1
|
Dhiman A, Rana D, Benival D, Garkhal K. Comprehensive insights into glioblastoma multiforme: drug delivery challenges and multimodal treatment strategies. Ther Deliv 2025; 16:87-115. [PMID: 39445563 DOI: 10.1080/20415990.2024.2415281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and malignant brain tumors, with a high prevalence in elderly population. Most chemotherapeutic agents fail to reach the tumor site due to various challenges. However, smart nanocarriers have demonstrated excellent drug-loading capabilities, enabling them to cross the blood brain tumor barrier for the GBM treatment. Surface modification of nanocarriers has significantly enhanced their potential for targeting therapeutics. Moreover, recent innovations in drug therapies, such as the incorporation of theranostic agents in nanocarriers and antibody-drug conjugates, have offered newer insights for both diagnosis and treatment. This review focuses on recent advances in new therapeutic interventions for GBM, with an emphasis on the nanotheranostics systems to maximize therapeutic and diagnostic outcomes.
Collapse
Affiliation(s)
- Ashish Dhiman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| | - Kalpna Garkhal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India
| |
Collapse
|
2
|
Li F, Wang D, Wang N, Wu L, Yu B. A nomogram with Ki-67 in the prediction of postoperative recurrence and death for glioma. Sci Rep 2024; 14:20334. [PMID: 39223159 PMCID: PMC11368915 DOI: 10.1038/s41598-024-71275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study examined to evaluate the predictive value of a nomogram with Ki-67 in overall and disease-free survival in glioma patients, a total of 76 patients diagnosed with glioma by pathology in Tengzhou Central People's Hospital were enrolled. The baseline data and follow ups were retrospectively collected from medical records. The associations between Ki-67 and survival status were examined using log-rank test, univariate and multivariate Cox proportional hazard regression models. Calibrations were performed to validate the established nomograms. Ki-67 negative group showed of a longer OS survival time and a longer PFS survival time with log-rank test (x2 = 16.101, P < 0.001 and x2 = 16.961, P < 0.001). Age older than 50 years (HR = 2.074, 95% CI 1.097-3.923), abnormal treatment (HR = 2.932, 95% CI 1.343-6.403) and Ki-67 positive (HR = 2.722, 95% CI 1.097-6.755) were the independent predictive factors of death. High grade pathology (HR = 2.453, 95% CI 1.010-5.956) and Ki-67 positive (HR = 2.200, 95% CI 1.043-4.639) were the independent predictive factors of recurrence. The C-index for the nomogram of OS and PFS were 0.745 and 0.723, respectively. The calibration results showed that the nomogram could predict the overall and disease-free 1-year survival of glioma patients. In conclusion, the nomograms with Ki-67 as independent risk factor for OS and PFS could provide clinical consultation in the treatment and follow-up of malignant glioma.
Collapse
Affiliation(s)
- Fengfeng Li
- Neurosurgery Department, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
| | - Dongyuan Wang
- Neurosurgery Department, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
| | - Nana Wang
- Neurosurgery Department, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, China
| | - Linlin Wu
- Oncology Department, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, 277500, China.
| | - Bo Yu
- Intensive Care Unit, Tengzhou Central People's Hospital Affiliated to Xuzhou Medical University, Tengzhou, 277500, China.
| |
Collapse
|
3
|
Pandith AA, Zahoor W, Manzoor U, Nisar S, Guru FR, Naikoo NA, Aein QU, Baba SM, Bhat AR, Ganai F, Shah P. Evaluation of chromosome 1p/19q deletion by Fluorescence in Situ Hybridization (FISH) as prognostic factors in malignant glioma patients on treatment with alkylating chemotherapy. Cancer Genet 2023; 278-279:55-61. [PMID: 37625215 DOI: 10.1016/j.cancergen.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Either deletion or co-deletion of chromosomal arms 1p or 19q is a characteristic and early genetic event in oligodendroglial tumors that is associated with a better prognosis and enhanced response to therapy. Information of 1p/19q status is now regarded as the standard of care when managing oligodendroglial tumors for therapeutic options in anticipation of the increased survival and progression-free survival times associated with it. Keeping this in view, we first time attempted to establish the FISH based detection of 1p/19q deletion in glioma tissue samples to evaluate its role and involvement in the disease. METHOD Overall 39 glioma cases of different histologies were evaluated by fluorescence in situ hybridization (FISH) technique using specific FISH probes with Olympus BX43 fluorescent microscope to detect chromosomes 1p and 19q or co-deletions therein. RESULTS Of the 39 glioma samples, overall 27 (69.2%) were found to have deletion either in 1p, 19q or both. Deletions were observed in 23.0%, 7.6% and 38.4% in 1p, 19q and 1p/19q co-deletions respectively. Overall oligidendrioglioma presented with 53.8% (21 of 39) deletions, astrocytoma group showed 12.8% and GBM accounted for 2.5% deletions. Overall survival and disease free survival was seen significantly better in oligidendrioglioma and astrocytoma with deleted tumors as compared to non-deleted ones (p<0.05). CONCLUSION Allelic losses on 1p and 19q, either discretely or shared, were more frequent in classic oligodendrogliomas than in either astrocytoma or Glioblastoma with better survival and response to therapy.
Collapse
Affiliation(s)
- Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India.
| | - Wani Zahoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Syed Nisar
- Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Faisal R Guru
- Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Niyaz A Naikoo
- Department of Biotechnology, Higher Education Department, Cluster University, Srinagar, J & K, India
| | - Qurat Ul Aein
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Abdul R Bhat
- Department of Neurosurgery, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Farooq Ganai
- Department of CVTS, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, India
| | - Parveen Shah
- Department of Pathology, SKIMS, Srinagar, J & K, India
| |
Collapse
|
4
|
Lv H, Suo Y, Sun Q, Fan J, Wang Q. Study on the effect of 5-aminolevulinic acid-mediated photodynamic therapy combined with cisplatin on human ovarian cancer OVCAR-3 cells. Adv Med Sci 2023; 68:147-156. [PMID: 36965469 DOI: 10.1016/j.advms.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
PURPOSE This article explores the effect of 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) combined with cisplatin (CDDP) on the apoptosis of human ovarian cancer cells and the mechanism of action of the combination therapy. MATERIALS AND METHODS Human ovarian cancer OVCAR-3 cells were cultured in vitro and divided into 5-ALA/PDT group, CDDP group and combined treatment group (5-ALA/PDT combined with different concentrations of CDDP). After administration of the corresponding drugs, a CCK-8 assay was used to detect the inhibition rate of cell proliferation. After Rhodamine 123 staining, mitochondrial membrane potential changes were observed under fluorescence microscopy. The apoptosis rate and reactive oxygen species (ROS) content were detected by flow cytometry. Western blotting was used to detect protein expression. RESULTS The CCK-8 assay showed that CDDP in combination with 5-ALA/PDT significantly enhanced cytotoxicity compared to treatment with CDDP alone and that low doses of CDDP were sufficient to induce these combination effects. The mitochondrial membrane potential in each combination treatment group gradually decreased with increasing CDDP concentration, while the apoptosis rate and reactive oxygen species (ROS) content detected by flow cytometry gradually increased. Western blotting assay showed that the expression of bax, cleaved caspase-9, cleaved caspase-3, and cleaved PARP was increased, while the expression of bcl-2, caspase-9, caspase-3, and PARP was decreased, and the differences were statistically significant (P < 0.05). CONCLUSIONS In summary, 5-ALA/PDT combined with CDDP can effectively inhibit cell proliferation and promote apoptosis, and this combination may induce apoptosis by activating the mitochondrial pathway.
Collapse
Affiliation(s)
- Haoxuan Lv
- Department of Obstetrics and Gynecology of Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yuping Suo
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan, China.
| | - Qian Sun
- Physiology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jingjing Fan
- Department of Obstetrics and Gynecology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Qian Wang
- Department of Obstetrics and Gynecology of Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhang P, Meng X, Liu L, Li S, Li Y, Ali S, Li S, Xiong J, Liu X, Li S, Xia Q, Dong L. Identification of the Prognostic Signatures of Glioma With Different PTEN Status. Front Oncol 2021; 11:633357. [PMID: 34336645 PMCID: PMC8317988 DOI: 10.3389/fonc.2021.633357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
The high-grade glioma is characterized by cell heterogeneity, gene mutations, and poor prognosis. The deletions and mutations of the tumor suppressor gene PTEN (5%-40%) in glioma patients are associated with worse survival and therapeutic resistance. Characterization of unique prognosis molecular signatures by PTEN status in glioma is still unclear. This study established a novel risk model, screened optimal prognostic signatures, and calculated the risk score for the individual glioma patients with different PTEN status. Screening results revealed fourteen independent prognostic gene signatures in PTEN-wt and three in the -50PTEN-mut subgroup. Moreover, we verified risk score as an independent prognostic factor significantly correlated with tumor malignancy. Due to the higher malignancy of the PTEN-mut gliomas, we explored the independent prognostic signatures (CLCF1, AEBP1, and OS9) for a potential therapeutic target in PTEN-mut glioma. We further separated IDH wild-type glioma patients into GBM and LGG to verify the therapeutic target along with PTEN status, notably, the above screened therapeutic targets are also significant prognostic genes in both IDH-wt/PTEN-mut GBM and LGG patients. We further identified the small molecule compound (+)-JQ1 binds to all three targets, indicating a potential therapy for PTEN-mut glioma. In sum, gene signatures and risk scores in the novel risk model facilitate glioma diagnosis, prognosis prediction, and treatment.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xinyi Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shengzhen Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Shanhu Li
- Department of Cell Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jichuan Xiong
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Shouwei Li
- Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Qin Xia
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Chen B, Chen C, Wang J, Teng Y, Ma X, Xu J. Differentiation of Low-Grade Astrocytoma From Anaplastic Astrocytoma Using Radiomics-Based Machine Learning Techniques. Front Oncol 2021; 11:521313. [PMID: 34141605 PMCID: PMC8204041 DOI: 10.3389/fonc.2021.521313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose To investigate the diagnostic ability of radiomics-based machine learning in differentiating atypical low-grade astrocytoma (LGA) from anaplastic astrocytoma (AA). Methods The current study involved 175 patients diagnosed with LGA (n = 95) or AA (n = 80) and treated in the Neurosurgery Department of West China Hospital from April 2010 to December 2019. Radiomics features were extracted from pre-treatment contrast-enhanced T1 weighted imaging (T1C). Nine diagnostic models were established with three selection methods [Distance Correlation, least absolute shrinkage, and selection operator (LASSO), and Gradient Boosting Decision Tree (GBDT)] and three classification algorithms [Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and random forest (RF)]. The sensitivity, specificity, accuracy, and areas under receiver operating characteristic curve (AUC) of each model were calculated. Diagnostic ability of each model was evaluated based on these indexes. Results Nine radiomics-based machine learning models with promising diagnostic performances were established. For LDA-based models, the optimal one was the combination of LASSO + LDA with AUC of 0.825. For SVM-based modes, Distance Correlation + SVM represented the most promising diagnostic performance with AUC of 0.808. And for RF-based models, Distance Correlation + RF were observed to be the optimal model with AUC of 0.821. Conclusion Radiomic-based machine-learning has the potential to be utilized in differentiating atypical LGA from AA with reliable diagnostic performance.
