1
|
Yao X, Zhou H, Duan C, Wu X, Li B, Liu H, Zhang Y. Comprehensive characteristics of pathological subtypes in testicular germ cell tumor: Gene expression, mutation and alternative splicing. Front Immunol 2023; 13:1096494. [PMID: 36713456 PMCID: PMC9883017 DOI: 10.3389/fimmu.2022.1096494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Testicular germ cell tumor (TGCT) is the most common tumor in young men, but molecular signatures, especially the alternative splicing (AS) between its subtypes have not yet been explored. Methods To investigate the differences between TGCT subtypes, we comprehensively analyzed the data of gene expression, alternative splicing (AS), and somatic mutation in TGCT patients from the TCGA database. The gene ontology (GO) enrichment analyses were used to explore the function of differentially expressed genes and spliced genes respectively, and Spearman correlation analysis was performed to explore the correlation between differential genes and AS events. In addition, the possible patterns in which AS regulates gene expression were elaborated by the ensemble database transcript atlas. And, we identified important transcription factors that regulate gene expression and AS and functionally validated them in TGCT cell lines. Results We found significant differences between expression and AS in embryonal carcinoma and seminoma, while mixed cell tumors were in between. GO enrichment analyses revealed that both differentially expressed and spliced genes were enriched in transcriptional regulatory pathways, and obvious correlation between expression and AS events was determined. By analyzing the transcript map and the sites where splicing occurs, we have demonstrated that AS regulates gene expression in a variety of ways. We further identified two pivot AS-related molecules (SOX2 and HDAC9) involved in AS regulation, which were validated in embryonal carcinoma and seminoma cell lines. Differences in somatic mutations between subtypes are also of concern, with our results suggesting that mutations in some genes (B3GNT8, CAPN7, FAT4, GRK1, TACC2, and TRAM1L1) occur only in embryonal carcinoma, while mutations in KIT, KARS, and NRAS are observed only in seminoma. Conclusions In conclusion, our analysis revealed the differences in gene expression, AS and somatic mutation among TGCT subtypes, providing a molecular basis for clinical diagnosis and precise therapy of TGCT patients.
Collapse
Affiliation(s)
- Xiangyang Yao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Zhou
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoliang Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Liu
- Stanford Bio-X, Stanford University, Stanford, CA, United States
| | - Yangjun Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Yangjun Zhang,
| |
Collapse
|
2
|
Lewin J, Soltan Ghoraie L, Bedard PL, Hamilton RJ, Chung P, Moore M, Jewett MA, Anson-Cartwright L, Virtanen C, Winegarden N, Tsao J, Warde P, Sweet J, Haibe-Kains B, Hansen AR. Gene expression signatures prognostic for relapse in stage I testicular germ cell tumours. BJU Int 2018; 122:814-822. [DOI: 10.1111/bju.14372] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeremy Lewin
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Philippe L. Bedard
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Robert J. Hamilton
- Departments of Surgery (Urology) and Surgical Oncology; University Health Network; Princess Margaret Cancer Centre; University of Toronto; Toronto ON Canada
| | - Peter Chung
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | | | - Michael A.S. Jewett
- Departments of Surgery (Urology) and Surgical Oncology; University Health Network; Princess Margaret Cancer Centre; University of Toronto; Toronto ON Canada
| | - Lynn Anson-Cartwright
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Carl Virtanen
- Microarray Centre; University Health Network; Toronto ON Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre; University Health Network; Toronto ON Canada
| | - Julie Tsao
- Princess Margaret Genomics Centre; University Health Network; Toronto ON Canada
| | - Padraig Warde
- Department of Radiation Oncology; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Joan Sweet
- Department of Pathology; University Health Network; Toronto ON Canada
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory; Princess Margaret Cancer Centre; Toronto ON Canada
| | - Aaron R. Hansen
- Division of Medical Oncology and Hematology; Princess Margaret Cancer Centre; Toronto ON Canada
| |
Collapse
|
3
|
Fukawa T, Kanayama HO. Current knowledge of risk factors for testicular germ cell tumors. Int J Urol 2018; 25:337-344. [PMID: 29345008 DOI: 10.1111/iju.13519] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/26/2017] [Indexed: 12/21/2022]
Abstract
