-type EGFR (wt-EGFR). The underlying mechanism of EGFR dysregulation influences the efficacy of anti-EGFR therapy as well as the nature of resistance patterns and secondary mutations. This review will critically analyse the mechanisms of EGFR expression in NSCLC, its relevance to currently approved targeted treatment options, and the complex nature of secondary mutations and intrinsic and acquired resistance patterns in NSCLC.
Collapse
Affiliation(s)
- Emma-Anne Karlsen
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
- Department of General Surgery, Mater Hospital Brisbane, South Brisbane 4101, Australia
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Sam Kahler
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
| | - Joan Tefay
- Faculty of Medicine, The University of Queensland, St Lucia 4067, Australia; (S.K.); (J.T.)
- Department of General Surgery, Redland Hospital, Cleveland 4163, Australia
| | - Shannon R. Joseph
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| | - Fiona Simpson
- Simpson Laboratory, The University of Queensland Diamantina Institute, Woolloongabba, Brisbane 4102, Australia; (S.R.J.); (F.S.)
| |
Collapse
|
5
|
Zhou J, Li Q, Cao Y. Spatiotemporal Heterogeneity across Metastases and Organ-Specific Response Informs Drug Efficacy and Patient Survival in Colorectal Cancer. Cancer Res 2021; 81:2522-2533. [PMID: 33589516 PMCID: PMC8137573 DOI: 10.1158/0008-5472.can-20-3665] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/28/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
The sum of target lesions is routinely used to evaluate patient objective responses to treatment in the RECIST criteria, but it fails to address response heterogeneity across metastases. This study argues that spatiotemporal heterogeneity across metastases and organ-specific response is informative for drug efficacy and patient survival. We analyzed the longitudinal data of 11,404 metastatic lesions in 2,802 colorectal cancer patients from five phase III clinical trials. Initially, a metric Gower distance was applied to quantify response heterogeneity across metastases. Next, the spatiotemporal response heterogeneity across anatomic sites, therapies, and KRAS mutation status was assessed and examined for its association with drug efficacy and long-term patient survival. The response of metastatic lesions broadly differed across anatomic sites and therapies. About 60% of patients had at least one lesion respond contrarily from total tumor size. High interlesion heterogeneity was associated with shorter progression-free survival and overall survival. Targeted therapies (bevacizumab or panitumumab) combined with standard chemotherapy reduced interlesion heterogeneity and elicited more favorable effects from liver lesions (P < 0.001) than chemotherapy alone. Moreover, the favorable responses in liver metastases (> 30% shrinkage) were associated with extended patient overall survival (P < 0.001), in contrast to lesions in the lungs and lymph nodes. Altogether, the spatiotemporal response heterogeneity across metastases informed drug efficacy and patient survival, which could improve the current methods for treatment evaluation and patient prognosis. SIGNIFICANCE: These findings support the modification of RECIST criteria to include individual lesion response to improve assessments of drug efficacy.
Collapse
Affiliation(s)
- Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina
| | - Quefeng Li
- School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Oroujeni M, Xu T, Gagnon K, Rinne SS, Weis J, Garousi J, Andersson KG, Löfblom J, Orlova A, Tolmachev V. The Use of a Non-Conventional Long-Lived Gallium Radioisotope 66Ga Improves Imaging Contrast of EGFR Expression in Malignant Tumours Using DFO-ZEGFR:2377 Affibody Molecule. Pharmaceutics 2021; 13:pharmaceutics13020292. [PMID: 33672373 PMCID: PMC7926986 DOI: 10.3390/pharmaceutics13020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/13/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in many malignancies. EGFR-targeted therapy extends survival of patients with disseminated cancers. Radionuclide molecular imaging of EGFR expression would make EGFR-directed treatment more personalized and therefore more efficient. A previous study demonstrated that affibody molecule [68Ga]Ga-DFO-ZEGFR:2377 permits specific positron-emission tomography (PET) imaging of EGFR expression in xenografts at 3 h after injection. We anticipated that imaging at 24 h after injection would provide higher contrast, but this is prevented by the short half-life of 68Ga (67.6 min). Here, we therefore tested the hypothesis that the use of the non-conventional long-lived positron emitter 66Ga (T1/2 = 9.49 h, β+ = 56.5%) would permit imaging with higher contrast. 66Ga was produced by the 66Zn(p,n)66Ga nuclear reaction and DFO-ZEGFR:2377 was efficiently labelled with 66Ga with preserved binding specificity in vitro and in vivo. At 24 h after injection, [66Ga]Ga-DFO-ZEGFR:2377 provided 3.9-fold higher tumor-to-blood ratio and 2.3-fold higher tumor-to-liver ratio than [68Ga]Ga-DFO-ZEGFR:2377 at 3 h after injection. At the same time point, [66Ga]Ga-DFO-ZEGFR:2377 provided 1.8-fold higher tumor-to-blood ratio, 3-fold higher tumor-to-liver ratio, 1.9-fold higher tumor-to-muscle ratio and 2.3-fold higher tumor-to-bone ratio than [89Zr]Zr-DFO-ZEGFR:2377. Biodistribution data were confirmed by whole body PET combined with magnetic resonance imaging (PET/MRI). The use of the positron emitter 66Ga for labelling of DFO-ZEGFR:2377 permits PET imaging of EGFR expression at 24 h after injection and improves imaging contrast.
Collapse
Affiliation(s)
- Maryam Oroujeni
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Tianqi Xu
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Katherine Gagnon
- GE Healthcare, GEMS PET Systems, 75015 Uppsala, Sweden;
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Jan Weis
- Department of Medical Physics, Uppsala University Hospital, 75185 Uppsala, Sweden;
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
| | - Ken G. Andersson
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; (K.G.A.); (J.L.)
| | - John Löfblom
- Department of Protein Science, KTH Royal Institute of Technology, 10691 Stockholm, Sweden; (K.G.A.); (J.L.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 75183 Uppsala, Sweden; (S.S.R.); (A.O.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden; (M.O.); (T.X.); (J.G.)
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence:
| |
Collapse
|
7
|
Chuang SC, Huang CW, Chen YT, Ma CJ, Tsai HL, Chang TK, Su WC, Hsu WH, Kuo CH, Wang JY. Effect of KRAS and NRAS mutations on the prognosis of patients with synchronous metastatic colorectal cancer presenting with liver-only and lung-only metastases. Oncol Lett 2020; 20:2119-2130. [PMID: 32782529 PMCID: PMC7400335 DOI: 10.3892/ol.2020.11795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
It has been reported that 20-25% of patients with colorectal cancer (CRC) have metastases at the time of diagnosis. Liver and lung are the most common metastatic sites. The aim of the present study was to investigate the association of KRAS and NRAS mutations with clinicopathological features and prognosis of patients with initial liver-metastasis only (LiM-only) or lung-metastasis only (LuM-only) metastatic CRC (mCRC). Overall, 166 patients with CRC with initial LiM-only (n=124) and LuM-only (n=42) were retrospectively analyzed from January 2014 to December 2017. The median follow-up time was 19.2 months (1.0-57.1 months). Patient characteristics at diagnosis were collected. Genomic DNA was isolated from frozen primary CRC tissues for targeting KRAS and NRAS. Patients with LuM-only were significantly older compared with those with LiM-only (65.5 vs. 61.5 years; P=0.05). There was no significant differences between the LiM-only and LuM-only groups in terms of sex, location of the primary tumor, serum carcinoembryonic antigen level, histological grade and RAS mutation status. KRAS mutations were detected in 43 (41.0%) patients with LiM-only and 13 (35.1%) patients with LuM-only. The overall survival time (OS) of LuM-only was more favorable compared with that of patients with LiM-only (44.5 vs. 24.7 months); however, there was no significant difference (P=0.095). The progression-free survival (PFS) and OS in the RAS wild-type group were significantly improved compared with the RAS mutant cohorts (P=0.004 and P=0.031, respectively) in the LiM-only group. In patients with stage IV CRC, those with synchronous LiM-only mCRC had a higher incidence of metastasis but a less favorable PFS and OS compared with patients with LuM-only. RAS mutation status exhibited a significant association with the survival outcome in patients with LiM-only mCRC.
Collapse
Affiliation(s)
- Shih-Chang Chuang
- Division of General and Digestive Surgery, Department of Surgery; Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ching-Wen Huang
- Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Yi-Ting Chen
- Department of Pathology; Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung 807, Taiwan, R.O.C
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Cheng-Jen Ma
- Division of General and Digestive Surgery, Department of Surgery; Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Hsiang-Lin Tsai
- Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wen-Hung Hsu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital and Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jaw-Yuan Wang
- Department of Surgery, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung 807, Taiwan, R.O.C
- Cohort Research Center, College of Medicine, Kaohsiung 807, Taiwan, R.O.C
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
8
|
Kitamura S, Maeda T, Yanagi T. Vandetanib inhibits cell growth in EGFR-expressing cutaneous squamous cell carcinoma. Biochem Biophys Res Commun 2020; 531:396-401. [PMID: 32800552 DOI: 10.1016/j.bbrc.2020.07.111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Advanced cutaneous squamous cell carcinoma (SCC) responds poorly to chemotherapy, leading to significant morbidity or death. Overexpression of epidermal growth factor receptor (EGFR) is frequently observed in advanced cutaneous SCC. Vandetanib is a multiple tyrosine kinase targeting vascular endothelial growth factor receptor-2 (VEGFR2), EGFR, and the rearranged during transfection (RET) proto-oncogene. Vandetanib has been reported to inhibit tumor growth in head and neck SCC. However, the efficacy of vandetanib against cutaneous SCC has not been thoroughly investigated. The aim of this study is to evaluate the efficacy of vandetanib against cutaneous SCC in vitro and in vivo. Vandetanib is found to inhibit the proliferation of cutaneous SCC cells as assessed by cell viability and clonogenic assay. Cell death analysis indicates that vandetanib induces cell death in SCC cells but not in normal human keratinocytes or fibroblasts. The in vivo anti-tumor effect of vandetanib is shown in xenograft tumor models using A431 SCC cells. Mechanistically, vandetanib suppresses the phosphorylation of EGFR in SCC cells. Clinically, EGFR expression levels are elevated in cutaneous SCC specimens, relative to normal epidermis. In conclusion, we identified vandetanib as a novel therapeutic option for cutaneous SCC, especially in tumors with high EGFR expression.
Collapse
Affiliation(s)
- Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.
| |
Collapse
|
9
|
Sun H, Li Y, Su Y, Wu X, Zhou X, Han J, Li J. Efficacy and safety of anti-EGFR monoclonal antibodies combined with different chemotherapy regimens in patients with RAS wild-type metastatic colorectal cancer: A meta-analysis. J Evid Based Med 2019; 12:300-312. [PMID: 31596544 DOI: 10.1111/jebm.12360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the efficacy and safety of adding anti-epidermal growth factor receptor [EGFR] MoAbs to various chemotherapy regimens in patients with RAS wild-type metastasized colorectal cancer (RAS WT metastatic colorectal cancer [mCRC]) and to identify the optimal combination regimens. METHODS We searched MEDLINE, EMBASE, and CENTRAL from the inception date to 20th May 2019. Randomized clinical trials investigating chemotherapy with or without anti-EGFR MoAbs in treatment of patients with RAS WT mCRC were included. RESULTS Eighteen studies involving 8848 participants were eligible. Comparing with oxaliplatin-based chemotherapy, adding anti-EGFR MoAbs benefited only in progression-free survival (PFS) (hazard ratio [HR] = 0.80, 95% confidence interval [CI]: 0.67 to 0.94), but not in overall survival (OS) (HR = 0.89, 95% CI: 0.78 to 1.02). Further sensitivity analysis indicated that adding anti-EGFR MoAbs to FOLFOLX regimen as a first-line treatment showed benefits in both PFS and OS (PFS: HR = 0.74, 95% CI: 0.64 to 0.84; OS: HR = 0.83, 95% CI: 0.73 to 0.95, respectively). Comparing with irinotecan-based chemotherapy or best supportive care, adding anti-EGFR MoAbs revealed an improvement in both PFS (HR = 0.77, 95% CI: 0.69 to 0.86; HR = 0.46, 95% CI: 0.40 to 0.54, respectively) and OS (HR = 0.89, 95% CI: 0.80 to 0.98; HR = 0.65, 95% CI: 0.54 to 0.78, respectively). CONCLUSION Anti-EGFR MoAbs as a monotherapy or in combination with either irinotecan-based chemotherapy or FOLFOX in patients with RAS wild-type mCRC have better response and survival outcome, whereas OS does not benefit from adding anti-EGFR MoAbs to another oxaliplatin-based regimen. Anti-EGFR MoAbs have increased the risk of adverse effects than chemotherapy alone. More high-quality randomized controlled trials for RAS wild type are necessary.