Collapse
Affiliation(s)
- Boran Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyue Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jian Wang
- School of Computer Science, Nanjing University of Science and Technology, Nanjing, China
| | - Yuen Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lopes DV, de Fraga Dias A, Silva LFL, Scholl JN, Sévigny J, Battastini AMO, Figueiró F. Influence of NSAIDs and methotrexate on CD73 expression and glioma cell growth. Purinergic Signal 2021; 17:273-284. [PMID: 33745072 DOI: 10.1007/s11302-021-09775-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant and deadly brain tumor. GBM cells overexpress the CD73 enzyme, which controls the level of extracellular adenosine, an immunosuppressive molecule. Studies have shown that some nonsteroidal anti-inflammatory drugs (NSAIDs) and methotrexate (MTX) have antiproliferative and modulatory effects on CD73 in vitro and in vivo. However, it remains unclear whether the antiproliferative effects of MTX and NSAIDS in GBM cells are mediated by increases in CD73 expression and adenosine formation. The aim of this study was to evaluate the effect of the NSAIDs, naproxen, piroxicam, meloxicam, ibuprofen, sodium diclofenac, acetylsalicylic acid, nimesulide, and ketoprofen on CD73 expression in GBM and mononuclear cells. In addition, we sought to understand whether the effects of MTX may be mediated by CD73 expression and activity. Cell viability and CD73 expression were evaluated in C6 and mononuclear cells after exposure to NSAIDs. For analysis of the mechanism of action of MTX, GBM cells were treated with APCP (CD73 inhibitor), dipyridamole (inhibitor of adenosine uptake), ABT-702 (adenosine kinase enzyme inhibitor), or caffeine (P1 adenosine receptor antagonist), before treatment with MTX and AMP, in the presence or not of mononuclear cells. In summary, only MTX increased the expression of CD73 in GBM cells decreasing cells viability by mechanisms independent of the adenosinergic system. Further studies are needed to understand the role of MTX in the GBM microenvironment.
Collapse
Affiliation(s)
- Daniela Vasconcelos Lopes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda de Fraga Dias
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luiz Fernando Lopes Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliete Nathali Scholl
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada.,Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Ana Maria Oliveira Battastini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Wang X, Zou S, Ren T, Zhao LJ, Yu LF, Li XY, Yan X, Zhang LJ. Alantolactone suppresses the metastatic phenotype and induces the apoptosis of glioblastoma cells by targeting LIMK kinase activity and activating the cofilin/G‑actin signaling cascade. Int J Mol Med 2021; 47:68. [PMID: 33649781 PMCID: PMC7952248 DOI: 10.3892/ijmm.2021.4901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is the most common aggressive brain tumor and is associated with an extremely poor prognosis, as the current standard of care treatments have limited efficacy. Natural compounds have attracted increasing attention as potential anticancer drugs. Alantolactone (ATL) is a natural small molecule inhibitor, that has antitumor properties. In the present study, U87MG and U251 cells were treated ATL and changes in actin/G-actin/F-actin/cofilin pathway were detected in whole cells, in the cytoplasm and mitochondria by western blot analysis. Immunofluorescence and immunoprecipitation analysis identified changes in the expression levels of target proteins and interactions, respectively. A LIMK enzyme inhibitor was also applied to assess the effects of ATL on the migration and invasion of GBM cells. Flow cytometry was used to detect the levels of apoptosis of GBM cells. The expression of matrix metalloproteinase (MMP)-2/MMP-9, caspase-3/caspase-9/poly(ADP-ribose) polymerase (PARP)/cytochrome c, were determined by western blot analysis to assess the effects of targeting LIMK. The in vitro findings were verified in vivo by characterizing changes in the expression of cofilin/LIMK in xenograft tumors in immunodeficient mice. It was found that ATL activated cofilin through the targeted inhibition of LIMK enzyme activity and it thus upregulated the ratio of G/F actin, and inhibited GBM cell migration and invasion. Conversely, the activation of cofilin and G-actin could be co-transferred to the mitochondria to initiate the mitochondrial-cytochrome c pathway to induce apoptosis. On the whole, the findings of the present study further illustrate the molecular mechanisms through which ATL inhibits the metastatic phenotype of GBM cells and induces apoptosis. Given previous findings, it can be deduced that ATL can function through multiple pathways and has multiple targets in GBM models, highlighting its potential for use in clinical applications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Shuang Zou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tong Ren
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Jun Zhao
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Fei Yu
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xiang-Yu Li
- Department of Neurosurgery, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Xin Yan
- Department of Medical Oncology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Li-Jun Zhang
- Department of Ophthalmology, The Third People's Hospital of Dalian, Non‑Directly Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
9
|
Khan M, Sarkar D. The Scope of Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH) in Cancer Clinicopathology: A Review. Genes (Basel) 2021; 12:genes12020308. [PMID: 33671513 PMCID: PMC7927008 DOI: 10.3390/genes12020308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/24/2022] Open
Abstract
Since its initial cloning in 2002, a plethora of studies in a vast number of cancer indications, has strongly established AEG-1 as a bona fide oncogene. In all types of cancer cells, overexpression and knockdown studies have demonstrated that AEG-1 performs a seminal role in regulating proliferation, invasion, angiogenesis, metastasis and chemoresistance, the defining cancer hallmarks, by a variety of mechanisms, including protein-protein interactions activating diverse oncogenic pathways, RNA-binding promoting translation and regulation of inflammation, lipid metabolism and tumor microenvironment. These findings have been strongly buttressed by demonstration of increased tumorigenesis in tissue-specific AEG-1 transgenic mouse models, and profound resistance of multiple types of cancer development and progression in total and conditional AEG-1 knockout mouse models. Additionally, clinicopathologic correlations of AEG-1 expression in a diverse array of cancers establishing AEG-1 as an independent biomarker for highly aggressive, chemoresistance metastatic disease with poor prognosis have provided a solid foundation to the mechanistic and mouse model studies. In this review a comprehensive analysis of the current and up-to-date literature is provided to delineate the clinical significance of AEG-1 in cancer highlighting the commonality of the findings and the discrepancies and discussing the implications of these observations.
Collapse
Affiliation(s)
- Maheen Khan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
10
|
Favorable role of IDH1/2 mutations aided with MGMT promoter gene methylation in the outcome of patients with malignant glioma. Future Sci OA 2020; 7:FSO663. [PMID: 33552543 PMCID: PMC7849969 DOI: 10.2144/fsoa-2020-0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim The implications of molecular biomarkers IDH1/2 mutations and MGMT gene promoter methylation were evaluated for prognostic outcome of glioma patients. Materials & methods Glioma cases were analyzed for IDH1/2 mutations and MGMT promoter methylation by DNA sequencing and methylation-specific PCR, respectively. Results Mutations found in IDH1/2 genes totaled 63.4% (N = 40) wherein IDH1 mutations were significantly associated with oligidendrioglioma (p = 0.005) and astrocytoma (p = 0.0002). IDH1 mutants presented more, 60.5% in MGMT promoter-methylated cases (p = 0.03). IDH1 mutant cases had better survival for glioblastoma and oligodendrioglioma (log-rank p = 0.01). Multivariate analysis confirmed better survival in MGMT methylation carriers (hazard ratio [HR]: 0.59; p = 0.031). Combination of both biomarkers showed better prognosis on temozolomide (p < 0.05). Conclusion IDH1/2 mutations proved independent prognostic factors in glioma and associated with MGMT methylation for better survival.
Collapse
|
11
|
Bona NP, Pedra NS, Azambuja JH, Soares MSP, Spohr L, Gelsleichter NE, de M Meine B, Sekine FG, Mendonça LT, de Oliveira FH, Braganhol E, Spanevello RM, da Silveira EF, Stefanello FM. Tannic acid elicits selective antitumoral activity in vitro and inhibits cancer cell growth in a preclinical model of glioblastoma multiforme. Metab Brain Dis 2020; 35:283-293. [PMID: 31773434 DOI: 10.1007/s11011-019-00519-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023]
Abstract
Glioblastoma is a devastating tumor affecting the central nervous system with infiltrative capacity, high proliferation rate and chemoresistance. Therefore, it is urgent to find new therapeutic alternatives that improve this prognosis. Herein, we focused on tannic acid (TA) a polyphenol with antioxidant and antiproliferative activities. In this work, the antitumor and antioxidant effects of TA on rat (C6) glioblastoma cells and their cytotoxicity relative to primary astrocyte cultures were evaluated in vitro. Cells were exposed to TA of 6.25 to 75 μM for 24, 48 and/or 72 h. In addition, colony formation, migration and cell adhesion were analyzed and flow cytometry was used to analyze cell death and cell cycle. Next, the action of TA was evaluated in a preclinical glioblastoma model performed on Wistar rats. In this protocol, the animals were treated with a dose of 50 mg/kg/day TA for 15 days. Our results demonstrated that TA induced in vitro selective antiglioma activity, not demonstrating cytotoxicity in astrocyte culture. It induced cell death by apoptosis and cell cycle arrest, reducing formation and size of colonies, cell migration/adhesion and showing to be a potential antioxidant. Interestingly, the antiglioma effect was also observed in vivo, as TA decreased tumor volume by 55%, accompanied by an increase in the area of intratumoral necrosis and infiltration of lymphocytes without causing systemic damage. To the best of our knowledge, this is the first study to report TA activity in a GBM preclinical model. Thus, this natural compound is promising as a treatment for glioblastoma.