The development of the human gonads is tightly regulated by the correct sequential expression of many genes and hormonal activity. Disturbance of this regulation does not only prevent proper development of the gonads, but it also contributes to the development of testicular germ cell tumors. Recent genetic studies, especially genome-wide association studies, have made great progress in understanding genetic susceptibility. Although there is strong evidence of inherited risks, many environmental factors also contribute to the development of testicular germ cell tumors. Histopathological studies have shown that most testicular germ cell tumors arise from germ cell neoplasia in situ, which is thought to be arrested and transformed primordial germ cells. Seminoma has features identical to germ cell neoplasia in situ or primordial germ cells, whereas non-seminoma shows varied differentiation. Seminomas and embryonic cell carcinomas have the feature of pluripotency, which is thought to be the cause of histological heterogeneity and mixed pathology in testicular germ cell tumors. Testicular germ cell tumors show high sensitivity to chemotherapies, but 20-30% of patients show resistance to standard chemotherapy. In the present review, the current knowledge of the epidemiological and genomic factors for the development of testicular germ cell tumors is reviewed, and the mechanisms of resistance to chemotherapies are briefly mentioned.
Collapse
Affiliation(s)
- Tomoya Fukawa
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| | - Hiro-Omi Kanayama
- Department of Urology, Institute of Biomedical Sciences, Tokushima University, Graduate School, Tokushima, Japan
| |
Collapse
|
4
|
Ulytė A, Ulys A, Sužiedėlis K, Patašius A, Smailytė G. Testicular cancer in two brothers of a quadruplet: a case report and a review of literature. Acta Med Litu 2017. [PMID: 28630588 PMCID: PMC5467958 DOI: 10.6001/actamedica.v24i1.3458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Introduction. Testicular cancer and a multiple birth are both rare events, and the risk of testicular cancer is increased in twins. In Lithuania, only five quadruplets have been recorded since the middle of the 20th century. In this report, we present two rare events in one family: testicular cancer in two brothers of a quadruplet (three brothers and a sister). Case description. Both patients were diagnosed at 21 years of age and died within two years from the diagnosis despite treatment. The third symptomless brother did not have testicular pathology. We also review the risk factors associated with testicular cancer, and the proposed hypotheses how a multiple birth results in an increased risk. The most consistent risk factors for testicular cancer are cryptorchidism, prior history of testicular cancer, and a positive familial history. According to different studies, the risk of testicular cancer in twins is higher from 22% to 30%, compared to the general population. Conclusions. To our knowledge, we have presented the first case of testicular teratoblastoma in brothers of a quadruplet.
Collapse
Affiliation(s)
- Agnė Ulytė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | | | | | - Giedrė Smailytė
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.,National Cancer Institute, Vilnius, Lithuania
| |
Collapse
|
5
|
Killian JK, Dorssers LCJ, Trabert B, Gillis AJM, Cook MB, Wang Y, Waterfall JJ, Stevenson H, Smith WI, Noyes N, Retnakumar P, Stoop JH, Oosterhuis JW, Meltzer PS, McGlynn KA, Looijenga LHJ. Imprints and DPPA3 are bypassed during pluripotency- and differentiation-coupled methylation reprogramming in testicular germ cell tumors. Genome Res 2016; 26:1490-1504. [PMID: 27803193 PMCID: PMC5088592 DOI: 10.1101/gr.201293.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Testicular germ cell tumors (TGCTs) share germline ancestry but diverge phenotypically and clinically as seminoma (SE) and nonseminoma (NSE), the latter including the pluripotent embryonal carcinoma (EC) and its differentiated derivatives, teratoma (TE), yolk sac tumor (YST), and choriocarcinoma. Epigenomes from TGCTs may illuminate reprogramming in both normal development and testicular tumorigenesis. Herein we investigate pure-histological forms of 130 TGCTs for conserved and subtype-specific DNA methylation, including analysis of relatedness to pluripotent stem cell (ESC, iPSC), primordial germ cell (PGC), and differentiated somatic references. Most generally, TGCTs conserve PGC-lineage erasure of maternal and paternal genomic imprints and DPPA3 (also known as STELLA); however, like ESCs, TGCTs show focal recurrent imprinted domain hypermethylation. In this setting of shared physiologic erasure, NSEs harbor a malignancy-associated hypermethylation core, akin to that of a diverse cancer compendium. Beyond these concordances, we found subtype epigenetic homology with pluripotent versus differentiated states. ECs demonstrate a striking convergence of both CpG and CpH (non-CpG) methylation with pluripotent states; the pluripotential methyl-CpH signature crosses species boundaries and is distinct from neuronal methyl-CpH. EC differentiation to TE and YST entails reprogramming toward the somatic state, with loss of methyl-CpH but de novo methylation of pluripotency loci such as NANOG. Extreme methyl-depletion among SE reflects the PGC methylation nadir. Adjacent to TGCTs, benign testis methylation profiles are determined by spermatogenetic proficiency measured by Johnsen score. In sum, TGCTs share collective entrapment in a PGC-like state of genomic-imprint and DPPA3 erasure, recurrent hypermethylation of cancer-associated targets, and subtype-dependent pluripotent, germline, or somatic methylation.