Collapse
Affiliation(s)
- Huan Sun
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yonghong Li
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yana Su
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyu Wu
- Chengdu Fifth People's Hospital, Chengdu, Sichuan, China
| | - Xiaoqin Zhou
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Han
- School of Life Science and Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Li
- Department of Evidence-Based Medicine and Clinical Epidemiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Ma CJ, Huang CW, Chang TK, Tsai HL, Su WC, Yeh YS, Chen PJ, Wang JY. Oncologic Outcomes in Metastatic Colorectal Cancer with Regorafenib with FOLFIRI as a Third- or Fourth-Line Setting. Transl Oncol 2019; 12:502-512. [PMID: 30594039 PMCID: PMC6307535 DOI: 10.1016/j.tranon.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To evaluate the efficacy and toxicities of regorafenib plus irinotecan, dose-escalated on the basis of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) genotyping, in previously heavily treated metastatic colorectal cancer (mCRC) and the prognostic values of EGFR expression, KRAS mutations, and tumor sidedness. METHODS Forty-one patients with mCRC with disease progression after treatment with fluoropyrimidines, oxaliplatin, irinotecan, anti-VEGF, and anti-EGFR MoAbs were subjected to UGT1A1 genotyping and received regorafenib combined with FOLFIRI with dose-escalated irinotecan. RESULTS The median follow-up period was 10.0 months (1.3-23.5 months). The overall disease control rate was 58.5%, whereas the median progression-free survival (PFS) and overall survival (OS) were 6.0 months and 12.0 months, respectively. KRAS mutations were significantly associated with positive EGFR expression (P = .026). KRAS mutations significantly correlated with a shorter OS than KRAS wild-type (6.0 vs. 14.4 months, P = .014) but had no significant association with PFS. Positive EGFR expression had an inverse correlation with PFS (2.5 vs. 14.0 months, P = .039) and OS (9.6 vs. 19.7 months, P = .044). Moreover, left-sided tumors associated with superior PFS (2.0 vs. 7.0 months, P < .0001) and OS (4.0 vs. 13.0 months, P < .0001), and tumor sidedness was an independent prognostic factor by the multivariate analysis. CONCLUSION Regorafenib and FOLFIRI concomitant therapy with dose-escalated irinotecan seemed to be potentially practicable with satisfactory oncological results. KRAS mutations and EGFR expression might be predictors of poor oncological outcomes; however, left-sided mCRCs would be more beneficial for concomitant regorafenib and FOLFIRI therapy.
Collapse
Affiliation(s)
- Cheng-Jen Ma
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Digestive and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Colorectal Surgery, Department of Surgery, Kaohsiung Municipal Hsiaokang Hospital, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Biomarkers and Biotech Drugs, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Bhullar DS, Barriuso J, Mullamitha S, Saunders MP, O'Dwyer ST, Aziz O. Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine 2019; 40:363-374. [PMID: 30733075 PMCID: PMC6413540 DOI: 10.1016/j.ebiom.2019.01.050] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/13/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Background The use of biomarkers to target anti-EGFR treatments for metastatic colorectal cancer (CRC) is well-established, requiring molecular analysis of primary or metastatic biopsies. We aim to review concordance between primary CRC and its metastatic sites. Methods A systematic review and meta-analysis of all published studies (1991–2018) reporting on biomarker concordance between primary CRC and its metastatic site(s) was undertaken according to PRISMA guidelines using several medical databases. Studies without matched samples or using peripheral blood for biomarker analysis were excluded. Findings 61 studies including 3565 patient samples were included. Median biomarker concordance for KRAS (n = 50) was 93.7% [[67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], NRAS (n = 11) was 100% [[90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], BRAF (n = 22) was 99.4% [[80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]], and PIK3CA (n = 17) was 93% [[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100]]. Meta-analytic pooled discordance was 8% for KRAS (95% CI = 5–10%), 8% for BRAF (95% CI = 5–10%), 7% for PIK3CA (95% CI = 2–13%), and 28% overall (95% CI = 14–44%). The liver was the most commonly biopsied metastatic site (n = 2276), followed by lung (n = 438), lymph nodes (n = 1123), and peritoneum (n = 132). Median absolute concordance in multiple biomarkers was 81% (5–95%). Interpretation Metastatic CRC demonstrates high concordance across multiple biomarkers, suggesting that molecular testing of either the primary or liver and lung metastasis is adequate. More research on colorectal peritoneal metastases is required.
Collapse
Affiliation(s)
- D S Bhullar
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - J Barriuso
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - S Mullamitha
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - M P Saunders
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - S T O'Dwyer
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - O Aziz
- Colorectal & Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Science, Faculty of Biology, Medicine and Health, University of Manchester, UK.
| |
Collapse
|
12
|
Preclinical Evaluation of [ 68Ga]Ga-DFO-ZEGFR:2377: A Promising Affibody-Based Probe for Noninvasive PET Imaging of EGFR Expression in Tumors. Cells 2018; 7:cells7090141. [PMID: 30231504 PMCID: PMC6162391 DOI: 10.3390/cells7090141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/10/2023] Open
Abstract
Radionuclide imaging of epidermal growth factor receptor (EGFR) expression in tumors may stratify patients for EGFR-targeting therapies and predict response or resistance to certain treatments. Affibody molecules, which are nonimmunoglobulin scaffold proteins, have a high potential as probes for molecular imaging. In this study, maleimido derivative of desferrioxamine B (DFO) chelator was site-specifically coupled to the C-terminal cysteine of the anti-EGFR affibody molecule ZEGFR:2377, and the DFO-ZEGFR:2377 conjugate was labeled with the generator-produced positron-emitting radionuclide 68Ga. Stability, specificity of binding to EGFR-expressing cells, and processing of [68Ga]Ga-DFO-ZEGFR:2377 by cancer cells after binding were evaluated in vitro. In vivo studies were performed in nude mice bearing human EGFR-expressing A431 epidermoid cancer xenografts. The biodistribution of [68Ga]Ga-DFO-ZEGFR:2377 was directly compared with the biodistribution of [89Zr]Zr-DFO-ZEGFR:2377. DFO-ZEGFR:2377 was efficiently (isolated yield of 73 ± 3%) and stably labeled with 68Ga. Binding of [68Ga]Ga-DFO-ZEGFR:2377 to EGFR-expressing cells in vitro was receptor-specific and proportional to the EGFR expression level. In vivo saturation experiment demonstrated EGFR-specific accumulation of [68Ga]Ga-DFO-ZEGFR:2377 in A431 xenografts. Compared to [89Zr]Zr-DFO-ZEGFR:2377, [68Ga]Ga-DFO-ZEGFR:2377 demonstrated significantly (p < 0.05) higher uptake in tumors and lower uptake in spleen and bones. This resulted in significantly higher tumor-to-organ ratios for [68Ga]Ga-DFO-ZEGFR:2377. In conclusion, [68Ga]Ga-DFO-ZEGFR:2377 is a promising probe for imaging of EGFR expression.
Collapse
|
13
|
Influence of composition of cysteine-containing peptide-based chelators on biodistribution of 99mTc-labeled anti-EGFR affibody molecules. Amino Acids 2018; 50:981-994. [PMID: 29728916 PMCID: PMC6060960 DOI: 10.1007/s00726-018-2571-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/19/2018] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in a number of cancers and is the molecular target for several anti-cancer therapeutics. Radionuclide molecular imaging of EGFR expression should enable personalization of anti-cancer treatment. Affibody molecule is a promising type of high-affinity imaging probes based on a non-immunoglobulin scaffold. A series of derivatives of the anti-EGFR affibody molecule ZEGFR:2377, having peptide-based cysteine-containing chelators for conjugation of 99mTc, was designed and evaluated. It was found that glutamate-containing chelators Gly-Gly-Glu-Cys (GGEC), Gly-Glu-Glu-Cys (GEEC) and Glu-Glu-Glu-Cys (EEEC) provide the best labeling stability. The glutamate containing conjugates bound to EGFR-expressing cells specifically and with high affinity. Specific targeting of EGFR-expressing xenografts in mice was demonstrated. The number of glutamate residues in the chelator had strong influence on biodistribution of radiolabeled affibody molecules. Increase of glutamate content was associated with lower uptake in normal tissues. The 99mTc-labeled variant containing the EEEC chelator provided the highest tumor-to-organ ratios. In conclusion, optimizing the composition of peptide-based chelators enhances contrast of imaging of EGFR-expression using affibody molecules.
Collapse
|
14
|
Tang L, Peng C, Tang B, Li Z, Wang X, Li J, Gao F, Huang L, Xu D, Zhang P, Zhuang R, Su X, Chen X, Zhang X. Radioiodinated Small-Molecule Tyrosine Kinase Inhibitor for HER2-Selective SPECT Imaging. J Nucl Med 2018; 59:1386-1391. [PMID: 29653973 DOI: 10.2967/jnumed.117.205088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
One of the most clinically relevant molecular aberrations in breast cancer is overexpression of human epidermal growth factor receptor type 2 (HER2). We aimed to develop a radiolabeled tyrosine kinase inhibitor for HER2-targeted breast cancer imaging. In this study, a radioiodinated analog (125/131I-IBA-CP) of the HER2-selective inhibitor CP724,714 was prepared and evaluated in HER2-positive or -negative subcutaneous human breast cancer xenografts. Methods: The CP724,714 analog IBA-CP was synthesized and assayed for its inhibitory activities against HER2 and 6 other tyrosine kinases. 125/131I-IBA-CP was prepared using a copper-mediated radioiodination method with enhanced labeling yield and molar activity. In vitro biologic activity, including specific and nonspecific binding of 131I-IBA-CP to its HER2 kinase target, was assessed in different cell lines. In vivo small-animal 125I-IBA-CP SPECT imaging and biodistribution studies were conducted on mice bearing HER2-positive, HER2-negative, or epidermal growth factor receptor (EGFR)-positive tumors. Nonradioactive IBA-CP and the EGFR inhibitor erlotinib were used as blocking agents to investigate the binding specificity and selectivity of 125/131I-IBA-CP toward HER2 in vitro and in vivo. Additionally, 125/131I-ICP was prepared by direct radioiodination of CP724,714 for comparison with 125/131I-IBA-CP. Results: IBA-CP displayed superior in vitro inhibitory activity (half-maximal inhibitory concentration, 16 nM) and selectivity for HER2 over 6 other cancer-related tyrosine kinases. 125/131I-IBA-CP was prepared in a typical radiochemical yield of about 65% (decay-corrected), radiochemical purity of more than 98%, and molar activity of 42 GBq/μmol at the end of synthesis. SPECT imaging revealed significantly higher uptake of 125I-IBA-CP than of 125I-ICP in the HER2-positive MDA-MB-453 tumors. Uptake in the HER2-negative MCF-7 tumors was much lower. Binding of 125I-IBA-CP in the MDA-MB-453 tumors was blocked by coinjection with an excess amount of IBA-CP, but not by erlotinib. Conclusion: The radiolabeled HER2-selective inhibitor 125/131I-IBA-CP is a promising probe for in vivo detection of HER2-positive tumors.