Collapse
Affiliation(s)
- Natália P Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nathalia S Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Juliana H Azambuja
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Mayara S P Soares
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Luíza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Nicolly E Gelsleichter
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Bernardo de M Meine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Fernanda G Sekine
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Lorenço T Mendonça
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francine H de Oliveira
- Departamento de Patologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências - Laboratório de Biologia Celular, Departamento de Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Roselia M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elita F da Silveira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|
12
|
Using Magnetic Resonance Perfusion to Stratify Overall Survival in Treated High-Grade Gliomas. Can J Neurol Sci 2019; 46:533-539. [PMID: 31284880 DOI: 10.1017/cjn.2019.225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND MR perfusion imaging is a relatively new technique that may aid in identifying recurrent tumor (RT) in those with radically treated high-grade gliomas (HGG). We aim to assess the relationship between dynamic susceptibility contrast-enhanced MR perfusion (DSC-MRP) and overall survival to establish a baseline for future research and to determine the utility of DSC-MRP as a clinical decision-making and prognostic tool. METHODS We conducted a retrospective cohort study. Adults with pathologically confirmed HGG at the Juravinski Cancer Centre, Ontario between January 2011 and April 2014 with at least one post-treatment DSC-MRP were included. DSC-MRP was interpreted as positive or negative for tumor recurrence by experienced radiologists. The primary outcome was overall survival. RESULTS Sixty-one patients were enrolled. Median survival for patients with a positive DSC-MRP scan was 4.5 months compared with 10.2 months for those with a negative DSC-MRP scan (hazard ratio [unadjusted] = 2.51; 95% confidence interval = 1.10-5.67; p-value = 0.03). Multivariable modeling (adjusted) that included all pre-selected variables showed similar results. CONCLUSION Survival time in patients with HGG is generally low, and almost all patients will demonstrate RT. Our data suggest a positive DSC-MRP correlates with lower overall survival and may signify the presence of highly active RT. These results generate a hypothesis that there may be a prognostic role for the use of serial DSC-MRP for tumor surveillance. More importantly, this biomarker may aid in decision making for treatment plans and palliation.
Collapse
|
13
|
Wang X, Sun Y, Xu T, Qian K, Huang B, Zhang K, Song Z, Qian T, Shi J, Li L. HOXB13 promotes proliferation, migration, and invasion of glioblastoma through transcriptional upregulation of lncRNA HOXC-AS3. J Cell Biochem 2019; 120:15527-15537. [PMID: 31062400 DOI: 10.1002/jcb.28819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 11/08/2022]
Abstract
HOXB13 exerts a close relation in several human cancers. This study explored the role of HOXB13 in glioblastoma (GBM), a brain tissue with the highest aggressive rate and mortality in adults. Through microarray and immunohistochemistry analyses, HOXB13 was highly expressed in GBM tissues. Furthermore, we showed that high-level expression of HOXB13 in GBM was associated with worse survival, suggesting that HOXB13 could be a prognostic marker for patients with GBM. GBM cells U87 and U251 overexpressing HOXB13 showed enhanced proliferation, migration, and invasion relative to the control cells, while knockdown of HOXB13 led to decreased cell proliferation, migration, and invasion abilities. In addition, dual-luciferase report assay, chromatin immunoprecipitation assay, and quantitative real-time polymerase chain reaction data showed that HOXB13 directly bound to HOXC-AS3 promoter. HOXC-AS3 was involved in HOXB13-induced proliferation, migration, and invasion of GBM cells. In summary, this study revealed the prognostic potential of HOXB13 in GBM. We believed that HOXB13/HOXC-AS3 signaling axis can be served as therapeutic targets for this highly aggressive cancer.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tuoye Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Baosheng Huang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaixin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurosurgery, Huangshan City People's Hospital, Huangshan, Anhui, China
| | - Zewu Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tengda Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
14
|
The Role and Real Effect of an Iterative Surgical Approach for the Management of Recurrent High-Grade Glioma: An Observational Analytic Cohort Study. World Neurosurg 2019; 124:e480-e488. [PMID: 30610982 DOI: 10.1016/j.wneu.2018.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND The benefits of multiple interventions on the recurrence of high-grade gliomas are renowned. However, the real effect of repeated operations on the survival parameters does not seem to have been assessed. The aim of the present study was to determine whether reoperation for selected patients is safe and feasible. METHODS A total of 78 patients with high-grade glioma had undergone surgery from 2004 to 2014. All the patients had met the following inclusion criteria: American Society of Anesthesiologists score 1-3, Karnofsky performance scale score >60, and reintervention ≥4 months after the first surgery. The following parameters were evaluated: overall survival (OS) after diagnosis and reintervention, progression-free survival (PFS) after reintervention, number of surgical procedures, and OS of patients who had undergone surgery >2 times. The results were compared with those of 78 patients with high-grade glioma who had undergone adjuvant chemotherapy. RESULTS OS at 1 year was 100%. At 2 years, OS was 39.4% for those with glioblastoma and 58.3% for those with anaplastic astrocytoma. PFS after 6 months was 53.03% for glioblastoma and 75.0% for anaplastic astrocytoma. Of the 78 patients, 55 had undergone reoperation, with 15 requiring a third intervention and 8 requiring 4. Major complications developed in only 2 patients. Statistical analysis revealed no significant differences in complications or worsening neurological status. CONCLUSIONS These data showed excellent outcomes in terms of OS and PFS and clinical conditions after multiple surgical procedures. Therefore, reintervention appears to be a feasible and safe solution for selected patients.
Collapse
|
15
|
Lu G, Rao M, Zhu P, Liang B, El-Nazer RT, Fonkem E, Bhattacharjee MB, Zhu JJ. Triple-drug Therapy With Bevacizumab, Irinotecan, and Temozolomide Plus Tumor Treating Fields for Recurrent Glioblastoma: A Retrospective Study. Front Neurol 2019; 10:42. [PMID: 30766509 PMCID: PMC6366009 DOI: 10.3389/fneur.2019.00042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical studies treating pediatric and adult solid tumors, such as glioblastoma (GBM), with a triple-drug regimen of temozolomide (TMZ), bevacizumab (BEV), and irinotecan (IRI) [TBI] have demonstrated various efficacies, but with no unexpected toxicities. The TBI regimen has never been studied in recurrent GBM (rGBM) patients. In this retrospective study, we investigated the outcomes and side effects of rGBM patients who had received the TBI regimen. We identified 48 adult rGBM patients with a median age of 56 years (range: 26-76), who received Tumor Treating Fields (TTFields) treatment for 30 days or longer, and concurrent salvage chemotherapies. The patients were classified into two groups based on chemotherapies received: TBI with TTFields (TBI+T, N = 18) vs. bevacizumab (BEV)-based chemotherapies with TTFields (BBC+T, N = 30). BBC regimens were either BEV monotherapy, BEV+IRI or BEV+CCNU. Patients in TBI+T group received on average 19 cycles of TMZ, 26 and 21 times infusions with BEV and IRI, respectively. Median overall survival (OS) and progression-free survival (PFS) for rGBM (OS-R and PFS-R) patients who received TBI+T were 18.9 and 10.7 months, respectively. In comparison, patients who received BBC+T treatment had OS-R and PFS-R of 11.8 (P > 0.05) and 4.7 (P < 0.05) months, respectively. Although the median PFS results were significantly different by 1.5 months (6.6 vs. 5.1) between TBI+T and BBC+T groups, the median OS difference of 14.7 months (32.5 vs. 17.8) was more pronounced, P < 0.05. Patients tolerated TBI+T or BBC+T treatments well and there were no unexpected toxicities. The most common side effects from TBI+T treatment included grade III hypertension (38.9%) and leukopenia (22.2%). In conclusion, the TBI regimen might play a role in the improvement of PFS-R and OS-R among rGBM patients. Prospective studies with a larger sample size are warranted to study the efficacy and toxicity of TBI+T regimen for rGBM.
Collapse
Affiliation(s)
- Guangrong Lu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Mayank Rao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Ping Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
- Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, UTHealth School of Public Health, Houston, TX, United States
| | - Buqing Liang
- Baylor Scott and White Health, Temple, TX, United States
| | | | - Ekokobe Fonkem
- Baylor Scott and White Health, Temple, TX, United States
| | - Meenakshi B. Bhattacharjee
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, United States
| |
Collapse
|
16
|
Olivares-Bañuelos T, Gutiérrez-Rodríguez AG, Méndez-Bellido R, Tovar-Miranda R, Arroyo-Helguera O, Juárez-Portilla C, Meza-Menchaca T, Aguilar-Rosas LE, Hernández-Kelly LCR, Ortega A, Zepeda RC. Brown Seaweed Egregia menziesii's Cytotoxic Activity against Brain Cancer Cell Lines. Molecules 2019; 24:molecules24020260. [PMID: 30641974 PMCID: PMC6359252 DOI: 10.3390/molecules24020260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/24/2022] Open
Abstract
Brown seaweeds contain bioactive compounds that show anti-tumorigenic effects. These characteristics have been repeatedly observed in the Lessoniaceae family. Egregia menziesii, a member of this family, is distributed in the North Pacific and its properties have been barely studied. We evaluated herein the cytotoxic and anti-proliferative activity of extracts of this seaweed, through toxicity assay in Artemia salina and lymphocytes, and MTT proliferation assay, in Bergmann glia cells, 3T3-L1 and brain cancer cell lines. E. menziesii’s extracts inhibited the spread of all the tested cell lines. The hexane extract showed the highest cytotoxic activity, while the methanol extract was moderately cytotoxic. Interestingly, seaweed extracts displayed a selective inhibition pattern. These results suggest that E. menziesii’s extracts might be good candidates for cancer prevention and the development of novel chemotherapies due to its highest cytotoxicity in transformed cells compare to glia primary cultures.
Collapse
Affiliation(s)
- Tatiana Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | | | - Rodolfo Méndez-Bellido
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n. Col., Industrial Ánimas, Xalapa, Veracruz 91190, Mexico.
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Básicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n. Col., Industrial Ánimas, Xalapa, Veracruz 91190, Mexico.
| | - Omar Arroyo-Helguera
- Instituto de Salud Pública, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n, Col., Industrial Ánimas, Xalapa, Veracruz 91190, Mexico.
| | - Claudia Juárez-Portilla
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col., Industrial Ánimas, Xalapa, Veracruz 91190, Mexico.
| | - Thuluz Meza-Menchaca
- Laboratorio de Genómica Humana, Facultad de Medicina, Universidad Veracruzana, Médicos y Odontólogos S/N, Col., Unidad del Bosque, Xalapa, Veracruz 91010, Mexico.
| | - Luis E Aguilar-Rosas
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Baja California 22860, Mexico.
| | - Luisa C R Hernández-Kelly
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07300, Mexico.