Collapse
Affiliation(s)
- J Keith Killian
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lambert C J Dorssers
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, 3015, The Netherlands
| | - Britton Trabert
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad J M Gillis
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, 3015, The Netherlands
| | - Michael B Cook
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yonghong Wang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Joshua J Waterfall
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Holly Stevenson
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William I Smith
- Suburban Hospital Department of Pathology, Bethesda, Maryland 20814, USA
| | - Natalia Noyes
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Parvathy Retnakumar
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J Hans Stoop
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, 3015, The Netherlands
| | - J Wolter Oosterhuis
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, 3015, The Netherlands
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Katherine A McGlynn
- Hormonal and Reproductive Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, 3015, The Netherlands
| |
Collapse
|
6
|
Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol 2014; 29:59-74. [PMID: 25066859 DOI: 10.1016/j.semcancer.2014.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022]
Abstract
Germ cell tumors (GCTs) represent a diverse group of tumors presumably originating from (early fetal) developing germ cells. Most frequent are the testicular germ cell cancers (TGCC). Overall, TGCC is the most frequent malignancy in Caucasian males (20-40 years) and remains an important cause of (treatment related) mortality in these young men. The strong association between the phenotype of TGCC stem cell components and their totipotent ancestor (fetal primordial germ cell or gonocyte) makes these tumors highly relevant from an onco-fetal point of view. This review subsequently discusses the evidence for the early embryonic origin of TGCCs, followed by an overview of the crucial association between TGCC pathogenesis, genetics, environmental exposure and the (fetal) testicular micro-environment (genvironment). This culminates in an evaluation of three genvironmentally modulated hallmarks of TGCC directly related to the oncofetal pathogenesis of TGCC: (1) maintenance of pluripotency, (2) cell cycle control/cisplatin sensitivity and (3) regulation of proliferation/migration/apoptosis by KIT-KITL mediated receptor tyrosine kinase signaling. Briefly, TGCC exhibit identifiable stem cell components (seminoma and embryonal carcinoma) and progenitors that show large and consistent similarities to primordial/embryonic germ cells, their presumed totipotent cells of origin. TGCC pathogenesis depends crucially on a complex interaction of genetic and (micro-)environmental, i.e. genvironmental risk factors that have only been partly elucidated despite significant effort. TGCC stem cell components also show a high degree of similarity with embryonic stem/germ cells (ES) in the regulation of pluripotency and cell cycle control, directly related to their exquisite sensitivity to DNA damaging agents (e.g. cisplatin). Of note, (ES specific) micro-RNAs play a pivotal role in the crossover between cell cycle control, pluripotency and chemosensitivity. Moreover, multiple consistent observations reported TGCC to be associated with KIT-KITL mediated receptor tyrosine kinase signaling, a pathway crucially implicated in proliferation, migration and survival during embryogenesis including germ cell development. In conclusion, TGCCs are a fascinating model for onco-fetal developmental processes especially with regard to studying cell cycle control, pluripotency maintenance and KIT-KITL signaling. The knowledge presented here contributes to better understanding of the molecular characteristics of TGCC pathogenesis, translating to identification of at risk individuals and enhanced quality of care for TGCC patients (diagnosis, treatment and follow-up).