Collapse
Affiliation(s)
- Longguang Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland
| | - Chenyu Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Bowen Tang
- School of Pharmaceutical Science, Xiamen University, Xiamen, China; and
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xiangyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jindian Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Fei Gao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lumei Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Duo Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Pu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhui Su
- Zhongshan Hospital, affiliated with Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, Maryland
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Xu S, Yu Y, Rong J, Hu D, Zhang L, Fu S, Yang H, Fan J, Yang L, Wu J. Expression of BRCA1 and ERCC1 as predictive clinical outcome after radiochemotherapy in patients with locoregionally moderate-advanced nasopharyngeal carcinoma. Oncotarget 2018; 8:31355-31367. [PMID: 28404895 PMCID: PMC5458213 DOI: 10.18632/oncotarget.15565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/26/2017] [Indexed: 01/18/2023] Open
Abstract
In this study, we examined ERCC1 and BRCA1 expression and clinical outcome of 201 phase-III-IV nasopharyngeal carcinoma patients who were treated with cisplatin-based induced chemotherapy and concurrent radiochemotherapy. The chemotherapy response rate of BRCA1– and BRCA1+ patients was 73.6% and 55.8%, respectively. In addition, the chemotherapy response rate of ERCC1– and ERCC1+ patients was 76.9% and 56.6%, respectively. In patients’ tissues, ERCC1 expression associated with BRCA1 expression. The chemotherapy response rate of BRCA1– and ERCC1– patients was (82.1%) and higher than that of other groups (range 52.4-73.1%). The radiochemotherapy response rate of BRCA1– and ERCC1– patients was higher than that BRCA1+ and ERCC1+ patients. BRCA1– and ERCC1– patients showed higher 3-year overall survival, failure-free survival, locoregional failure-free survival and distant failure-free survival compared to BRCA1+ or ERCC1+ patients. Moreover, the 3-year overall survival, failure-free survival and distant failure-free survival of the BRCA1– and ERCC1– group were higher than that of other groups. TNM stage, ERCC1 expression and the correlation between BRCA1 and ERCC1 expression seemed significant overall survival factors. In conclusion, in nasopharyngeal carcinoma patients, ERCC1 and BRCA1 may be a predictor of response to platinum-based chemotherapy and concurrent radiochemotherapy.
Collapse
Affiliation(s)
- Shan Xu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Yanxin Yu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jinfeng Rong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Defeng Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - LiJun Zhang
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Juan Fan
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Linglin Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| | - Jingbo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, P. R. China
| |
Collapse
|
16
|
Khelwatty S, Essapen S, Bagwan I, Green M, Seddon A, Modjtahedi H. The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer. Oncotarget 2018; 8:7666-7677. [PMID: 28032593 PMCID: PMC5352351 DOI: 10.18632/oncotarget.13835] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023] Open
Abstract
Anti-EGFR mAbs cetuximab and panitumumab are routinely used for the treatment of patients with KRAS-wild type metastatic colorectal cancer (mCRC). However, in some patients their efficacy remains modest and with no clear association between the EGFR protein expression determined by PharmDx™ kit, and response to anti-EGFR therapies. Therefore, we investigated the relative expression and predictive value of wild-type EGFR (wtEGFR), mutated EGFRvIII and EGFR ligand proteins in mCRC patients treated with cetuximab. The expression levels of wtEGFR, EGFRvIII, and EGFR ligand were determined by immunohistochemistry (IHC) in 60 tumour specimens using specific antibodies. Sections were scored according to the percentage of positive tumour cells, intensity and cellular location of staining, and these were associated with response, overall survival (OS) and progression-free survival (PFS). At cut-off value > 5%, wtEGFR, and EGFRvIII were present in 44%, and 41%, betacellulin (BTC) in 72%, followed by epigen (67%), TGFα (58%), amphiregulin (34%), EGF (31%) of the cases, respectively and 96% of the wtEGFR positive cases had co-expression of at least one ligand. We found a significant association between the expression of wtEGFR and poor response to cetuximab. In addition, the co-expression of wtEGFR with one ligand at a cut-off value of > 5% and > 10% was associated with worse response to cetuximab (P = 0.021, and P = 0.005 respectively). We found a 3-fold and 5-fold increased risk of shorter OS with expression of BTC and epigen. Interestingly, the expression of wtEGFR and its co-expression with one or two ligands was associated with shorter PFS but not with OS. The relative expression of wtEGFR and its competing ligands, which is the target for therapeutic interventions with anti-EGFR antibodies, could serve as a more reliable predictive biomarker of response to therapy with anti-EGFR mAbs in mCRC patients and warrants further investigation in large prospective studies.
Collapse
Affiliation(s)
- Said Khelwatty
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston UK
| | - Sharadah Essapen
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston UK.,St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| | - Izhar Bagwan
- Department of Histopathology, Royal Surrey County Hospital, Guildford, UK
| | - Margaret Green
- Department of Histopathology, Royal Surrey County Hospital, Guildford, UK
| | - Alan Seddon
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston UK
| | - Helmout Modjtahedi
- School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston UK
| |
Collapse
|
17
|
Shin HK, Kim MS, Lee JK, Lee SS, Ji YH, Kim JI, Jeong JH. Combination Effect of Cetuximab with Radiation in Colorectal Cancer Cells. TUMORI JOURNAL 2018; 96:713-20. [DOI: 10.1177/030089161009600513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aims and background Colorectal cancer (CRC) is one of the commonest malignant disorders and frequently associated with high expression of epidermal growth factor receptor (EGFR), resulting in advanced disease and a poor prognosis. In this study, we investigated the radiosensitizing effects of the selective EGFR inhibitor cetuximab in human CRC cell lines. Methods Four human CRC cell lines, CaCo-2, HCT-8, LoVo, and WiDr, were treated with cetuximab and/or radiation. The effects on cell proliferation and viability were measured by MTT and annexin-V staining, and clonogenic survival assay. The in vivo effect on the growth of CRC xenografts was assessed in athymic nude mice. Results Cetuximab in combination with radiation significantly inhibited the in vitro proliferation of CRC cells, with a concomitant increase in cell death, except in WiDr cells. Clonogenic survival assay confirmed that cetuximab worked as a radiosensitizer in three cetuximab-sensitivie CRC cells. However, no correlations were found between the radiosensitivity and EGFR expression level or mutation status of EGFR signaling molecules. In nude mice bearing CRC cell xenografts, cetuximab plus radiation significantly inhibited the tumor growth over either agent alone. Interestingly, the WiDr xenograft was also sensitive to cetuximab and/or radiation in vivo, suggesting host-mediated effects of cetuximab. Conclusions Cetuximab enhanced the radiosensitivity of CRC cells in vitro and efficiently inhibited xenograft tumor growth. This study provided a rationale for the clinical application of the selective EGFR inhibitor cetuximab in combination with radiation in CRC. Free full text available at www.tumorionline.it
Collapse
Affiliation(s)
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Institute of Radiological and Medical Sciences, Seoul
| | - Seung-Sook Lee
- Department of Experimental Pathology, Korea Institute of Radiological and Medical Sciences, Seoul
| | | | - Jong-Il Kim
- Department of Food and Microbial Technology, Seoul Women's University, Seoul, Korea
| | | |
Collapse
|
18
|
Pedersini R, Vattemi E, Lusso MR, Mazzoleni G, Ebner H, Graiff C. Erlotinib in Advanced Well-Differentiated Thymic Carcinoma with Overexpression of EGFR: A Case Report. TUMORI JOURNAL 2018; 94:849-52. [DOI: 10.1177/030089160809400613] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims and Background Advanced chemorefractory epithelial thymic tumors are still a challenge in clinical oncology. A therapeutic approach targeting a key molecular pathway could be the ideal solution in a neoplasm that can overexpress epidermal growth factor receptor (EGFR) in the epithelial component. Methods A patient with metastatic heavily pretreated thymic carcinoma was evaluated for EGFR expression in the primary tumor. Results Strong EGFR expression was revealed by immunohistochemistry. The patient received erlotinib therapy but had obtained no response after four months of treatment. Conclusion This preliminary experience suggests that erlotinib may not be a useful therapeutic choice in advanced pretreated thymic carcinomas.
Collapse
Affiliation(s)
| | | | | | | | - Heinrich Ebner
- Division of Vascular and Thoracic Surgery, Central Hospital, Bolzano, Italy
| | - Claudio Graiff
- Division of Medical Oncology, Central Hospital, Bolzano, Italy
| |
Collapse
|
19
|
Dayot S, Speisky D, Couvelard A, Bourgoin P, Gratio V, Cros J, Rebours V, Sauvanet A, Bedossa P, Paradis V, Ruszniewski P, Couvineau A, Voisin T. In vitro, in vivo and ex vivo demonstration of the antitumoral role of hypocretin-1/orexin-A and almorexant in pancreatic ductal adenocarcinoma. Oncotarget 2018; 9:6952-6967. [PMID: 29467942 PMCID: PMC5805528 DOI: 10.18632/oncotarget.24084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/02/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is still the poorest prognostic tumor of the digestive system. We investigated the antitumoral role of orexin-A and almorexant in PDAC. We analyzed the orexin receptor type 1 (OX1R) expression by immunohistochemistry in human normal pancreas, PDAC and its precursor dysplastic intraepithelial lesions. We used PDAC-derived cell lines and fresh tissue slices to study the apoptotic role of hypocretin-1/orexin-A and almorexant in vitro and ex vivo. We analyzed in vivo the hypocretin-1/orexin-A and almorexant effect on tumor growth in mice xenografted with PDAC cell lines expressing, or not, OX1R. Ninety-six percent of PDAC expressed OX1R, while adjacent normal exocrine pancreas did not. OX1R was expressed in pre-cancerous lesions. In vitro, under hypocretin-1/orexin-A and almorexant, the OX1R-positive AsPC-1 cells underwent apoptosis, abolished by the tyrosine phosphatase SHP2 inhibitor, NSC-87877, whereas the OX1R-negative HPAF-II cell line did not. These effects were mediated by phosphorylation of OX1R and recruitment of SHP2. Ex vivo, caspase-3 positive tumor cells were significantly higher in fresh tumour slices treated 48h with hypocretin-1/orexin-A, as compared to control, whereas cellular proliferation, assessed by Ki-67 index, was not modified. In vivo, when AsPC-1 cells or patient-derived cells were xenografted in nude mice, hypocretin-1/orexin-A or almorexant, administrated both starting the day of cell line inoculation or after tumoral development, strongly slowed tumor growth. Hypocretin-1/orexin-A and almorexant induce, through OX1R, the inhibition of PDAC cellular growth by apoptosis. Hypocretins/orexins and almorexant might be powerful candidates for the treatment of PDAC.