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07300, Mexico.
| | - Rossana C Zepeda
- Centro de Investigaciones Biomédicas, Universidad Veracruzana. Av. Dr. Luis Castelazo Ayala s/n. Col., Industrial Ánimas, Xalapa, Veracruz 91190, Mexico.
| |
Collapse
|
17
|
Glioblastoma and primary central nervous system lymphoma: Preoperative differentiation by using MRI-based 3D texture analysis. Clin Neurol Neurosurg 2018; 173:84-90. [DOI: 10.1016/j.clineuro.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023]
|
18
|
Lu GF, You CY, Chen YS, Jiang H, Zheng X, Tang WW, Wang XY, Xu HY, Geng F. MicroRNA-671-3p promotes proliferation and migration of glioma cells via targeting CKAP4. Onco Targets Ther 2018; 11:6217-6226. [PMID: 30288057 PMCID: PMC6162991 DOI: 10.2147/ott.s177325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background and objective Glioma is one of the most aggressive and malignant cancers originating from the human brain. Increasing evidence suggests that aberrant expression of microRNAs (miRNAs) frequently occurs in glioma and miRNAs are critical regulators of glioma. miR-671 has recently been revealed to be a novel miRNA that plays a vital role in human glioblastoma multiforme. However, the functional role and underlying mechanisms of miR-671-3p require further analysis. Materials and methods Western blot and fluorescence quantitative PCR were used to assess the expression of cytoskeleton-associated protein 4 (CKAP4) and miR-671-3p, respectively. A Cell Counting Kit-8 (CCK-8) assay and a Boyden chamber assay were used to detect the proliferative and migratory abilities of glioma cells. A luciferase assay was used to determine the target gene of miR-671-3p. Apoptosis was analyzed by flow cytometry. Results Our results revealed that overexpression of miR-671-3p promoted cell proliferation and migration in vitro. Meanwhile, forced expression of miR-671-3p reduced apoptosis. In contrast, inhibition of miR-671-3p had the opposite effects. We also identified CKAP4 to be a direct target of miR-671-3p. The expression levels of CKAP4 were decreased in clinical samples and inversely correlated with miR-671-3p expression levels. Ectopic expression of CKAP4 reversed the promotive activity of miR-671-3p in the proliferation and migration and enhanced apoptosis. Conclusion Our study demonstrates that miR-671-3p is a predominant positive regulator of glioma progression, thus providing new insights into the molecular mechanisms of glioma development. The findings suggest that the miR-6713p/CKAP4 axis may serve as a potential therapeutic target or biomarker in glioma.
Collapse
Affiliation(s)
- Gui-Feng Lu
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Chun-Yue You
- Department of Neurosurgery, The Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yuan-Shou Chen
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| | - Hui Jiang
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| | - Xiang Zheng
- Department of Genetics, Zunyi Medical University, Zunyi 563003, China
| | - Wei-Wei Tang
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Xian-Yan Wang
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Hai-Yan Xu
- Department of Pathophysiology, Zunyi Medical University, Zunyi 563003, China
| | - Fei Geng
- Department of Physiology, Zunyi Medical University, Zunyi 563003, China,
| |
Collapse
|
19
|
ABT-888 restores sensitivity in temozolomide resistant glioma cells and xenografts. PLoS One 2018; 13:e0202860. [PMID: 30153289 PMCID: PMC6112648 DOI: 10.1371/journal.pone.0202860] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/12/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Temozolomide (TMZ) is active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced. However, even in responsive cases, its beneficial effect is undermined by the emergence of drug resistance. Here, we tested whether inhibition of poly (ADP-ribose) polymerase-1 and -2 (PARP) enhanced the effectiveness of TMZ. METHODS Using patient derived brain tumor initiating cells (BTICs) and orthotopic xenografts as models of newly diagnosed and recurrent high-grade glioma, we assessed the effects of TMZ, ABT-888, and the combination of TMZ and ABT-888 on the viability of BTICs and survival of tumor-bearing mice. We also studied DNA damage repair, checkpoint protein phosphorylation, and DNA replication in mismatch repair (MMR) deficient cells treated with TMZ and TMZ plus ABT-888. RESULTS Cells and xenografts derived from newly diagnosed MGMT methylated high-grade gliomas were sensitive to TMZ while those derived from unmethylated and recurrent gliomas were typically resistant. ABT-888 had no effect on the viability of BTICs or tumor bearing mice, but co-treatment with TMZ restored sensitivity in resistant cells and xenografts from newly diagnosed unmethylated gliomas and recurrent gliomas with MSH6 mutations. In contrast, the addition of ABT-888 to TMZ had little sensitizing effect on cells and xenografts derived from newly diagnosed methylated gliomas. In a model of acquired TMZ resistance mediated by loss of MMR gene MSH6, re-sensitization to TMZ by ABT-888 was accompanied by persistent DNA strand breaks, re-engagement of checkpoint kinase signaling, and interruption of DNA synthesis. CONCLUSION In laboratory models, the addition of ABT-888 to TMZ overcame resistance to TMZ.
Collapse
|
20
|
Li Q, Wang M, Wang N, Wang J, Qi L, Mao P. Downregulation of microRNA-216b contributes to glioma cell growth and migration by promoting AEG-1-mediated signaling. Biomed Pharmacother 2018; 104:420-426. [PMID: 29787989 DOI: 10.1016/j.biopha.2018.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates microRNA-216b (miR-216b) plays an important role in the development and progression of various cancers. However, little is known about the function of miR-216b in gliomas. In this study, we aimed to investigate the expression level and functional significance of miR-216b in gliomas. We found that miR-216b was significantly downregulated in glioma specimens and cell lines. Overexpression of miR-216b suppressed the growth and migration of glioma cells, while miR-216b inhibition showed the opposite effects. Astrocyte elevated gene-1 (AEG-1) was predicted as a potential target gene of miR-216b by bioinformatics analysis. A dual-luciferase reporter assay showed that miR-216b could directly target the 3'-untranslated region of AEG-1. RT-qPCR and western blot analysis showed that miR-216 negatively regulated AEG-1 expression in glioma cells. Correlation analysis revealed an inverse correlation between miR-216b and AEG-1 in clinical glioma specimens. miR-216b also regulated the activation of nuclear factor-κB and Wnt signaling in glioma cells. Moreover, restoration of AEG-1 expression partially reversed the inhibitory effect of miR-216b overexpression on glioma cell growth and migration. Overall, these results revealed a tumor suppressive role of miR-216b in glioma tumorigenesis, and identified AEG-1 as a target gene of miR-216b action. Our study suggests that miR-216b can be potentially targeted for the development of novel therapies for gliomas.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
21
|
Pandith AA, Qasim I, Zahoor W, Shah P, Bhat AR, Sanadhya D, Shah ZA, Naikoo NA. Concordant association validates MGMT methylation and protein expression as favorable prognostic factors in glioma patients on alkylating chemotherapy (Temozolomide). Sci Rep 2018; 8:6704. [PMID: 29712977 PMCID: PMC5928198 DOI: 10.1038/s41598-018-25169-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/03/2018] [Indexed: 01/13/2023] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and its subsequent loss of protein expression has been identified to have a variable impact on clinical outcome of glioma patients indicated for chemotherapy with alkylating agents (Temozolomide). This study investigated methylation status of MGMT gene along with in situ protein expression in malignant glioma patients of different histological types to evaluate the associated clinical outcome vis-a-vis use of alkylating drugs and radiotherapy. Sixty three cases of glioma were evaluated for MGMT promoter methylation by methylation-specific PCR (MS-PCR) and protein expression by immunostaining (IHC). Methylation status of MGMT and loss of protein expression showed a very high concordant association with better survival and progression free survival (PFS) (p < 0.0001). Multivariate Cox regression analysis showed both MGMT methylation and loss of protein as significant independent prognostic factors in glioma patients with respect to lower Hazard Ratio (HR) for better OS and PFS) [p < 0.05]. Interestingly concordant MGMT methylation and lack of protein showed better response in TMZ therapy treated patient subgroups with HR of 2.02 and 0.76 (p < 0.05). We found the merits of prognostication of MGMT parameters, methylation as well as loss of its protein as predictive factors for favorable outcome in terms of better survival for TMZ therapy.
Collapse
Affiliation(s)
- Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India.