Collapse
Affiliation(s)
- Stéphanie Dayot
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| | - Daniela Speisky
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| | - Anne Couvelard
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Département de Pathologie Beaujon-Bichat, AP-HP, Hôpital Bichat, Huchard, 75018 Paris, France
| | - Pierre Bourgoin
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| | - Valérie Gratio
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| | - Jérôme Cros
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Département de Pathologie Beaujon-Bichat, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Vinciane Rebours
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Service de Pancréatologie-Gastroentérologie PMAD, Pôle des Maladies de l’Appareil Digestif, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Alain Sauvanet
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Service de Pancréatologie-Gastroentérologie PMAD, Pôle des Maladies de l’Appareil Digestif, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Pierre Bedossa
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Département de Pathologie Beaujon-Bichat, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Valérie Paradis
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Département de Pathologie Beaujon-Bichat, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Philippe Ruszniewski
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
- Service de Pancréatologie-Gastroentérologie PMAD, Pôle des Maladies de l’Appareil Digestif, AP-HP, Hôpital Beaujon, 92118 Clichy, France
| | - Alain Couvineau
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| | - Thierry Voisin
- INSERM UMR1149 Centre de Recherche sur l’Inflammation (CRI), Université Paris-Diderot, Sorbonne Paris Cité, DHU UNITY, Faculté de Médecine Xavier Bichat, Huchard, 75018 Paris, France
| |
Collapse
|
20
|
Huang CW, Chen YT, Tsai HL, Yeh YS, Su WC, Ma CJ, Tsai TN, Wang JY. EGFR expression in patients with stage III colorectal cancer after adjuvant chemotherapy and on cancer cell function. Oncotarget 2017; 8:114663-114676. [PMID: 29383110 PMCID: PMC5777722 DOI: 10.18632/oncotarget.23072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway plays a crucial role in the carcinogenesis, invasion and metastasis of colorectal cancer (CRC). However, its role in the prognosis and prediction of relapse in patients with stage III CRC after adjuvant chemotherapy remains controversial. In the present study, the clinicopathological features of 173 patients with stage III CRC who underwent radical resection and adjuvant chemotherapy with the fluoropyrimidine/folinic acid, and oxaliplatin (FOLFOX) regimen, and their prognostic values of EGFR expression were retrospectively analyzed. By conducting an in vitro CRC cell line study through the knockdown of EGFR expression, we analyzed cell proliferation, colony formation and migration. Positive EGFR expression and an abnormal postoperative serum carcinoembryonic antigen (CEA) level were found to be significant independent negative predictive factors for postoperative relapse. Furthermore, positive EGFR expression was a significant independent negative prognostic factor for disease-free survival (DFS) and overall survival (OS). Additionally, an in vitro cell line study showed that the knockdown of EGFR expression significantly reduced CRC cell proliferation, colony formation and migration. The results of in vitro and in vivo experiments demonstrated that EGFR expression had a prognostic value for OS and DFS, as well as predictive roles for postoperative relapse, in patients with stage III CRC. By analyzing both EGFR expression and the postoperative CEA, the patients with stage III CRC who were at a high risk of postoperative relapse, or mortality following adjuvant chemotherapy could be identified. In short, CRC cells with EGFR expression would exhibit a highly malignant behavior.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Jen Ma
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsen-Ni Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Biomarkers and Biotech Drugs, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Natural Products and Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Tsongalis GJ, Coleman WB. Somatic Mutation Analysis of Human Cancers: Challenges in Clinical Practice. J Clin Pharmacol 2017; 57 Suppl 10:S60-S66. [PMID: 28921651 DOI: 10.1002/jcph.934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/02/2017] [Indexed: 12/15/2022]
Abstract
Somatic mutation analysis of human cancers has become the standard of practice. Whether screening for single gene variants or sequencing hundreds of cancer-related genes, this genomic information is the basis for precision medicine initiatives in oncology. Genomic profiling results in information that allows oncologists to make a more educated selection of appropriate therapeutic strategies that more often combine traditional cytotoxic chemotherapy and radiation with novel targeted therapies. Here we discuss the nuances of implementing somatic mutation testing in a clinical setting.
Collapse
Affiliation(s)
- Gregory J Tsongalis
- Laboratory for Clinical Genomics and Advanced Technology, Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, School of Medicine at Dartmouth, Hanover, NH, USA.,Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - William B Coleman
- Department of Pathology and Laboratory Medicine, UNC Program in Translational Medicine, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Williet N, Petcu CA, Rinaldi L, Cottier M, Del Tedesco E, Clavel L, Dumas O, Jarlot C, Bouarioua N, Roblin X, Peoc'h M, Phelip JM. The level of epidermal growth factor receptors expression is correlated with the advancement of colorectal adenoma: validation of a surface biomarker. Oncotarget 2017; 8:16507-16517. [PMID: 28157706 PMCID: PMC5369981 DOI: 10.18632/oncotarget.14961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/08/2017] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Data about the expression of Epidermal Growth Factor Receptors (EGFRs) in colorectal adenomas remain scarce. RESULTS 101 patients were enrolled including 53 controls. All adenomas (n = 38) and CRC (n = 5) were EGFR positive. Hyperplastic polyps (HP) (n = 8) and control colons (n = 53) were EGFR negative in half of cases (p < 0.0001). A well significant gradient of increased EGFR expression was observed between adjacent mucosa, hyperplastic lesions, low grade dysplasia (LGD) (n = 30), high grade dysplasia (HGD) adenomas (n = 9) and cancers (p < 0.0001). EGFR overexpression was reported in 100% of cancers, 77.8% of HGD, and 10% of LGD adenomas. By multivariate analysis in adenomas, associated factors with EGFR overexpression were HGD and tubulo-villous feature. MATERIALS AND METHODS All patients undergoing colonoscopy in the university center of Saint-Etienne were eligible to the study from December 2015 to March 2016. In patients with colorectal neoplasia (lesions group), biopsies were performed on the lesion before its resection, and on the adjacent and distal colon mucosa. In control group, biopsies were performed in the right and left side colon. The EGFR expression was assessed by immunohistochemical scores (Goldstein grade, intensity of staining, composite score), using a primary mouse monoclonal antibody (EGFR, clone 113, Novocastra). Outcomes were compared using Kruskal-Wallis and/or Mann-Whitney-U tests, appropriately. The associated clinical, endoscopic and histological factors with EGFR overexpression (composite score ≥ 6) were assessed for adenomas by logistic regression. CONCLUSIONS EGFR are early involved in colorectal carcinogenesis, and their expression is strongly correlated to the neoplasia stage, leading to validate EGFR as an interesting surface biomarker of adenomas.
Collapse
Affiliation(s)
- Nicolas Williet
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | | | - Leslie Rinaldi
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Michèle Cottier
- Inserm U1059, Saint-Etienne, France.,Laboratory of Cytopathology, University Hospital of Saint-Etienne, France
| | - Emilie Del Tedesco
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Léa Clavel
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Olivier Dumas
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Camille Jarlot
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Nadia Bouarioua
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Xavier Roblin
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| | - Michel Peoc'h
- Department of Pathology, University Hospital of Saint-Etienne, France
| | - Jean-Marc Phelip
- Department of Hepato-Gastroenterology, University Hospital of Saint-Etienne, France
| |
Collapse
|
23
|
Abstract
Fluorodeoxyglucose PET and PET/computed tomography have gained acceptance in the evaluation of disease. Nontargeted tracers have been used in the diagnosis of certain malignancies but may not be sensitive or specific enough to become standard of care. Newer targeted PET tracers have been developed that target disease-specific biomarkers, and allow accurate and sensitive detection of disease. Combined with the capabilities of MR imaging to evaluate soft tissue, precision imaging with PET/MR imaging can change the diagnosis. This article discusses specific areas in which precision imaging with nontargeted and targeted diagnostic agents can change the diagnosis and treatment.
Collapse
Affiliation(s)
- Eugene Huo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Laura Eisenmenger
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA; Department of Radiology, San Francisco VA Health Care System, 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
24
|
Kim JE, Kim KK, Kim SY, Lee J, Park SH, Park JO, Park YS, Lim HY, Kang WK, Kim ST. MAP2K1 Mutation in Colorectal Cancer Patients: Therapeutic Challenge Using Patient-Derived Tumor Cell Lines. J Cancer 2017; 8:2263-2268. [PMID: 28819429 PMCID: PMC5560144 DOI: 10.7150/jca.19582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND: The MAP2K1 K57T mutation is known to be a potential mechanism of primary and secondary resistance to EGFR inhibitors in metastatic colorectal cancer (CRC) and has also been reported to promote resistance to BRAF and MEK inhibitors. It is important to overcome therapeutic resistance to EGFR inhibitors to improve the treatment outcomes of metastatic CRC. METHODS: We established patient-derived tumor cells (PDCs) from metastatic lesions that newly appeared during treatment with a BRAF inhibitor (LGX-818) plus an EGFR inhibitor (cetuximab) in a patient with BRAF-mutant CRC. To investigate therapeutic options to overcome acquired resistance due to MAP2K1 mutation in BRAF-mutant CRC, we performed cell viability assays using the PDCs. RESULTS: We tested whether the PDCs were resistant to an EGFR inhibitor (cetuximab) and a BRAF inhibitor (sorafenib) as these cells were established at the time of resistance to the EGFR plus BRAF inhibitors. Moreover, the anti-tumor effect of AZD6244 (MEK inhibitor) was evaluated because PDCs harbored a MAP2K1 mutation at the time of resistance to the EGFR plus BRAF inhibitors. MTT proliferation assays showed that monotherapy with cetuximab, sorafenib, or AZD6244 did not suppress cell viability. We next tested viability of the PDCs to combination treatment with cetuximab plus AZD6244 and sorafenib plus AZD6244. Proliferation of PDCs was significantly inhibited by sorafenib and AZD6244, but not by cetuximab plus AZD6244. Investigation of the combined effect of sorafenib and AZD6244 using the calculated combination index (CI) showed synergistic effects of sorafenib and AZD6244 in combination therapy applied to PDCs with the MAP2K1 K57T mutation. CONCLUSION: Our results suggest that combination treatment with BRAF and MEK inhibitors might be a novel treatment strategy for MAP2K1 K57T-mutant CRC. This finding will be helpful to guide treatment of patients with CRC that is resistant to EGFR inhibitors.
Collapse
Affiliation(s)
- J E Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K K Kim
- Department of Molecular Cell Biology, Institute of Basic Science, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | - S Y Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S H Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J O Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Y S Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - H Y Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - W K Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S T Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Chan DLH, Segelov E, Wong RS, Smith A, Herbertson RA, Li BT, Tebbutt N, Price T, Pavlakis N. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2017. [PMID: 28654140 DOI: 10.1002/14651858.cd007047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors prevent cell growth and have shown benefit in the treatment of metastatic colorectal cancer, whether used as single agents or in combination with chemotherapy. Clear benefit has been shown in trials of EGFR monoclonal antibodies (EGFR MAb) but not EGFR tyrosine kinase inhibitors (EGFR TKI). However, there is ongoing debate as to which patient populations gain maximum benefit from EGFR inhibition and where they should be used in the metastatic colorectal cancer treatment paradigm to maximise efficacy and minimise toxicity. OBJECTIVES To determine the efficacy, safety profile, and potential harms of EGFR inhibitors in the treatment of people with metastatic colorectal cancer when given alone, in combination with chemotherapy, or with other biological agents.The primary outcome of interest was progression-free survival; secondary outcomes included overall survival, tumour response rate, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Library, Issue 9, 2016; Ovid MEDLINE (from 1950); and Ovid Embase (from 1974) on 9 September 2016; and ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) on 14 March 2017. We also searched proceedings from the major oncology conferences ESMO, ASCO, and ASCO GI from 2012 to December 2016. We further scanned reference lists from eligible publications and contacted corresponding authors for trials for further information where needed. SELECTION CRITERIA We included randomised controlled trials on participants with metastatic colorectal cancer comparing: 1) the combination of EGFR MAb and 'standard therapy' (whether chemotherapy or best supportive care) to standard therapy alone, 2) the combination of EGFR TKI and standard therapy to standard therapy alone, 3) the combination of EGFR inhibitor (whether MAb or TKI) and standard therapy to another EGFR inhibitor (or the same inhibitor with a different dosing regimen) and standard therapy, or 4) the combination of EGFR inhibitor (whether MAb or TKI), anti-angiogenic therapy, and standard therapy to anti-angiogenic therapy and standard therapy alone. DATA COLLECTION AND ANALYSIS We used standard methodological procedures defined by Cochrane. Summary statistics for the endpoints used hazard ratios (HR) with 95% confidence intervals (CI) for overall survival and progression-free survival, and odds ratios (OR) for response rate (RR) and toxicity. Subgroup analyses were performed by Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral (V-Ras) oncogene homolog (NRAS) status - firstly by status of KRAS exon 2 testing (mutant or wild type) and also by status of extended KRAS/NRAS testing (any mutation present or wild type). MAIN RESULTS We identified 33 randomised controlled trials for analysis (15,025 participants), including trials of both EGFR MAb and EGFR TKI. Looking across studies, significant risk of bias was present, particularly with regard to the risk of selection bias (15/33 unclear risk, 1/33 high risk), performance bias (9/33 unclear risk, 9/33 high risk), and detection bias (7/33 unclear risk, 11/33 high risk).The addition of EGFR MAb to standard therapy in the KRAS exon 2 wild-type population improves progression-free survival (HR 0.70, 95% CI 0.60 to 0.82; high-quality evidence), overall survival (HR 0.88, 95% CI 0.80 to 0.98; high-quality evidence), and response rate (OR 2.41, 95% CI 1.70 to 3.41; high-quality evidence). We noted evidence of significant statistical heterogeneity in all three of these analyses (progression-free survival: I2 = 76%; overall survival: I2 = 40%; and response rate: I2 = 77%), likely due to pooling of studies investigating EGFR MAb use in different lines of therapy. Rates of overall grade 3 to 4 toxicity, diarrhoea, and rash were increased (moderate-quality evidence for all three outcomes), but there was no evidence for increased rates of neutropenia.For the extended RAS wild-type population (no mutations in KRAS or NRAS), addition of EGFR MAb improved progression-free survival (HR 0.60, 95% CI 0.48 to 0.75; moderate-quality evidence) and overall survival (HR 0.77, 95% CI 0.67 to 0.88; high-quality evidence). Response rate was also improved (OR 4.28, 95% CI 2.61 to 7.03; moderate-quality evidence). We noted significant statistical heterogeneity in the progression-free survival analysis (I2 = 61%), likely due to the pooling of studies combining EGFR MAb with chemotherapy with monotherapy studies.We observed no evidence of a statistically significant difference when EGFR MAb was compared to bevacizumab, in progression-free survival (HR 1.02, 95% CI 0.93 to 1.12; high quality evidence) or overall survival (HR 0.84, 95% CI 0.70 to 1.01; moderate-quality evidence). We noted significant statistical heterogeneity in the overall survival analysis (I2 = 51%), likely due to the pooling of first-line and second-line studies.The addition of EGFR TKI to standard therapy in molecularly unselected participants did not show benefit in limited data sets (meta-analysis not performed). The addition of EGFR MAb to bevacizumab plus chemotherapy in people with KRAS exon 2 wild-type metastatic colorectal cancer did not improve progression-free survival (HR 1.04, 95% CI 0.83 to 1.29; very low quality evidence), overall survival (HR 1.00, 95% CI 0.69 to 1.47; low-quality evidence), or response rate (OR 1.20, 95% CI 0.67 to 2.12; very low-quality evidence) but increased toxicity (OR 2.57, 95% CI 1.45 to 4.57; low-quality evidence). We noted significant between-study heterogeneity in most analyses.Scant information on quality of life was reported in the identified studies. AUTHORS' CONCLUSIONS The addition of EGFR MAb to either chemotherapy or best supportive care improves progression-free survival (moderate- to high-quality evidence), overall survival (high-quality evidence), and tumour response rate (moderate- to high-quality evidence), but may increase toxicity in people with KRAS exon 2 wild-type or extended RAS wild-type metastatic colorectal cancer (moderate-quality evidence). The addition of EGFR TKI to standard therapy does not improve clinical outcomes. EGFR MAb combined with bevacizumab is of no clinical value (very low-quality evidence). Future studies should focus on optimal sequencing and predictive biomarkers and collect quality of life data.
Collapse
Affiliation(s)
- David Lok Hang Chan
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, New South Wales, Australia, 2065
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chan DLH, Segelov E, Wong RSH, Smith A, Herbertson RA, Li BT, Tebbutt N, Price T, Pavlakis N, Cochrane Colorectal Cancer Group. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst Rev 2017; 6:CD007047. [PMID: 28654140 PMCID: PMC6481896 DOI: 10.1002/14651858.cd007047.pub2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) inhibitors prevent cell growth and have shown benefit in the treatment of metastatic colorectal cancer, whether used as single agents or in combination with chemotherapy. Clear benefit has been shown in trials of EGFR monoclonal antibodies (EGFR MAb) but not EGFR tyrosine kinase inhibitors (EGFR TKI). However, there is ongoing debate as to which patient populations gain maximum benefit from EGFR inhibition and where they should be used in the metastatic colorectal cancer treatment paradigm to maximise efficacy and minimise toxicity. OBJECTIVES To determine the efficacy, safety profile, and potential harms of EGFR inhibitors in the treatment of people with metastatic colorectal cancer when given alone, in combination with chemotherapy, or with other biological agents.The primary outcome of interest was progression-free survival; secondary outcomes included overall survival, tumour response rate, quality of life, and adverse events. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), the Cochrane Library, Issue 9, 2016; Ovid MEDLINE (from 1950); and Ovid Embase (from 1974) on 9 September 2016; and ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform (WHO ICTRP) on 14 March 2017. We also searched proceedings from the major oncology conferences ESMO, ASCO, and ASCO GI from 2012 to December 2016. We further scanned reference lists from eligible publications and contacted corresponding authors for trials for further information where needed. SELECTION CRITERIA We included randomised controlled trials on participants with metastatic colorectal cancer comparing: 1) the combination of EGFR MAb and 'standard therapy' (whether chemotherapy or best supportive care) to standard therapy alone, 2) the combination of EGFR TKI and standard therapy to standard therapy alone, 3) the combination of EGFR inhibitor (whether MAb or TKI) and standard therapy to another EGFR inhibitor (or the same inhibitor with a different dosing regimen) and standard therapy, or 4) the combination of EGFR inhibitor (whether MAb or TKI), anti-angiogenic therapy, and standard therapy to anti-angiogenic therapy and standard therapy alone. DATA COLLECTION AND ANALYSIS We used standard methodological procedures defined by Cochrane. Summary statistics for the endpoints used hazard ratios (HR) with 95% confidence intervals (CI) for overall survival and progression-free survival, and odds ratios (OR) for response rate (RR) and toxicity. Subgroup analyses were performed by Kirsten rat sarcoma viral oncogene homolog (KRAS) and neuroblastoma RAS viral (V-Ras) oncogene homolog (NRAS) status - firstly by status of KRAS exon 2 testing (mutant or wild type) and also by status of extended KRAS/NRAS testing (any mutation present or wild type). MAIN RESULTS We identified 33 randomised controlled trials for analysis (15,025 participants), including trials of both EGFR MAb and EGFR TKI. Looking across studies, significant risk of bias was present, particularly with regard to the risk of selection bias (15/33 unclear risk, 1/33 high risk), performance bias (9/33 unclear risk, 9/33 high risk), and detection bias (7/33 unclear risk, 11/33 high risk).The addition of EGFR MAb to standard therapy in the KRAS exon 2 wild-type population improves progression-free survival (HR 0.70, 95% CI 0.60 to 0.82; high-quality evidence), overall survival (HR 0.88, 95% CI 0.80 to 0.98; high-quality evidence), and response rate (OR 2.41, 95% CI 1.70 to 3.41; high-quality evidence). We noted evidence of significant statistical heterogeneity in all three of these analyses (progression-free survival: I2 = 76%; overall survival: I2 = 40%; and response rate: I2 = 77%), likely due to pooling of studies investigating EGFR MAb use in different lines of therapy. Rates of overall grade 3 to 4 toxicity, diarrhoea, and rash were increased (moderate-quality evidence for all three outcomes), but there was no evidence for increased rates of neutropenia.For the extended RAS wild-type population (no mutations in KRAS or NRAS), addition of EGFR MAb improved progression-free survival (HR 0.60, 95% CI 0.48 to 0.75; moderate-quality evidence) and overall survival (HR 0.77, 95% CI 0.67 to 0.88; high-quality evidence). Response rate was also improved (OR 4.28, 95% CI 2.61 to 7.03; moderate-quality evidence). We noted significant statistical heterogeneity in the progression-free survival analysis (I2 = 61%), likely due to the pooling of studies combining EGFR MAb with chemotherapy with monotherapy studies.We observed no evidence of a statistically significant difference when EGFR MAb was compared to bevacizumab, in progression-free survival (HR 1.02, 95% CI 0.93 to 1.12; high quality evidence) or overall survival (HR 0.84, 95% CI 0.70 to 1.01; moderate-quality evidence). We noted significant statistical heterogeneity in the overall survival analysis (I2 = 51%), likely due to the pooling of first-line and second-line studies.The addition of EGFR TKI to standard therapy in molecularly unselected participants did not show benefit in limited data sets (meta-analysis not performed). The addition of EGFR MAb to bevacizumab plus chemotherapy in people with KRAS exon 2 wild-type metastatic colorectal cancer did not improve progression-free survival (HR 1.04, 95% CI 0.83 to 1.29; very low quality evidence), overall survival (HR 1.00, 95% CI 0.69 to 1.47; low-quality evidence), or response rate (OR 1.20, 95% CI 0.67 to 2.12; very low-quality evidence) but increased toxicity (OR 2.57, 95% CI 1.45 to 4.57; low-quality evidence). We noted significant between-study heterogeneity in most analyses.Scant information on quality of life was reported in the identified studies. AUTHORS' CONCLUSIONS The addition of EGFR MAb to either chemotherapy or best supportive care improves progression-free survival (moderate- to high-quality evidence), overall survival (high-quality evidence), and tumour response rate (moderate- to high-quality evidence), but may increase toxicity in people with KRAS exon 2 wild-type or extended RAS wild-type metastatic colorectal cancer (moderate-quality evidence). The addition of EGFR TKI to standard therapy does not improve clinical outcomes. EGFR MAb combined with bevacizumab is of no clinical value (very low-quality evidence). Future studies should focus on optimal sequencing and predictive biomarkers and collect quality of life data.
Collapse
Affiliation(s)
- David Lok Hang Chan
- Royal North Shore HospitalDepartment of Medical OncologySt LeonardsNew South WalesAustralia2065
| | - Eva Segelov
- Monash University and Monash HealthDepartment of OncologyLvl 7, MHTP building, Monash Health 240 Clayton RdClaytonVictoriaAustralia3168
| | - Rachel SH Wong
- University of SydneyDepartment of MedicineSydneyNSWAustralia2006
| | - Annabel Smith
- University of New South WalesDepartment of MedicineSydneyNSWAustralia2052
| | - Rebecca A Herbertson
- Ludwig Institute for Cancer ResearchMelbourne Centre for Clinical SciencesAustin Hospital HSB1145‐163 Studley RoadHeidelbergVictoriaAustralia3084
| | - Bob T. Li
- Memorial Sloan Kettering Cancer CenterThoracic Oncology and Early Drug Development Service1275 York AvenueNew YorkNYUSA10065
| | - Niall Tebbutt
- Olivia Newton‐John Cancer Wellness and Research Centre, Austin HospitalOlivia Newton‐John Cancer Research Institute145‐163 Studley RdHeidelbergVictoriaAustralia3084
| | - Timothy Price
- Olivia Newton‐John Cancer Wellness & Research Centre, Austin HospitalOlivia Newton‐John Cancer Research Institute, Level 5145‐163 Studley RdHeidelbergVictoriaAustralia3084
| | - Nick Pavlakis
- Royal North Shore HospitalDepartment of Medical OncologySt LeonardsNew South WalesAustralia2065
| | | |
Collapse
|
27
|
Abstract
In the last 20 years, improvements in metastatic colorectal cancer treatment lead to a radical raise of outcomes with median survival reaching now more than 30 months. Despite that, the identification of predictive and/or prognostic biomarker still represents a challenging issue, and until today, although clinician and researchers might face with a deeper knowledge of biological mechanisms related to colorectal cancer, many pieces of evidence underline the heterogeneity and the dynamism of such disease. In the present review, we describe the road leading to the discovery of RAS mutations, BRAF V600E mutation, and microsatellite instability role in colorectal cancer; second, we discuss some of the possible major pitfalls of biomarker research, and lastly, we give new suggestions for future research in this field.