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Wani Zahoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J & K, India
| | - Parveen Shah
- Department of Pathology, SKIMS, Srinagar, J & K, India
| | - Abdul R Bhat
- Department of Neurosurgery, SKIMS, Srinagar, J & K, India
| | - Dheera Sanadhya
- School of Life and Basic Sciences, Jaipur National University, Jaipur, 302025, India
| | - Zafar A Shah
- Immunology and Molecular Medicine, SKIMS, Srinagar, J & K, India
| | - Niyaz A Naikoo
- Department of Biotechnology, Higher Education Department, Cluster University, Srinagar, J & K, India
| |
Collapse
|
22
|
Zhu P, Du XL, Lu G, Zhu JJ. Survival benefit of glioblastoma patients after FDA approval of temozolomide concomitant with radiation and bevacizumab: A population-based study. Oncotarget 2018; 8:44015-44031. [PMID: 28467795 PMCID: PMC5546458 DOI: 10.18632/oncotarget.17054] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/20/2017] [Indexed: 11/25/2022] Open
Abstract
Few population-based analyses have investigated survival change in glioblastoma multiforme (GBM) patients treated with concomitant radiotherapy-temozolomide (RT-TMZ) and adjuvant temozolomide (TMZ) and then bevacizumab (BEV) after Food and Drug Administration (FDA) approval, respectively. We aimed to explore the effects on survival with RT-TMZ, adjuvant TMZ and BEV in general GBM population based on the Surveillance, Epidemiology, and End Results (SEER) and Texas Cancer Registry (TCR) databases. A total of 28933 GBM patients from SEER (N = 24578) and TCR (N = 4355) between January 2000 and December 2013 were included. Patients were grouped into three calendar periods based on date of diagnosis: pre-RT-TMZ and pre-BEV (1/2000-2/2005, P1), post-RT-TMZ and pre-BEV (3/2005-4/2009, P2), and post-RT-TMZ and post-BEV (5/2009-12/2013, P3). The association between calendar period of diagnosis and survival was analyzed in SEER and TCR, separately, by the Kaplan-Meier method and Cox proportional hazards model. We found a significant increase in median overall survival (OS) across the three periods in both populations. In multivariate models, the risk of death was significantly reduced during P2 and further decreased in P3, which remained unchanged after stratification. Comparison and validation analysis were performed in the combined dataset, and consistent results were observed. We conclude that the OS of GBM patients in a "real-world" setting has been steadily improved from January 2000 to December 2013, which likely resulted from the administrations of TMZ concomitant with RT and adjuvant TMZ for newly diagnosed GBM and then BEV for recurrent GBM after respective FDA approval.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Public Health, Houston, TX 77030, USA.,The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| | - Xianglin L Du
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Public Health, Houston, TX 77030, USA
| | - Guangrong Lu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| | - Jay-Jiguang Zhu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, and Memorial Hermann at Texas Medical Center, Houston, TX 77030, USA
| |
Collapse
|
23
|
Li Q, Zhou L, Wang M, Wang N, Li C, Wang J, Qi L. MicroRNA-613 impedes the proliferation and invasion of glioma cells by targeting cyclin-dependent kinase 14. Biomed Pharmacother 2018; 98:636-642. [PMID: 29289838 DOI: 10.1016/j.biopha.2017.12.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has suggested that microRNAs (miRNAs) are critical regulators of tumorigenesis. MicroRNA-613 (miR-613) has recently been reported as a novel tumor-related miRNA that plays an important role in multiple cancers. However, the expression and functional significance of miR-613 in glioma remains unclear. In this study, we aimed to investigate the biological function of miR-613 in glioma. We found that miR-613 expression was frequently downregulated in glioma tissues and cell lines compared with normal controls. Overexpression of miR-613 impeded proliferation and colony formation and induced cell cycle arrest in G0/G1 phase, and also inhibited the invasive ability of glioma cells. By contrast, miR-613 inhibition had the opposite effects. Bioinformatic analysis and dual-luciferase reporter assays showed that miR-613 directly targets the 3'-untranslated region of cyclin-dependent kinase 14 (CDK14). Real-time quantitative PCR and Western blot analysis showed that CDK14 expression is negatively regulated by miR-613. In addition, miR-613 expression was inversely correlated with CDK14 expression in clinical glioma tissues. Moreover, overexpression of miR-613 decreased the protein expression of β-catenin and inhibited the activation of Wnt signaling. Importantly, the antitumor effects of miR-613 were significantly reversed by CDK14 overexpression. Overall, our results show that miR-613 inhibits glioma cell proliferation and invasion by downregulating CDK14, suggesting that miR-613 and CDK14 may serve as potential therapeutic targets for the treatment of glioma.
Collapse
Affiliation(s)
- Qi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lei Zhou
- Department of Ultrasonography, Xi'an No. 4 Hospital, Xi'an, Shaanxi 710004, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chuankun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Lei Qi
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
24
|
Downregulation of miR-16 via URGCP pathway contributes to glioma growth. Sci Rep 2017; 7:13470. [PMID: 29044221 PMCID: PMC5647380 DOI: 10.1038/s41598-017-14035-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/02/2017] [Indexed: 01/25/2023] Open
Abstract
Experimental and clinical evidence points to a critical role of Upregulator of cell proliferation (URGCP/URG4) in controlling the progression of multiple tumors. However, the oncogenic role of URGCP in glioma still remains elusive. In this study we tried to investigate the oncogenic roles and molecular mechanisms of URGCP in glioma. We found that the levels of URGCP were upregulated in glioma, and that the high-levels of URGCP indicated a worse prognosis in glioma patients. URGCP and miR-16 are critical for glioma growth: silencing URGCP (shURGCP) inhibited glioma growth, while, the shURGCP-mediated proliferative inhibition could be recovered by antagonizing miR-16 (anta-miR-16) in vivo and in vitro. Mechanically, URGCP repressed miR-16 expression via activating NF-κB/c-myc pathway in glioma; Cyclins D1 and Cyclin E1 were identified as the direct targets of miR-16, thus, URGCP-mediated miR-16 downregulation accelerated cell proliferation by upregulating Cyclin D1 and Cyclin E1 expression. All these results suggested that URGCP accelerates glioma growth through the NF-κB/c-myc/miR-16/Cyclin D1/E1 pathway, and both URGCP and miR-16 function as a novel cell cycle regulators in glioma and could be considered as potential targets for glioma therapy.
Collapse
|
25
|
BKM120 sensitizes C6 glioma cells to temozolomide via suppression of the PI3K/Akt/NF-κB/MGMT signaling pathway. Oncol Lett 2017; 14:6597-6603. [PMID: 29151909 PMCID: PMC5680702 DOI: 10.3892/ol.2017.7034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/19/2017] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma is the most common type of malignant intracranial tumor in adults. Temozolomide (TMZ), as the first-line chemotherapy agent used in patients with glioblastoma, has demonstrated different effects in patients due to the expression of O6-methylguanine-DNA methyltransferase (MGMT) which is able to repair the DNA lesions induced by TMZ. The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway is over-activated in glioblastoma and has been revealed to be potentially implicated in resistance to TMZ. BKM120, a selective pan class I PI3K inhibitor, has been reported to facilitate apoptosis and reverse drug resistance in advanced solid tumors. The present study aims to investigate whether BKM120 is able to sensitize glioma cells to TMZ. C6 glioma cells were treated with BKM120 and/or TMZ for 12, 24 and 48 h, respectively. Cell Counting Kit-8 assays were performed to determine cell viability. The level of apoptosis was evaluated by Hoechst 33342 and TUNEL staining, and the levels of cleaved caspase-3 and Bcl-2-like protein 4 (Bax) expression was measured. Furthermore, the present study investigated the possible mechanism underlying BKM120 reverse chemoresistance to TMZ. The downstream targets of PI3K, including phosphorylated (p)-Akt, nuclear factor (NF)-B p65, were analyzed by western blotting. The MGMT transcription levels in monotherapy and combination therapy were demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The present study revealed that monotherapy treatments with either drug required a high concentration found reduction in cell viability. However, a low concentration of BKM120 inhibited the PI3K/Akt/NF-κB signaling pathway activity in glioma cells and significantly increased TMZ cytotoxicity. The coefficient of drug interaction was ~0.7. Results from the TUNEL assay, Hoechst 33342 staining and evaluation of the levels of cleaved caspase-3 and Bax expression also confirmed the finding that the combination treatment induced a higher level of apoptosis compared with the TMZ monotherapy. RT-qPCR demonstrated that the combination strategy reversed the TMZ-induced MGMT over-transcription. The reduction of NF-κB p65 in combination treatment supported the hypothesis that BKM120 may mediate MGMT transcription via inhibition of NF-κB p65. In conclusion, BKM120 and TMZ demonstrated strong synergistic cytotoxicity in C6 glioma cells. The BKM120-induced NF-κB p65 inhibition may be involved in the mediation of MGMT transcription to reverse TMZ-resistance in C6 glioma cells.
Collapse
|
26
|
Wu X, Xu B, Yang C, Wang W, Zhong D, Zhao Z, He L, Hu Y, Jiang L, Li J, Song L, Zhang W. Nucleolar and spindle associated protein 1 promotes the aggressiveness of astrocytoma by activating the Hedgehog signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:127. [PMID: 28899410 PMCID: PMC5596921 DOI: 10.1186/s13046-017-0597-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND The prognosis of human astrocytoma is poor, and the molecular alterations underlying its pathogenesis still needed to be elucidated. Nucleolar and spindle associated protein 1 (NUSAP1) was observed in several types of cancers, but its role in astrocytoma remained unknown. METHODS The expression of NUSAP1 in astrocytoma cell lines and tissues were measured with western blotting and Real-Time PCR. Two hundred and twenty-one astrocytoma tissue samples were analyzed by immunochemistry to demonstrate the correlation between the NUSAP1 expression and clinicopathological characteristics. 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay, colony formation, transwell matrix penetration assay, wound healing assay and anchorage-independent growth assay were used to investigate the biological effect of NUSAP1 in astrocytoma. An intracranial brain xenograft tumor model was used to confirm the oncogenic role of NUSAP1 in human astrocytoma. Luciferase reporter assay was used to investigate the effect of NUSAP1 on Hedgehog signaling pathway. RESULTS NUSAP1 was markedly overexpressed in astrocytoma cell lines and tissues compared with normal astrocytes and brain tissues. NUSAP1 was found to be overexpressed in 152 of 221 (68.78%) astrocytoma tissues, and was significantly correlated to poor survival. Further, ectopic expression or knockdown of NUSAP1 significantly promoted or inhibited, respectively, the invasive ability of astrocytoma cells. Moreover, intracranial xenografts of astrocytoma cells engineered to express NUSAP1 were highly invasive compared with the parental cells. With regard to its molecular mechanism, upregulation of NUSAP1 in astrocytoma cells promoted the nuclear translocation of GLI family zinc finger 1 (GLI1) and upregulated the downstream genes of the Hedgehog pathway. CONCLUSION These findings indicate that NUSAP1 contributes to the progression of astrocytoma by enhancing tumor cell invasiveness via activation of the Hedgehog signaling pathway, and that NUSAP1 might be a potential prognostic biomarker as well as a target in astrocytoma.
Collapse
Affiliation(s)
- Xianqiu Wu
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Benke Xu
- Department of Anatomy, Medical School of Yangtzeu University, Guangzhou, China
| | - Chao Yang
- Department of Neurosurgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wentao Wang
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Dequan Zhong
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Zhan Zhao
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Longshuang He
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Yuanjun Hu
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China
| | - Lili Jiang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Libing Song
- State Key Laboratory of Oncology in Southern China and Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Wei Zhang
- Neurosurgical Research Institute, the First Affiliated Hospital of Guangdong Pharmaceutics University, Guangzhou, 510060, China.
| |
Collapse
|
27
|
Zatelli MC, Grossrubatscher EM, Guadagno E, Sciammarella C, Faggiano A, Colao A. Circulating tumor cells and miRNAs as prognostic markers in neuroendocrine neoplasms. Endocr Relat Cancer 2017; 24:R223-R237. [PMID: 28389504 DOI: 10.1530/erc-17-0091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 01/02/2023]
Abstract
The prognosis of neuroendocrine neoplasms (NENs) is widely variable and has been shown to associate with several tissue- and blood-based biomarkers in different settings. The identification of prognostic factors predicting NEN outcome is of paramount importance to select the best clinical management for these patients. Prognostic markers have been intensively investigated, also taking advantage of the most modern techniques, in the perspective of personalized medicine and appropriate resource utilization. This review summarizes the available data on the possible role of circulating tumor cells and microRNAs as prognostic markers in NENs.