Collapse
|
28
|
Frieze DA, McCune JS. Current Status of Cetuximab for the Treatment of Patients with Solid Tumors. Ann Pharmacother 2016; 40:241-50. [PMID: 16403849 DOI: 10.1345/aph.1g191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: To review the pharmacology, pharmacokinetics, clinical evidence, and safety, as well as the potential directions for use, of the epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab. Data Sources: A MEDLINE search (1966–December 2005) was conducted using the following terms: cetuximab, Erbitux, C225, epidermal growth factor receptor, and EGFR. Additional information was obtained via meeting abstracts, bibliographies from relevant articles, national guidelines, and the manufacturer. Study Selection and Data Extraction: Preclinical and clinical trials utilizing cetuximab in the treatment of solid tumors were selected from the data sources. All published, randomized clinical trials involving cetuximab in treatment of metastatic colorectal cancer and studies providing a description of the pharmacology, pharmacokinetics, safety, or efficacy were included in this review. Data Synthesis: Many solid tumors overexpress EGFR, making it an ideal target for anticancer agents. Cetuximab is the only EGFR monoclonal antibody commercially available and is approved for the treatment of EGFR-expressing, metastatic colorectal cancer in patients refractory or intolerant to irinotecan. Data on patients with other solid tumors are encouraging with cetuximab used as monotherapy or in combination with chemotherapy, radiation, or other targeted agents. Common adverse effects include dermatologic and hypersensitivity reactions. Conclusions: Further clinical data are necessary to clearly define the role of cetuximab in the treatment of patients with solid malignancies, with emphasis on survival and quality-of-life benefits relative to its cost.
Collapse
|
29
|
Kruziki MA, Case BA, Chan JY, Zudock EJ, Woldring DR, Yee D, Hackel BJ. 64Cu-Labeled Gp2 Domain for PET Imaging of Epidermal Growth Factor Receptor. Mol Pharm 2016; 13:3747-3755. [PMID: 27696863 DOI: 10.1021/acs.molpharmaceut.6b00538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This purpose of this study is to determine the efficacy of a 45-amino acid Gp2 domain, engineered to bind to epidermal growth factor receptor (EGFR), as a positron emission tomography (PET) probe of EGFR in a xenograft mouse model. The EGFR-targeted Gp2 (Gp2-EGFR) and a nonbinding control were site-specifically labeled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. Binding affinity was tested toward human EGFR and mouse EGFR. Biological activity on downstream EGFR signaling was examined in cell culture. DOTA-Gp2 molecules were labeled with 64Cu and intravenously injected (0.6-2.3 MBq) into mice bearing EGFRhigh (n = 7) and EGFRlow (n = 4) xenografted tumors. PET/computed tomography (CT) images were acquired at 45 min, 2 h, and 24 h. Dynamic PET (25 min) was also acquired. Tomography results were verified with gamma counting of resected tissues. Two-tailed t tests with unequal variances provided statistical comparison. DOTA-Gp2-EGFR bound strongly to human (KD = 7 ± 5 nM) and murine (KD = 29 ± 6 nM) EGFR, and nontargeted Gp2 had no detectable binding. Gp2-EGFR did not agonize EGFR nor antagonize EGF-EGFR. 64Cu-Gp2-EGFR tracer effectively localized to EGFRhigh tumors at 45 min (3.2 ± 0.5%ID/g). High specificity was observed with significantly lower uptake in EGFRlow tumors (0.9 ± 0.3%ID/g, p < 0.001), high tumor-to-background ratios (11 ± 6 tumor/muscle, p < 0.001). Nontargeted Gp2 tracer had low uptake in EGFRhigh tumors (0.5 ± 0.3%ID/g, p < 0.001). Similar data was observed at 2 h, and tumor signal was retained at 24 h (2.9 ± 0.3%ID/g). An engineered Gp2 PET imaging probe exhibited low background and target-specific EGFRhigh tumor uptake at 45 min, with tumor signal retained at 24 h postinjection, and compared favorably with published EGFR PET probes for alternative protein scaffolds. These beneficial in vivo characteristics, combined with thermal stability, efficient evolution, and small size of the Gp2 domain validate its use as a future class of molecular imaging agents.
Collapse
Affiliation(s)
- Max A Kruziki
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Brett A Case
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jie Y Chan
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Elizabeth J Zudock
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Daniel R Woldring
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Douglas Yee
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, ‡Department of Pharmacology, §Department of Medicine, and ∥Masonic Cancer Center, University of Minnesota-Twin Cities , 421 16th Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
30
|
Christensen TD, Spindler KLG, Palshof JA, Nielsen DL. Systematic review: brain metastases from colorectal cancer--Incidence and patient characteristics. BMC Cancer 2016; 16:260. [PMID: 27037031 PMCID: PMC4818396 DOI: 10.1186/s12885-016-2290-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Brain metastases (BM) from colorectal cancer (CRC) are a rare event. However, the implications for affected patients are severe, and the incidence has been reported to be increasing. For clinicians, knowledge about the characteristics associated with BM is important and could lead to earlier diagnosis and improved survival. Method In this paper, we describe the incidence as well as characteristics associated with BM based on a systematic review of the current literature, following the PRISMA guidelines. Results We show that the incidence of BM in CRC patients ranges from 0.6 to 3.2 %. BM are a late stage phenomenon, and young age, rectal primary and lung metastases are associated with increased risk of developing BM. Molecular markers such as KRAS, BRAF, NRAS mutation as well as an increase in CEA and CA19.9 levels are suggested predictors of brain involvement. However, only KRAS mutations are reasonably well investigated and associated with an increased risk of BM. Conclusion The incidence of BM from CRC is 0.6 to 3.2 % and did not seem to increase over time. Development of BM is associated with young age, lung metastases, rectal primary and KRAS mutation. Increased awareness of brain involvement in patients with these characteristics is necessary.
Collapse
Affiliation(s)
- Troels Dreier Christensen
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | | | - Jesper Andreas Palshof
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Dorte Lisbet Nielsen
- Department of Oncology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| |
Collapse
|
31
|
MASSA ILARIA, NANNI ORIANA, GUIDOBONI MASSIMO, FRASSINETI GIOVANNILUCA, ROCCA ANDREA, BURGIO MARCOANGELO, VALMORRI LINDA, MARRI MATTIA, PIANCASTELLI ALESSANDRA, FAEDI MARINA, LEONI MAURIZIO, TAMBERI STEFANO, ALTINI MATTIA, AMADORI DINO. Appropriate use of tumour biomarkers for treatment with innovative drugs: A retrospective study. Oncol Lett 2016; 11:831-836. [PMID: 26870292 PMCID: PMC4726991 DOI: 10.3892/ol.2015.3967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Performing randomised clinical trials to address the clinical usefulness of predictive and prognostic tumour markers is a complex process for several reasons, and observational experiences may thus play an important role. The present study performed an observational retrospective analysis in Area Vasta Romagna, Italy, collecting information on tumour marker determination in 760 consecutive patients who started a new line of anticancer therapy between January and June 2010. The determination of well-known biomarkers was requested for all gastrointestinal stromal tumour (GIST) patients (n=13) and for almost all breast cancer patients (n=369), and targeted therapies were consequently prescribed. Conversely, Kirsten rat sarcoma viral oncogene homolog (KRAS) determination in colon cancer patients (n=177) was requested in ~50% of advanced cases, while epidermal growth factor receptor (EGFR) determination was required in slightly more than 30% of the same patients. EGFR and KRAS determinations were requested in only 15% and 7.5% of non-small cell lung cancer (NSCLC) patients (n=201), respectively. There would appear to be greater appropriateness of tumour marker determination for breast cancer and GISTs than for colon cancer and NSCLC. Resources can be further optimised by standardising tumour marker determinations in terms of the timing of requests and the consequent use of the results for tailored treatment planning.
Collapse
Affiliation(s)
- ILARIA MASSA
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - ORIANA NANNI
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - MASSIMO GUIDOBONI
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - GIOVANNI LUCA FRASSINETI
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - ANDREA ROCCA
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - MARCO ANGELO BURGIO
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - LINDA VALMORRI
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - MATTIA MARRI
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - ALESSANDRA PIANCASTELLI
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - MARINA FAEDI
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - MAURIZIO LEONI
- Oncology Unit, Santa Maria delle Croci Hospital, Ravenna 48121, Italy
| | | | - MATTIA ALTINI
- Healthcare Administration, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| | - DINO AMADORI
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola 47014, Italy
| |
Collapse
|
32
|
Udagawa H, Ishii G, Morise M, Umemura S, Matsumoto S, Yoh K, Niho S, Ohmatsu H, Tsuboi M, Goto K, Ochiai A, Ohe Y. Comparison of the expression levels of molecular markers among the peripheral area and central area of primary tumor and metastatic lymph node tumor in patients with squamous cell carcinoma of the lung. J Cancer Res Clin Oncol 2015; 141:1417-25. [PMID: 25573625 DOI: 10.1007/s00432-015-1912-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/05/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Immunohistochemical analysis for the identification of clinically relevant biomarkers is important. However, there have been no detailed reports about the heterogeneous expressions of the various markers in squamous cell carcinoma of the lung. METHODS A total of 113 patients with squamous cell carcinoma of the lung with lymph node metastasis were included. The expression levels of 9 molecules (E-cadherin, S100A4, CD44, ALDH1, SOX2, EGFR, HER2, FGFR1 and VEGFR2) in the peripheral area and central area of primary tumor and metastatic lymph nodes were evaluated by immunohistochemistry. The differences in the staining scores of these molecules among the three areas were assessed. We also analyzed the relationships between the expression levels of these molecules and the recurrence-free survival. RESULTS The E-cadherin expression was higher in the central area than in the peripheral area and metastatic lymph nodes (median staining score: 60 vs. 50, 30); the CD44 expression was higher in the central area than in the metastatic lymph nodes (117 vs. 90); and the EGFR expression was higher in the central area than in the peripheral area and metastatic lymph nodes (163 vs. 130, 110). Low CD44 expression in the central area, low EGFR expression in the peripheral area and high SOX2 expression in the metastatic lymph nodes were associated with a shorter recurrence-free survival (p < 0.01, p = 0.02, p = 0.03, respectively). CONCLUSIONS Our findings confirmed that some molecular markers exhibited different expression levels in anatomically different areas and suggested that area-by-area immunohistochemical analysis for biomarkers may provide useful information for more precise prediction of the recurrence.
Collapse
Affiliation(s)
- Hibiki Udagawa
- Pathology Division, Department of Pathology, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, 277-8577, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Khelwatty SA, Essapen S, Bagwan I, Green M, Seddon AM, Modjtahedi H. Co-expression of HER family members in patients with Dukes' C and D colon cancer and their impacts on patient prognosis and survival. PLoS One 2014; 9:e91139. [PMID: 24609222 PMCID: PMC3946690 DOI: 10.1371/journal.pone.0091139] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/07/2014] [Indexed: 12/29/2022] Open
Abstract
The human epidermal growth factor receptor (EGFR) is an important therapeutic target in patients with metastatic colorectal cancer and anti-EGFR antibodies cetuximab and panitumumab have been approved for the treatment of such patients. Despite these advances, the duration of response in some patients can be limited. Since, EGFR is capable of forming heterodimers with the other members of the HER (Human epidermal receptor) family, it is important to investigate the co-expression and prognostic significance of all members of the HER family in colorectal cancer patients. The expression of the HER family members were determined in tumour specimens from 86 patients with Dukes’ C and D (metastatic) colon cancer using immunohistochemistry. Sections were scored by the percentage of positive tumour cells and intensity of staining. Their associations with clinicopathological parameters, and overall survival and disease free survival were evaluated using univariate and multivariate analysis. Overall, 43%, 77%, 52% and 92% of the cases were EGFR, HER-2, HER-3 and HER-4 positive respectively. Interestingly, 35%, 24%, 43%, and 18% of the cases had co-expression of EGFR/HER-2, EGFR/HER-3, EGFR/HER-4 and all four members of the HER family respectively. Of these, only the expression of EGFR and co-expression of EGFR/HER-4 were associated with poorer disease-free survival in both univariate and multivariate analysis. Co-expression of all members of the HER family in colon cancer supports the need for further investigations on their predictive value for response to therapy with anti-EGFR mAbs and whether such sub-population of patients may benefit from therapy with the new generation of pan-HER inhibitors.
Collapse
Affiliation(s)
| | - Sharadah Essapen
- School of Life Sciences, Kingston University London, Kingston, United Kingdom
- St Luke’s Cancer Centre, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Izhar Bagwan
- Department of Histopathology, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Margaret Green
- Department of Histopathology, Royal Surrey County Hospital, Guildford, United Kingdom
| | - Alan Michael Seddon
- School of Life Sciences, Kingston University London, Kingston, United Kingdom
| | - Helmout Modjtahedi
- School of Life Sciences, Kingston University London, Kingston, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Adams R, Maughan T. Predicting response to epidermal growth factor receptor-targeted therapy in colorectal cancer. Expert Rev Anticancer Ther 2014; 7:503-18. [PMID: 17428171 DOI: 10.1586/14737140.7.4.503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery over 20 years ago by the Nobel Laureate Stanley Cohen of epidermal growth factor and its receptor, followed by the recognition that this receptor is overexpressed in multiple cancer types, has been of phenomenal significance. From these events the 'Holy Grail' of targeted therapy has looked increasingly realistic. Over the last 5 years this work has come of age with the licensing of multiple agents targeting this important mitogenic pathway in multiple tumor types. However, these agents and the technology behind them, while impressive, have resulted in lower clinical response rates than anticipated. In this review we will focus on the epidermal growth factor receptor-targeted therapies in colorectal cancer, why our expectations from these therapies have not yet been fulfilled and how we may predict those cancers that are likely to respond or be resistant to these therapies through a greater appreciation of the intricacy, diversity and dynamism of cellular signaling mechanisms.
Collapse
Affiliation(s)
- Richard Adams
- Clinical Oncology, Velindre Hospital, South East Wales Cancer Centre, Whitchurch, Cardiff, South Glamorgan, UK.
| | | |
Collapse
|
35
|
Abstract
The combination of chemotherapy and targeted therapies is rapidly becoming the standard of care in the treatment of metastatic colorectal cancer. Panitumumab (formerly ABX-EGF) is a fully human antibody developed to target the human epidermal growth factor receptor (EGFR/HER-1), which is expressed in up to 75% of patients with colorectal cancer. As a fully human antibody, panitumumab can be administered without any premedication and few infusion reactions have been reported. It has recently been approved in the USA for the treatment of colorectal cancer as a single agent in the salvage setting. Ongoing studies are being performed to determine whether the addition of panitumumab to standard treatment for metastatic colorectal cancer will improve the survival of these patients.
Collapse
|
36
|
Rivera F, García-Castaño A, Vega N, Vega-Villegas ME, Gutiérrez-Sanz L. Cetuximab in metastatic or recurrent head and neck cancer: the EXTREME trial. Expert Rev Anticancer Ther 2014; 9:1421-8. [DOI: 10.1586/era.09.113] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Abstract
For over 40 years, fluorouracil has been the only drug registered for the treatment of metastatic colorectal cancer. During the past 5 years, combination chemotherapy regimens including either irinotecan or oxaliplatin have proven to be superior to fluorouracil monotherapy in randomized clinical trials, in terms of response rate, progression-free survival and overall survival. Both doublets demonstrated similar efficacy, therefore either combination can be considered standard first-line treatment for metastatic colorectal cancer. Recently, a new orally active fluorouracil analog, capecitabine, and two targeted biological agents, cetuximab and bevacizumab, have been added to the armamentarium of drugs active against metastatic colorectal cancer, thus making the scenario more complex. Moreover, ongoing clinical trials are currently testing new promising molecularly targeted agents. Thus, we are facing a new era in which the rapid clinical development of novel agents is outpacing the ability to perform Phase III clinical trials. At present, there is no single standard treatment suitable for all patients. However, general principles of management can be derived from the available clinical data in order to guide the therapeutic choice and individualize treatment.
Collapse
Affiliation(s)
- Anna Pessino
- Medical Oncology Division, University Hospital San Martino, Genoa, Italy.
| | | |
Collapse
|
38
|
Marconato L, Zorzan E, Giantin M, Di Palma S, Cancedda S, Dacasto M. Concordance of c-kit mutational status in matched primary and metastatic cutaneous canine mast cell tumors at baseline. J Vet Intern Med 2013; 28:547-53. [PMID: 24372836 PMCID: PMC4858004 DOI: 10.1111/jvim.12266] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 09/19/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022] Open
Abstract
Background Mutation analysis of proto‐oncogene c‐kit (c‐kit) is advisable before starting treatment with tyrosine kinase inhibitors in dogs with mast cell tumor (MCT), including those with metastatic disease. Testing is usually performed on primary tumors, assuming that c‐kit mutation status does not change in metastasis. Hypothesis/Objectives To give an insight into the mutational processes and to make a recommendation on the use of c‐kit mutational analysis in the clinical setting. Animals Twenty‐one client‐owned dogs with metastatic MCT. Methods Dogs undergoing resection or biopsy for both primary and matched metastatic MCT were prospectively enrolled. Total RNA or DNA was extracted from primary MCT and corresponding metastases. Exons 8, 9, and 11 were amplified by PCR and sequenced. Genetic features between primary MCT and metastases were compared. Their correlation with clinicopathologic features was investigated. Results Concordance (mutated or wild‐type) of mutational status, evaluable in 21 primary and matched metastatic (20 nodal and 1 splenic) MCTs, was 100%. Three new c‐kit mutations were identified. No significant correlation was detected between c‐kit mutation and clinicopathologic features. Conclusions and Clinical Importance Proto‐oncogene c‐kit mutational status is conserved between any primary and its matched secondary tumor, suggesting that both can be used for c‐kit mutational testing. Targeted therapies might be also used to treat metastatic disease.
Collapse
Affiliation(s)
- L Marconato
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Huang CW, Tsai HL, Chen YT, Huang CM, Ma CJ, Lu CY, Kuo CH, Wu DC, Chai CY, Wang JY. The prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous metastatic colorectal cancer. BMC Cancer 2013; 13:599. [PMID: 24330663 PMCID: PMC3878756 DOI: 10.1186/1471-2407-13-599] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway is an important pathway in the carcinogenesis, invasion and metastasis of colorectal cancers (CRCs). We conducted a retrospective study to determine the prognostic values of EGFR expression and KRAS mutation in patients with metastatic CRC (mCRC) based on synchronous or metachronous status. METHODS From October 2002 to March 2012, 205 patients with mCRC were retrospectively analyzed; 98 were found to have metachronous mCRC while 107 were found to have synchronous mCRC. The EGFR expressions were determinate by IHC (immunohistochemistry) analysis and categorized 1+ (weak intensity), 2+ (moderate intensity), and 3+ (strong intensity). Genomic DNA was isolated from frozen primary CRC tissues and direct sequencing of KRAS was performed. The clinicopathological features of these mCRC patients were retrospectively investigated according to EGFR expression and KRAS mutation status. Moreover, we analyzed the prognostic values of EGFR expression and KRAS mutation among these patients. RESULTS Of the 205 patients with mCRC, EGFR expression was analyzed in 167 patients, and positive EGFR expression was noted in 140 of those patients (83.8%). KRAS mutation was investigated in 205 patients and mutations were noted in 88 of those patients (42.9%). In patients with metachronous mCRC, positive EGFR expression was significantly correlated with well-and moderately-differentiated tumors (P=0.028), poorer disease-free survival (DFS) (P<0.001), and overall survival (OS) (P<0.001). Furthermore, positive EGFR expression was a significant independent prognostic factor of DFS (P=0.006, HR: 4.012, 95% CI: 1.130-8.445) and OS (P=0.028, HR: 3.090, 95% CI: 1.477-10.900) in metachronous mCRC patients. KRAS mutation status was not significantly related to DFS and OS of patients with metachronous mCRC; likewise, KRAS mutation status was not significantly different in the progression-free survival (PFS) and OS of patients with synchronous mCRC (all P>0.05). CONCLUSIONS The present study demonstrated that EGFR expression has prognostic value only for patients with metachronous mCRC. However, KRAS mutation did not have prognostic value in patients with metachronous or synchronous mCRC.
Collapse
Affiliation(s)
- Ching-Wen Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiang-Lin Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of General Surgery Medicine, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Program of Bachelor of Health Beauty, School of Medical and Health Sciences, Fooyin University, Kaohsiung, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Ming Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Jen Ma
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Yu Lu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hung Kuo
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastrointestinal and General Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
40
|
Schweiger T, Hegedüs B, Nikolowsky C, Hegedüs Z, Szirtes I, Mair R, Birner P, Döme B, Lang G, Klepetko W, Ankersmit HJ, Hoetzenecker K. EGFR, BRAF and KRAS status in patients undergoing pulmonary metastasectomy from primary colorectal carcinoma: a prospective follow-up study. Ann Surg Oncol 2013; 21:946-54. [PMID: 24281417 DOI: 10.1245/s10434-013-3386-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pulmonary metastasectomy is an integral part of the interdisciplinary treatment of patients with pulmonary metastases (PMs) from colorectal carcinoma (CRC). Although alterations in the epidermal growth factor receptor (EGFR) pathway are common in CRC, there is still insufficient data regarding PM. We hypothesized that EGFR expression and Kirsten rat sarcoma viral oncogene homolog (KRAS)/BRAF mutations (Mts) might be associated with clinicopathological variables and the outcome in patients undergoing pulmonary metastasectomy. METHODS In this single-center study, 44 patients undergoing pulmonary metastasectomy from primary CRC were included and prospectively followed up. Tissue specimens of resected PMs were assessed. Restriction fragment length analysis was used for BRAF V600E and KRAS codons 12 and 13 Mt analyses. EGFR expression was evaluated by immunohistochemistry. Patients were followed up in 3-6-month intervals. RESULTS EGFR expression was evident in 49 % of the PMs, whereas Mts in KRAS and BRAF were detected in 48 and 0 %, respectively. Time to lung-specific recurrence after metastasectomy was significantly decreased in patients with KRAS mutated PMs in univariate (p = 0.013) and multivariate analysis (p = 0.035), whereas EGFR expression had no impact on recurrence free survival. Moreover, KRAS Mts were associated with the number of PMs (p = 0.037) and with the lung as first site of recurrence after metastasectomy (p = 0.047). DISCUSSION This is the first evaluation of EGFR pathway alterations in the setting of pulmonary metastasectomy. Our data suggest that patients with KRAS Mts are at high risk for early pulmonary recurrence and have a more diffuse pattern of metastasis. These findings may have impact on the therapeutic management of CRC patients with pulmonary spreading.
Collapse
Affiliation(s)
- Thomas Schweiger
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gremel G, Grannas K, Sutton LA, Pontén F, Zieba A. In situ Protein Detection for Companion Diagnostics. Front Oncol 2013; 3:271. [PMID: 24199171 PMCID: PMC3814083 DOI: 10.3389/fonc.2013.00271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 01/29/2023] Open
Abstract
The emergence of targeted therapies for cancer has created a need for the development of companion diagnostic tests. Assays developed in recent years are aimed at determining both the effectiveness and safety of specific drugs for a defined group of patients, thus, enabling the more efficient design of clinical trials and also supporting physicians when making treatment-related decisions. Immunohistochemistry (IHC) is a widely accepted method for protein expression analyses in human tissues. Immunohistochemical assays, used to localize and quantitate relative protein expression levels within a morphological context, are frequently used as companion diagnostics during clinical trials and also following drug approval. Herein, we describe established immunochemistry-based methods and their application in routine diagnostics. We also explore the possibility of using IHC to detect specific protein mutations in addition to DNA-based tests. Finally, we review alternative protein binders and proximity ligation assays and discuss their potential to facilitate the development of novel, targeted therapies against cancer.