Collapse
Affiliation(s)
- Maria Chiara Zatelli
- Department of Medical SciencesSection of Endocrinology and Internal Medicine, University of Ferrara, Ferrara, Italy
| | | | - Elia Guadagno
- Department of Advanced Biomedical SciencesPathology Section, University of Naples Federico II, Naples, Italy
| | | | - Antongiulio Faggiano
- Thyroid and Parathyroid Surgery UnitIstituto Nazionale per lo Studio e la Cura Dei Tumori 'Fondazione G. Pascale' - IRCCS, Naples, Italy
| | | |
Collapse
|
28
|
Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol Sin 2017; 38:591-613. [PMID: 28317871 DOI: 10.1038/aps.2016.167] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/21/2016] [Indexed: 12/12/2022] Open
Abstract
Glioma accounts for the majority of human brain tumors. With prevailing treatment regimens, the patients have poor survival rates. In spite of current development in mainstream glioma therapy, a cure for glioma appears to be out of reach. The infiltrative nature of glioma and acquired resistance substancially restrict the therapeutic options. Better elucidation of the complicated pathobiology of glioma and proteogenomic characterization might eventually open novel avenues for the design of more sophisticated and effective combination regimens. This could be accomplished by individually tailoring progressive neuroimaging techniques, terminating DNA synthesis with prodrug-activating genes, silencing gliomagenesis genes (gene therapy), targeting miRNA oncogenic activity (miRNA-mRNA interaction), combining Hedgehog-Gli/Akt inhibitors with stem cell therapy, employing tumor lysates as antigen sources for efficient depletion of tumor-specific cancer stem cells by cytotoxic T lymphocytes (dendritic cell vaccination), adoptive transfer of chimeric antigen receptor-modified T cells, and combining immune checkpoint inhibitors with conventional therapeutic modalities. Thus, the present review captures the latest trends associated with the molecular mechanisms involved in glial tumorigenesis as well as the limitations of surgery, radiation and chemotherapy. In this article we also critically discuss the next generation molecular therapeutic strategies and their mechanisms for the successful treatment of glioma.
Collapse
|
29
|
Benefit of re-operation and salvage therapies for recurrent glioblastoma multiforme: results from a single institution. J Neurooncol 2017; 132:419-426. [PMID: 28374095 DOI: 10.1007/s11060-017-2383-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/22/2017] [Indexed: 10/19/2022]
Abstract
The optimal management of recurrent glioblastoma (GBM) has yet to be determined. We aim to assess the benefits of re-operation and salvage therapies (chemotherapy and/or re-irradiation) for recurrent GBM and to identify prognostic factors associated with better survival. All patients who underwent surgery for GBM between January 2005 and December 2012 followed by adjuvant radiotherapy, and who developed GBM recurrence on imaging were included in this retrospective study. Univariate and multivariate analysis was performed using Cox models in order to identify factors associated with overall survival (OS). One hundred and eighty patients treated to a dose of 60 Gy were diagnosed with recurrent GBM. At a median follow-up time of 6.2 months, the median survival (MS) from time of recurrence was 6.6 months. Sixty-nine patients underwent repeat surgery for recurrence based on imaging. To establish the benefits of repeat surgery and salvage therapies, 68 patients who underwent repeat surgery were matched to patients who did not based on extent of initial resection and presence of subventricular zone involvement at recurrence. MS for patients who underwent re-operation was 9.6 months, compared to 5.3 months for patients who did not have repeat surgery (p < 0.0001). Multivariate analysis in the matched pairs confirmed that repeat surgery with the addition of other salvage treatment can significantly affect patient outcome (HR 0.53). Re-operation with additional salvage therapies for recurrent GBM provides survival prolongation at the time of progression.
Collapse
|
30
|
Overexpression of SMC4 activates TGFβ/Smad signaling and promotes aggressive phenotype in glioma cells. Oncogenesis 2017; 6:e301. [PMID: 28287612 PMCID: PMC5533949 DOI: 10.1038/oncsis.2017.8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/21/2017] [Accepted: 01/31/2017] [Indexed: 12/18/2022] Open
Abstract
Overexpression of structural maintenance of chromosomes 4 (SMC4) has been reported to be involved in tumor cell growth, migration and invasion, and to be correlated with poor prognosis of cancer patient. However, its clinical significance and biological role in glioma remain unknown. Herein, we found that SMC4 expression at both mRNA and protein level was markedly increased in glioma cells and clinical tissues and that it correlated with poor prognosis. SMC4 overexpression markedly promoted the glioma cell proliferation rate and migration and invasive capability in vitro and in vivo, whereas SMC4 downregulation reduced it. Moreover, the transforming growth factor β (TGFβ)/Smad signaling pathway, which was activated in SMC4-transduced glioma cells and inhibited in SMC4-silenced glioma cells, contributed to SMC4-mediated glioma cell aggressiveness. Our results provide new insight into the oncofunction of SMC4 and the mechanism by which the TGFβ/Smad pathway is hyperactivated in gliomas, indicating that SMC4 is a valuable prognostic factor and a potential therapeutic target in gliomas.
Collapse
|
31
|
Li J, Cai J, Zhao S, Yao K, Sun Y, Li Y, Chen L, Li R, Zhai X, Zhang J, Jiang C. GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:184. [PMID: 27894350 PMCID: PMC5127098 DOI: 10.1186/s13046-016-0463-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of downregulating Hedgehog pathway by GANT61 on human glioma cells, examine the consequent changes of temozolomide (TMZ)-induced effects and explore the molecular mechanisms. METHODS The cytotoxicity of a Gli1/2 inhibitor, GANT61 was examined both alone and in combination with TMZ in human glioma cell lines. The mRNA and protein expression alterations were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. CCK-8 assay detected the cell proliferative capability. Apoptotic cell number was measured by flow cytometry. The transwell assay was used to test the cell invasive capability. DNA damage effect was identified by COMET assay and γH2AX expression. RESULTS Proliferation of tumor cells treated with GANT61 in combination with TMZ was significantly suppressed compared with those treated with either drug used alone. The combination treatment induced a higher rate of apoptosis, DNA damage and reduced the invasive capability of glioma cells. DNA damage repair enzyme MGMT and the Notch1 pathway increased in the cells treated by TMZ treatment. However, GANT61 could abrogated the protein increasing. CONCLUSIONS GANT61 sensitizes glioma cells to TMZ treatment by enhancing DNA damage effect, decreasing MGMT expression and the Notch1 pathway.
Collapse
Affiliation(s)
- Jianlong Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China
| | - Kun Yao
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Yongli Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Ruiyan Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China.,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China
| | - Xiuwei Zhai
- Department of Neurosurgery, Daqing LongNan Hospital, Daqing, 163001, China
| | - Junhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang, 150086, Harbin, People's Republic of China. .,Neuroscience Institute, Heilongjiang Academy of Medical Sciences, Harbin, 150086, China. .,Chinese Glioma Cooperative Group (CGCG), Beijing, 100050, China.
| |
Collapse
|
32
|
Lepannetier S, Zanou N, Yerna X, Emeriau N, Dufour I, Masquelier J, Muccioli G, Tajeddine N, Gailly P. Sphingosine-1-phosphate-activated TRPC1 channel controls chemotaxis of glioblastoma cells. Cell Calcium 2016; 60:373-383. [PMID: 27638096 DOI: 10.1016/j.ceca.2016.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 01/21/2023]
Abstract
TRP channels are involved in the control of a broad range of cellular functions such as cell proliferation and motility. We investigated the gating mechanism of TRPC1 channel and its role in U251 glioblastoma cells migration in response to chemotaxis by platelet-derived growth factor (PDGF). PDGF induced an influx of Ca2+ that was partially inhibited after pretreatment of the cells with SKI-II, a specific inhibitor of sphingosine kinase producing sphingosine-1-P (S1P). S1P by itself also induced an entry of Ca2+. Interestingly, PDGF- and S1P-induced entries of Ca2+ were lost in siRNA-TRPC1 treated cells. PDGF-induced chemotaxis of U251 cells was dramatically inhibited in cells treated with SKI-II. This effect was almost completely rescued by addition of synthetic S1P. Chemotaxis was also completely lost in siRNA-TRPC1 treated cells and interestingly, the rescue of migration of cells treated with SKI-II by S1P was dependent on the expression of TRPC1. Immunocytochemistry revealed that, in response to PDGF, TRPC1 translocated from inside of the cell to the front of migration (lamellipodes). This effect seemed PI3K dependent as it was inhibited by cell pre-treatment with LY294002, a PI3-kinase inhibitor. Our results thus identify S1P as a potential activator of TRPC1, a channel involved in cell orientation during chemotaxis by PDGF.
Collapse
Affiliation(s)
- Sophie Lepannetier
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Nadège Zanou
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Noémie Emeriau
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Inès Dufour
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Julien Masquelier
- Université catholique de Louvain, Louvain Drug Research Institute, av. Mounier 72, box B1.72.01, 1200 Brussels, Belgium
| | - Giulio Muccioli
- Université catholique de Louvain, Louvain Drug Research Institute, av. Mounier 72, box B1.72.01, 1200 Brussels, Belgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Cell Physiology, av. Mounier 53, box B1.53.17, 1200 Brussels, Belgium.
| |
Collapse
|
33
|
Han F, Hu R, Yang H, Liu J, Sui J, Xiang X, Wang F, Chu L, Song S. PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis. Onco Targets Ther 2016; 9:3485-92. [PMID: 27366085 PMCID: PMC4913532 DOI: 10.2147/ott.s99942] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We conducted this meta-analysis based on eligible trials to investigate the relationship between phosphatase and tensin homolog (PTEN) genetic mutation and glioma patients' survival. METHODS PubMed, Web of Science, and EMBASE were searched for eligible studies regarding the relationship between PTEN genetic mutation and glioma patients' survival. The primary outcome was the overall survival of glioma patient with or without PTEN genetic mutation, and second outcome was prognostic factors for the survival of glioma patient. A fixed-effects or random-effects model was used to pool the estimates according to the heterogeneity among the included studies. RESULTS Nine cohort studies, involving 1,173 patients, were included in this meta-analysis. Pooled results suggested that glioma patients with PTEN genetic mutation had a significant shorter overall survival than those without PTEN genetic mutation (hazard ratio [HR] =2.23, 95% confidence interval [CI]: 1.35, 3.67; P=0.002). Furthermore, subgroup analysis indicated that this association was only observed in American patients (HR =2.19, 95% CI: 1.23, 3.89; P=0.008), but not in Chinese patients (HR =1.44, 95% CI: 0.29, 7.26; P=0.657). Histopathological grade (HR =1.42, 95% CI: 0.07, 28.41; P=0.818), age (HR =0.94, 95% CI: 0.43, 2.04; P=0.877), and sex (HR =1.28, 95% CI: 0.55, 2.98; P=0.564) were not significant prognostic factors for the survival of patients with glioma. CONCLUSION Current evidence indicates that PTEN genetic mutation is associated with poor prognosis in glioma patients. However, this finding is derived from data in observational studies, potentially subject to selection bias, and hence well conducted, high-quality randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Feng Han
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Rong Hu
- Department of Histology and Embryology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jian Liu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Jianmei Sui
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xin Xiang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Fan Wang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Liangzhao Chu
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shibin Song
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
34
|
YANG JINGHUI, YANG QIWEI, YU JING, LI XIMENG, YU SHAN, ZHANG XUEWEN. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways. Oncol Rep 2016; 35:3566-76. [DOI: 10.3892/or.2016.4757] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
|
35
|
Späth F, Andersson U, Dahlin AM, Langseth H, Hovig E, Johannesen TB, Grankvist K, Björkblom B, Wibom C, Melin B. Pre-diagnostic serum levels of EGFR and ErbB2 and genetic glioma risk variants: a nested case-control study. Tumour Biol 2016; 37:11065-72. [PMID: 26906551 PMCID: PMC4999462 DOI: 10.1007/s13277-015-4742-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/27/2015] [Indexed: 11/29/2022] Open
Abstract
Genetic variants have been associated with the risk of developing glioma, but functional mechanisms on disease phenotypic traits remain to be investigated. One phenotypic trait of glioblastoma is the mutation and amplification of the epidermal growth factor receptor (EGFR) gene. We investigated associations between pre-diagnostic serum protein concentrations of EGFR and ErbB2, both members of the EGFR family, and future risk of glioma. Further, we studied if EGFR glioma risk variants were associated with EGFR and ErbB2 serum levels. We assessed the associations between genetic glioma risk variants and serum concentrations of EGFR and ErbB2, as measured in pre-diagnostic cohort serum samples of 593 glioma patients and 590 matched cancer-free controls. High serum EGFR and ErbB2 levels were associated with risk of developing glioblastoma (P = 0.008; OR = 1.58, 95 % CI = 1.13–2.22 and P = 0.017, OR = 1.63, 95 % CI = 1.09–2.44, respectively). High serum ErbB2 concentration was also associated with glioma risk overall (P = 0.049; OR = 1.39, 95 % CI = 1.00–1.93). Glioma risk variants were not associated with high serum protein abundance. In contrast, the EGFR risk variant rs4947986 (T) was correlated with decreased EGFR serum levels (study cohort P = 0.024 and controls P = 0.009). To our knowledge, this is the first study showing an association of EGFR and ErbB2 serum levels with glioma more than a decade before diagnosis, indicating that EGFR and ErbB2 serum proteins are important in early gliomagenesis. However, we did not find evidence that glioma risk variants were associated with high pre-diagnostic serum concentrations of EGFR and ErbB2.
Collapse
Affiliation(s)
- Florentin Späth
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden. .,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.
| | - Ulrika Andersson
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Anna M Dahlin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Hilde Langseth
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, University of Oslo, Oslo, Norway.,Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Tom Børge Johannesen
- Cancer Registry of Norway, Institute of Population-based Cancer Research, Oslo, Norway
| | - Kjell Grankvist
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 901 85, Umeå, Sweden
| | - Benny Björkblom
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Carl Wibom
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden.,Computational Life Science Cluster (CLiC), Umeå University, 901 87, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Umeå University, 901 87, Umeå, Sweden.,Department of Oncology, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
36
|
Wang H, Yan X, Ji LY, Ji XT, Wang P, Guo SW, Li SZ. miR-139 Functions as An Antioncomir to Repress Glioma Progression Through Targeting IGF-1 R, AMY-1, and PGC-1β. Technol Cancer Res Treat 2016; 16:497-511. [PMID: 26868851 DOI: 10.1177/1533034616630866] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumor with poor prognosis, characterized by a highly heterogeneous cell population, extensive proliferation, and migration. A lot of molecular mechanisms regulate gliomas development and invasion, including abnormal expression of oncogenes and variation of epigenetic modification. MicroRNAs could affect cell growth and functions. Several reports have demonstrated that miR-139 plays multifunctions in kinds of solid tumors through different pathways. However, the antitumor mechanisms of this miR-139 are not unveiled in detail. In this study, we not only validated the low expression level of miR-139 in glioma tissues and cell lines but also detected the effect of miR-139 on modulating gliomas proliferation and invasion both in vitro and in vivo. We identified insulin-like growth factor 1 receptor, associate of Myc 1, and peroxisome proliferator-activated receptor γ coactivator 1β as direct targets of miR-139 and the levels of them were all inversely correlated with miR-139 in gliomas. Insulin like growth factor 1 receptor promoted gliomas invasion through Akt signaling and increased proliferation in the peroxisome proliferator-activated receptor γ coactivator 1β-dependent way. Associate of Myc 1 also facilitated gliomas progression by activating c-Myc pathway. Overexpression of the target genes could retrieve the antitumor function of miR-139, respectively, in different degrees. The nude mice transplantation tumor experiment displayed that glioma cells stably expressed miR-139 growth much slower in vivo than the negative control cells. Taken together, these findings suggested miR-139 acted as a favorable factor against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new evidenced prognostic marker and therapeutic target for gliomas.
Collapse
Affiliation(s)
- Hong Wang
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China.,2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Xi Yan
- 3 Department of Internal Medicine, Xi'an Dongfang Hospital
| | - Li-Ya Ji
- 4 Department of Neurology, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - Xi-Tuan Ji
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Wang
- 2 Department of Neurosurgery, the Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Shi-Wen Guo
- 1 Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong, University College of Medicine, Xi'an, China
| | - San-Zhong Li
- 5 Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
37
|
Dai B, Zhang Y, Zhang P, Pan C, Xu C, Wan W, Wu Z, Zhang J, Zhang L. Upregulation of p-Smad2 contributes to FAT10-induced oncogenic activities in glioma. Tumour Biol 2016; 37:8621-31. [DOI: 10.1007/s13277-015-4739-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023] Open
|
38
|
Abstract
Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy.
Collapse
|
39
|
Aktan M, Koc M, Kanyilmaz G. Survival following reirradiation using intensity-modulated radiation therapy with temozolomide in selected patients with recurrent high grade gliomas. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:304. [PMID: 26697464 DOI: 10.3978/j.issn.2305-5839.2015.11.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND High grade gliomas often recur after initial treatment. Despite so many treatment options, there is no standard treatment for recurrent gliomas. The aim of this study is to offer survival following reirradiation (re-RT) using intensity-modulated radiation therapy (IMRT) with temozolomide in selected patients with recurrent high grade gliomas. METHODS We examined the medical records of 21 adult patients with recurrent high grade gliomas who were reirradiated with IMRT at the time of tumor recurrence or progression. Tumor recurrence was shown by gadolinium-enhanced magnetic resonance imaging (MRI) and diagnosis was established by pathology review. Statistical analyses were performed with SPSS version 18.0.1 using Cox regression analyses, log-rank test and Kaplan-Meier method. RESULTS Eighteen patients presented by localized recurrence, three patients with diffuse recurrence. Median radiotherapy (RT) dose was 54 Gy. About 81% patients received temozolomide with re-RT. The time interval between two courses RT was median 39.3 months (range, 9.6-140.8 months). The response was checked by MRI. About 24% patients achieved complete response (CR) and 29% patient partial response (PR). Stable disease (SD) was observed in 47% patients. Median follow-up time from diagnosis was 41.4 months (range, 16.6-145.4 months) and 12.3 months (range, 2-27.6 months) from re-RT. Median time to recurrence was 39.3 months (range, 9.6-140.8 months). Median survival after re-RT was 18 months for anaplastic astrocytoma (AA), 14.1 months for glioblastoma multiforme (GBM) (range, 11-17.2 months) (P=0.1) and 7.1 months for patients with Karnofsky performance status (KPS) <70 before re-RT and 17.4 months for KPS >70 (P=0.02). CONCLUSIONS re-RT is one of the treatment options for recurrent high grade gliomas and IMRT can be an effective treatment modality for recurrent high grade brain tumors with only mild side effects. Survival is better in patients with good performance status and in recurrent anaplastic tumors after re-RT.
Collapse
Affiliation(s)
- Meryem Aktan
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Koc
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gul Kanyilmaz
- Department of Radiation Oncology, Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
40
|
Abstract
Glioblastoma, the most aggressive of the gliomas, has a high recurrence and mortality rate. The nature of this poor prognosis resides in the molecular heterogeneity and phenotypic features of this tumor. Despite research advances in understanding the molecular biology, it has been difficult to translate this knowledge into effective treatment. Nearly all will have tumor recurrence, yet to date very few therapies have established efficacy as salvage regimens. This challenge is further complicated by imaging confounders and to an even greater degree by the ever increasing molecular heterogeneity that is thought to be both sporadic and treatment-induced. The development of novel clinical trial designs to support the development and testing of novel treatment regimens and drug delivery strategies underscore the need for more precise techniques in imaging and better surrogate markers to help determine treatment response. This review summarizes recent approaches to treat patients with recurrent glioblastoma and considers future perspectives.