Collapse
Affiliation(s)
- Gabriela Gremel
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University , Uppsala , Sweden
| | | | | | | | | |
Collapse
|
42
|
Teng FF, Meng X, Sun XD, Yu JM. New strategy for monitoring targeted therapy: molecular imaging. Int J Nanomedicine 2013; 8:3703-13. [PMID: 24124361 PMCID: PMC3794840 DOI: 10.2147/ijn.s51264] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeted therapy is becoming an increasingly important component in the treatment of cancer. How to accurately monitor targeted therapy has been crucial in clinical practice. The traditional approach to monitor treatment through imaging has relied on assessing the change of tumor size by refined World Health Organization criteria, or more recently, by the Response Evaluation Criteria in Solid Tumors. However, these criteria, which are based on the change of tumor size, show some limitations for evaluating targeted therapy. Currently, genetic alterations are identified with prognostic as well as predictive potential concerning the use of molecularly targeted drugs. Conversely, considering the limitations of invasiveness and the issue of expression heterogeneity, molecular imaging is better able to assay in vivo biologic processes noninvasively and quantitatively, and has been a particularly attractive tool for monitoring treatment in clinical cancer practice. This review focuses on the applications of different kinds of molecular imaging including positron emission tomography-, magnetic resonance imaging-, ultrasonography-, and computed tomography-based imaging strategies on monitoring targeted therapy. In addition, the key challenges of molecular imaging are addressed to successfully translate these promising techniques in the future.
Collapse
Affiliation(s)
- Fei-Fei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong University, Jinan, People's Republic of China
| | | | | | | |
Collapse
|
43
|
Abstract
In an effort to discover a noninvasive method for predicting which cancer patients will benefit from therapy targeting the EGFR and HER2 proteins, a large body of the research has been conducted toward the development of PET and SPECT imaging agents, which selectively target these receptors. We provide a general overview of the advances made toward imaging EGFR and HER2, detailing the investigation of PET and SPECT imaging agents ranging in size from small molecules to monoclonal antibodies.
Collapse
Affiliation(s)
- Emily B Corcoran
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts
| | | |
Collapse
|
44
|
Rokita M, Stec R, Bodnar L, Charkiewicz R, Korniluk J, Smoter M, Cichowicz M, Chyczewski L, Nikliński J, Kozłowski W, Szczylik C. Overexpression of epidermal growth factor receptor as a prognostic factor in colorectal cancer on the basis of the Allred scoring system. Onco Targets Ther 2013; 6:967-76. [PMID: 23926437 PMCID: PMC3729248 DOI: 10.2147/ott.s42446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Overexpression of epidermal growth factor receptor (EGFR) is found in many types of neoplasms. The aim of the study was to evaluate EGFR expression in colorectal cancer (CRC) specimens and to determine whether EGFR expression correlates with clinicopathological data and overall survival. PATIENTS AND METHODS Tissue specimens from 181 consecutive CRC patients treated at the Military Institute of Medicine in 2006-2010 were collected and examined for EGFR expression, by immunohistochemistry staining. The staining intensity and percentage of cells with membranous EGFR expression were scored and then grouped according to the parameters of the Allred Scoring system. Cutoff values were subjected to further statistical analysis. Univariate tests and a multivariate Cox proportional hazards model were used in data analysis. RESULTS EGFR was overexpressed in 96 of 181 CRC specimens (53%). EGFR expression was not correlated with other clinicopathological variables. On univariate analysis, overexpression of EGFR, determined by PS (percentage score) (>3) and total score (sum of PS and intensity score) (>4), was associated with poor overall survival. On multivariate analysis, EGFR overexpression (PS > 3) was an independent adverse prognostic factor (hazard ratio [HR] 1.62; 95% confidence interval [CI]: 1.03-2.53). Elevated carcinoembryonic antigen (CEA) serum concentration before treatment, performance status (Word Health Organization [WHO]-2), and tumor localized in colon and liver metastases were also independent unfavorable prognostic factors. CONCLUSION EGFR overexpression (PS > 3) in a CRC patient population was an independent adverse prognostic factor. Implementation of the Allred Scoring system criteria into clinical practice might facilitate treatment decisions in CRC patients.
Collapse
Affiliation(s)
- Marta Rokita
- Department of Oncology, Military Institute of Medicine, Central Teaching Hospital, Warsaw Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Shigeta K, Hayashida T, Hoshino Y, Okabayashi K, Endo T, Ishii Y, Hasegawa H, Kitagawa Y. Expression of Epidermal Growth Factor Receptor Detected by Cetuximab Indicates Its Efficacy to Inhibit In Vitro and In Vivo Proliferation of Colorectal Cancer Cells. PLoS One 2013; 8:e66302. [PMID: 23824671 PMCID: PMC3688890 DOI: 10.1371/journal.pone.0066302] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/03/2013] [Indexed: 01/05/2023] Open
Abstract
Cetuximab is a chimeric mouse–human monoclonal antibody that targets the human epidermal growth factor receptor (EGFR). However, EGFR expression determined by immunohistochemistry does not predict clinical outcomes of colorectal cancer (CRC) patients treated with cetuximab. Therefore, we evaluated the correlation between EGFR levels detected by cetuximab and drug sensitivities of CRC cell lines (Caco-2, WiDR, SW480, and HCT116) and the A431 epidermoid carcinoma cell line. We used flow cytometry (FCM) to detect EGFR-binding of biotinylated cetuximab on the cell surface. Subcloned cell lines showing the highest and lowest EGFR expression levels were chosen for further study. Cytotoxic assays were used to determine differential responses to cetuximab. Xenograft models treated with cetuximab intraperitoneally to assess sensitivity to cetuximab. Strong responses to cetuximab were specifically exhibited by subcloned cells with high EGFR expression levels. Furthermore, cetuximab inhibited the growth of tumors in xenograft models with high or low EGFR expression levels by 35% and 10%–20%, respectively. We conclude that detection of EGFR expression by cetuximab promises to provide a novel, sensitive, and specific method for predicting the sensitivity of CRC to cetuximab.
Collapse
Affiliation(s)
- Kohei Shigeta
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Tetsu Hayashida
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Yoshinori Hoshino
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Koji Okabayashi
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Takashi Endo
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Yoshiyuki Ishii
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Hirotoshi Hasegawa
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| | - Yuko Kitagawa
- Keio University, School of Medicine, Department of Surgery, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
46
|
Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer 2013; 108:662-7. [PMID: 23322207 PMCID: PMC3593555 DOI: 10.1038/bjc.2012.605] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: Colorectal cancer-specific biomarkers have been used as molecular targets for fluorescent intra-operative imaging, targeted PET/MRI, and selective cytotoxic drug delivery yet the selection of biomarkers used is rarely evidence-based. We evaluated sensitivities and specificites of four of the most commonly used markers: carcinoembryonic antigen (CEA), tumour-associated glycoprotein-72 (TAG-72), folate receptor-α (FRα) and Epithelial growth factor receptor (EGFR). Methods: Marker expression was evaluated semi-quantitatively in matched mucosal and colorectal cancer tissues from 280 patients using immunohistochemistry (scores of 0–15). Matched positive and negative lymph nodes from 18 patients were also examined. Results: Markers were more highly expressed in tumour tissue than in matched normal tissue in 98.8%, 79.0%, 37.1% and 32.8% of cases for CEA, TAG-72, FRα and EGFR, respectively. Carcinoembryonic antigen showed the greatest differential expression, with tumours scoring a mean of 10.8 points higher than normal tissues (95% CI 10.31–11.21, P<0.001). Similarly, CEA showed the greatest differential expression between positive and negative lymph nodes. Receiver operating characteristic analyses showed CEA to have the best sensitivity (93.7%) and specificity (96.1%) for colorectal cancer detection. Conclusion: Carcinoembryonic antigen has the greatest potential to allow highly specific tumour imaging and drug delivery; future translational research should aim to exploit this.
Collapse
|
47
|
Menis J, Fontanella C, Follador A, Fasola G, Aprile G. Brain metastases from gastrointestinal tumours: Tailoring the approach to maximize the outcome. Crit Rev Oncol Hematol 2013; 85:32-44. [DOI: 10.1016/j.critrevonc.2012.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/30/2012] [Accepted: 04/11/2012] [Indexed: 12/18/2022] Open
|
48
|
Zang YW, Gu XD, Xiang JB, Chen ZY. Brain metastases from colorectal cancer: microenvironment and molecular mechanisms. Int J Mol Sci 2012; 13:15784-800. [PMID: 23443093 PMCID: PMC3546661 DOI: 10.3390/ijms131215784] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/05/2012] [Accepted: 11/12/2012] [Indexed: 01/02/2023] Open
Abstract
Colorectal cancer is one of the most common digestive tract malignancies in the world. Owing to the newer and more effective systemic therapies, the life of colorectal cancer patients can be remarkably prolonged, and the incidence of brain metastases is increasing. However, little is known about the underlying mechanisms of brain metastasis from colorectal cancer. Here we review the tumor microenvironment and metastasis associated molecules in brain metastases from colorectal cancer. A further understanding of these mechanisms will help us to propose better strategies for colorectal cancer patients with brain metastasis and improve their life quality.
Collapse
Affiliation(s)
| | | | - Jian-Bin Xiang
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| | - Zong-You Chen
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumiqi Road, Shanghai 200040, China; E-Mails: (Y.-W.Z.); (X.-D.G.); (J.-B.X.)
| |
Collapse
|
49
|
Silvestri A, Calvert V, Belluco C, Lipsky M, De Maria R, Deng J, Colombatti A, De Marchi F, Nitti D, Mammano E, Liotta L, Petricoin E, Pierobon M. Protein pathway activation mapping of colorectal metastatic progression reveals metastasis-specific network alterations. Clin Exp Metastasis 2012; 30:309-16. [PMID: 23053743 DOI: 10.1007/s10585-012-9538-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/14/2012] [Indexed: 02/08/2023]
Abstract
The mechanism by which tissue microecology influences invasion and metastasis is largely unknown. Recent studies have indicated differences in the molecular architecture of the metastatic lesion compared to the primary tumor, however, systemic analysis of the alterations within the activated protein signaling network has not been described. Using laser capture microdissection, protein microarray technology, and a unique specimen collection of 34 matched primary colorectal cancers (CRC) and synchronous hepatic metastasis, the quantitative measurement of the total and activated/phosphorylated levels of 86 key signaling proteins was performed. Activation of the EGFR-PDGFR-cKIT network, in addition to PI3K/AKT pathway, was found uniquely activated in the hepatic metastatic lesions compared to the matched primary tumors. If validated in larger study sets, these findings may have potential clinical relevance since many of these activated signaling proteins are current targets for molecularly targeted therapeutics. Thus, these findings could lead to liver metastasis specific molecular therapies for CRC.
Collapse
Affiliation(s)
- Alessandra Silvestri
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Blvd., Manassas, VA, 20110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lan H, Jin K, Xie B, Han N, Cui B, Cao F, Teng L. Heterogeneity between primary colon carcinoma and paired lymphatic and hepatic metastases. Mol Med Rep 2012; 6:1057-68. [PMID: 22940867 DOI: 10.3892/mmr.2012.1051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/08/2012] [Indexed: 11/06/2022] Open
Abstract
Heterogeneity is one of the recognized characteristics of human tumors, and occurs on multiple levels in a wide range of tumors. A number of studies have focused on the heterogeneity found in primary tumors and related metastases with the consideration that the evaluation of metastatic rather than primary sites could be of clinical relevance. Numerous studies have demonstrated particularly high rates of heterogeneity between primary colorectal tumors and their paired lymphatic and hepatic metastases. It has also been proposed that the heterogeneity between primary colon carcinomas and their paired lymphatic and hepatic metastases may result in different responses to anticancer therapies. The heterogeneity in primary colon carcinoma and corresponding metastases by genome‑wide gene expression analysis has not been extensively studied. In the present study, we investigated the differentially expressed genes between a primary colon carcinoma specimen (obtained from a 40-year-old female colon carcinoma patient with lymphatic and hepatic metastases) and its paired lymphatic and hepatic metastases by genome-wide gene expression analysis using GeneChip HGU133Plus2.0 expression arrays. Our results demonstrate that genome-wide gene expression varies between primary colon carcinoma and its paired lymphatic and hepatic metastases.
Collapse
Affiliation(s)
- Huanrong Lan
- Department of Gynecology and Obstetrics, Taizhou Hospital, Wenzhou Medical College, Linhai 317000, Zhejiang, PR China
| | | | | | | | | | | | | |
Collapse
|