Collapse
Affiliation(s)
- Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Raj VS, Fu JB, O'Dell MW. Hospital-Based Rehabilitation for Recurrent Glioblastoma. PM R 2015; 7:1182-1188. [PMID: 26608717 DOI: 10.1016/j.pmrj.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Vishwa S Raj
- Department of Physical Medicine & Rehabilitation, Carolinas Rehabilitation, and Levine Cancer Institute, Charlotte, NC
| | - Jack B Fu
- Department of Palliative, Rehabilitation & Integrative Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX
| | - Michael W O'Dell
- Department of Rehabilitation Medicine, Weill Cornell Medical Center, 525 E 68th St, F-1600, New York, NY 10065
| |
Collapse
|
42
|
Goryaynov SA, Potapov AA, Ignatenko MA, Zhukov VY, Protskiy SV, Zakharova NA, Okhlopkov VA, Shishkina LV. [Glioblastoma metastases: a literature review and a description of six clinical observations]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2015; 79:33-43. [PMID: 26146042 DOI: 10.17116/neiro201579233-43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION since the 1990s, the literature has described cases of glioblastoma metastases with the development of foci located at a distance from the primary tumor. However, the pathogenesis of this process remains unclear until the end. This focus is believed to result, on the one hand, from tumor metastasis from the primary site and, on the other hand, from multifocal growth. This article presents a literature review and a description of clinical observations of patients with glioblastoma metastases. MATERIAL AND METHODS The study included 6 patients (1 female and 5 males) with brain glioblastomas who received treatment at the Burdenko Neurosurgical Institute (5 patients) and the Department of Neurosurgery of the Research Center of Neurology (1 patient) in the period from 2010 to 2014. Neurophysiological control was used if the tumor was localized near the eloquent cortical areas and pathways; 4 of 6 patients were operated on using the methods of intraoperative fluorescence diagnosis (5-ALA agent--Alasens). RESULTS Four patients had metastases within one hemisphere, two had metastases in the contralateral hemisphere in the period of 5 to 18 months after the first operation. The primary tumor site was located near the ventricular system in two patients. In one patient, the lateral ventricle was opened during the first operation. In another patient, the prepontine cistern was opened during the first operation. In two patients, the primary tumor site was located at a distance from the lateral ventricles, however, the tumor was located near them during recurrence. Based on metabolic navigation, fluorescence of the tumor was observed in the four patients during both the first and repeated operations. CONCLUSIONS The close relationship between primary glioblastomas and metastases and the cerebrospinal fluid circulation pathways may confirm the fact of dissemination of tumor cells with cerebrospinal fluid flow. In our opinion, there should be an increased suspicion of the possibility for metastases of glioblastomas that are closely associated with the cerebrospinal fluid circulation pathways. Metabolic navigation with 5-ALA is effective both during primary surgery in patients with glioblastomas and during resection of glioblastoma metastases.
Collapse
Affiliation(s)
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - M A Ignatenko
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - V Yu Zhukov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | | | | |
Collapse
|
43
|
Genetic Variations of Kinase Inserts Domain Receptor (KDR) Gene Are Associated with the Risk of Astrocytomas. Mol Neurobiol 2015; 53:2541-9. [PMID: 26081139 DOI: 10.1007/s12035-015-9239-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/26/2015] [Indexed: 02/08/2023]
Abstract
Astrocytomas is one of the most common central nervous system (CNS) tumors with high mortality rate. Kinase insert domain receptor (KDR) is involved in the regulation of tumor angiogenesis, migration, and vascular permeability. The aim of the study was to explore the relationship between KDR polymorphisms and risk of astrocytomas. Blood samples were collected from 157 astrocytomas patients and 160 healthy controls. Three tag-SNPs (rs2071559C/T, rs2305948T/C, and rs1870377A/T) were identified from the International HapMap Project Databases and genotyped using the method of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). We evaluated the astrocytomas risk caused by individual SNPs and haplotype using odds ratios (ORs) and their 95 % confidence intervals (CIs). In the overall individual SNP analysis, the C allele of rs2071559 was correlated with an increased risk of astrocytomas. However, individuals with mutant allele A and genotype TA + AA of rs1870377 showed a protective effect against astrocytomas. Subgroup analysis based on WHO tumor grade revealed that the C allele of rs2071559 had more influence with the risk of astrocytomas in the grade III-IV (OR = 1.91) subgroup than the grade I-II (OR = 1.47) group. Genotype TT of rs2305948 was found to be significantly associated with susceptibility of astrocytomas only in the grade III-IV subgroup. The protective effect of rs1870377 did not reveal significant difference between the grade III-IV and grade I-II subgroups. Meanwhile, stratified analysis demonstrated that mutation of rs2071559 and rs2305948 could elevate the risk of astrocytomas more significantly in the subgroup of smokers than the nonsmokers. Interestingly, the protective effect of rs1870377 was more obvious in the nonsmokers than the smokers. Additionally, haplotype-specific analysis showed that haplotype CCT and CTT were related with an increased risk of astrocytomas. We found that individual with variants of rs2071559*C and rs2305948*T might significantly elevate the risk of astrocytomas, while mutants of rs1870377*A was associated with the decreased risk of astrocytomas. Further studies about ethnically diverse populations with larger sample size should be performed to confirm the correlation between KDR gene polymorphisms and risk of astrocytomas.
Collapse
|
44
|
Chen L, Liu X, Zhang HY, Du W, Qin Z, Yao Y, Mao Y, Zhou L. Upregulation of chemokine receptor CCR10 is essential for glioma proliferation, invasion and patient survival. Oncotarget 2015; 5:6576-83. [PMID: 25149529 PMCID: PMC4196146 DOI: 10.18632/oncotarget.2134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human gliomas are characterized by their invasion of normal brain structures irrespective of their grade of malignancy. Tumor cell invasion share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptor CCR10 is highly expressed in human glioblastoma compared with control brain tissue. In vitro, signaling through CCL27-CCR10 mediates activation of p-Akt, and subsequently induces proliferation and invasive responses. Cell proliferation and invasion promoted by CCL27 were blocked by inhibition of p-Akt or CCR10. In vivo, down-regulation of CCR10 significantly impairs growth of glioma. Clinically, High CCR10 expression in GBM correlated with p-Akt, shorter overall survival and progression-free survival (P < 0.05). Together, these findings suggest that elevated CCR10 is a critical molecular event associated with gliomagenesis.
Collapse
Affiliation(s)
- Lingchao Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hai-Yan Zhang
- Department of Obstetrics and Gynecology, International Peace Maternal and Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenzong Du
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Yao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
45
|
Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther 2015; 152:63-82. [PMID: 25944528 DOI: 10.1016/j.pharmthera.2015.05.005] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022]
Abstract
Each year, about 5-6 cases out of 100,000 people are diagnosed with primary malignant brain tumors, of which about 80% are malignant gliomas (MGs). Glioblastoma multiforme (GBM) accounts for more than half of MG cases. They are associated with high morbidity and mortality. Despite current multimodality treatment efforts including maximal surgical resection if feasible, followed by a combination of radiotherapy and/or chemotherapy, the median survival is short: only about 15months. A deeper understanding of the pathogenesis of these tumors has presented opportunities for newer therapies to evolve and an expectation of better control of this disease. Lately, efforts have been made to investigate tumor resistance, which results from complex alternate signaling pathways, the existence of glioma stem-cells, the influence of the blood-brain barrier as well as the expression of 0(6)-methylguanine-DNA methyltransferase. In this paper, we review up-to-date information on MGs treatment including current approaches, novel drug-delivering strategies, molecular targeted agents and immunomodulative treatments, and discuss future treatment perspectives.
Collapse
Affiliation(s)
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, University of Athens, Athens, Greece.
| |
Collapse
|
46
|
Vieira de Castro J, Gonçalves CS, Costa S, Linhares P, Vaz R, Nabiço R, Amorim J, Viana-Pereira M, Reis RM, Costa BM. Impact of TGF-β1 -509C/T and 869T/C polymorphisms on glioma risk and patient prognosis. Tumour Biol 2015; 36:6525-32. [DOI: 10.1007/s13277-015-3343-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/15/2015] [Indexed: 01/22/2023] Open
|
47
|
Radiosurgery reirradiation for high-grade glioma recurrence: a retrospective analysis. Neurol Sci 2015; 36:1431-40. [PMID: 25805705 DOI: 10.1007/s10072-015-2172-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/13/2015] [Indexed: 12/15/2022]
Abstract
Despite various treatment strategies being available, recurrent high-grade gliomas (r-HGG) are difficult to manage. To obtain local control, radiosurgery (SRS) reirradiation has been considered as potential treatment. In the present study, a retrospective analysis was performed on r-HGG patients treated with salvage single- (s-SRS) or multi-fraction SRS (m-SRS). The aim of this study was to evaluate the effectiveness of salvage SRS in terms of overall survival (OS); toxicity was analyzed as well. Between 2004 May and 2011 December, 128 r-HGG patients (161 lesions) treated with CyberKnife(®) SRS reirradiation were retrospectively analyzed. Toxicity was graded according to Radiation Therapy Oncology Group and by Common Terminology Criteria for Adverse Events v.3 criteria. OS from the diagnosis date and OS from reirradiation were estimated using the Kaplan-Meier method. Median follow-up was 9 months (range 15 days-82 months). All patients completed SRS without high-grade toxicity. Radiation necrosis was observed in seven patients (6 %) with large volume lesions. The median survival from initial diagnosis was 32 months. The 1-, 2-, and 3-years survival rates from diagnosis were 95, 62, and 45 % respectively. Median survival following SRS was 11.5 months. The 1-, 2-, and 3-years survival rate following SRS was 48, 20, and 17 % respectively. On multivariate analysis, age <40 years, salvage surgery before SRS, and other post-SRS therapies (second-line chemotherapy and/or surgery) were found to significantly improve survival (p = 0.03). SRS represents a safe and feasible option to treat r-HGG patients with low complication rates and potential survival benefit.
Collapse
|
48
|
Ma J, Lang B, Wang X, Wang L, Dong Y, Hu H. Co-expression of midkine and pleiotrophin predicts poor survival in human glioma. J Clin Neurosci 2014; 21:1885-90. [DOI: 10.1016/j.jocn.2014.02.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/22/2014] [Accepted: 02/23/2014] [Indexed: 02/04/2023]
|
49
|
Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme. J Neurooncol 2014; 119:397-403. [DOI: 10.1007/s11060-014-1504-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 06/07/2014] [Indexed: 12/24/2022]
|
50
|
Zhang B, Wang J, Niu H, Li Y, Yuan F, Tian Y, Zhou F, Hao Z, Zheng Y, Li Q, Wang W. Association between glutathione S-transferase T1 null genotype and glioma susceptibility: a meta-analysis. Tumour Biol 2014; 35:2081-6. [PMID: 24122206 DOI: 10.1007/s13277-013-1276-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
The relationship between genetic polymorphisms of glutathione S-transferase (GST) and the development of glioma has been investigated in several epidemiologic studies. However, these studies report inconsistent results. In order to get this precise result, a meta-analysis was conducted by calculating the pooled odds ratios (OR) and the 95% confidence intervals (95 % CI). Eleven case-control research studies with a total of 2,416 glioma cases and 4,850 controls were included into this meta-analysis. The combined results based on all studies showed that there was no significant association between the GSTT1 null allele and glioma risk (OR = 1.188, 95% CI = 0.929–1.520, P(heterogeneity) = 0.003, P = 0.170). In the subgroup analysis, the same results were found in our work. There was no risk of publication bias in this meta-analysis. Our results suggest that GSTT1 null genotype was not associated with the increased risk of glioma.
Collapse
|