Collapse
Affiliation(s)
- Martin A Rijlaarsdam
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Leendert H J Looijenga
- Department of Pathology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, Hartmann J, Meineke V, Mabuchi K, Brenner AV. Iodine-131 dose-dependent gene expression: alterations in both normal and tumour thyroid tissues of post-Chernobyl thyroid cancers. Br J Cancer 2013; 109:2286-94. [PMID: 24045656 PMCID: PMC3798970 DOI: 10.1038/bjc.2013.574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/28/2013] [Accepted: 08/28/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A strong, consistent association between childhood irradiation and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis. METHODS We evaluated gene expression in 63 paired RNA specimens from frozen normal and tumour thyroid tissues with individual iodine-131 (I-131) doses (0.008-8.6 Gy, no unirradiated controls) received from Chernobyl fallout during childhood (Ukrainian-American cohort). Approximately half of these randomly selected samples (32 tumour/normal tissue RNA specimens) were hybridised on 64 whole-genome microarrays (Agilent, 4 × 44 K). Associations between I-131 dose and gene expression were assessed separately in normal and tumour tissues using Kruskal-Wallis and linear trend tests. Of 155 genes significantly associated with I-131 after Bonferroni correction and with ≥2-fold increase per dose category, we selected 95 genes. On the remaining 31 RNA samples these genes were used for validation purposes using qRT-PCR. RESULTS Expression of eight genes (ABCC3, C1orf9, C6orf62, FGFR1OP2, HEY2, NDOR1, STAT3, and UCP3) in normal tissue and six genes (ANKRD46, CD47, HNRNPH1, NDOR1, SCEL, and SERPINA1) in tumour tissue was significantly associated with I-131. PANTHER/DAVID pathway analyses demonstrated significant over-representation of genes coding for nucleic acid binding in normal and tumour tissues, and for p53, EGF, and FGF signalling pathways in tumour tissue. CONCLUSION The multistep process of radiation carcinogenesis begins in histologically normal thyroid tissue and may involve dose-dependent gene expression changes.
Collapse
Affiliation(s)
- M Abend
- Bundeswehr Institute of Radiobiology, Neuherbergstr. 11, 80937 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kraggerud SM, Hoei-Hansen CE, Alagaratnam S, Skotheim RI, Abeler VM, Rajpert-De Meyts E, Lothe RA. Molecular characteristics of malignant ovarian germ cell tumors and comparison with testicular counterparts: implications for pathogenesis. Endocr Rev 2013; 34:339-76. [PMID: 23575763 PMCID: PMC3787935 DOI: 10.1210/er.2012-1045] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review focuses on the molecular characteristics and development of rare malignant ovarian germ cell tumors (mOGCTs). We provide an overview of the genomic aberrations assessed by ploidy, cytogenetic banding, and comparative genomic hybridization. We summarize and discuss the transcriptome profiles of mRNA and microRNA (miRNA), and biomarkers (DNA methylation, gene mutation, individual protein expression) for each mOGCT histological subtype. Parallels between the origin of mOGCT and their male counterpart testicular GCT (TGCT) are discussed from the perspective of germ cell development, endocrinological influences, and pathogenesis, as is the GCT origin in patients with disorders of sex development. Integrated molecular profiles of the 3 main histological subtypes, dysgerminoma (DG), yolk sac tumor (YST), and immature teratoma (IT), are presented. DGs show genomic aberrations comparable to TGCT. In contrast, the genome profiles of YST and IT are different both from each other and from DG/TGCT. Differences between DG and YST are underlined by their miRNA/mRNA expression patterns, suggesting preferential involvement of the WNT/β-catenin and TGF-β/bone morphogenetic protein signaling pathways among YSTs. Characteristic protein expression patterns are observed in DG, YST and IT. We propose that mOGCT develop through different developmental pathways, including one that is likely shared with TGCT and involves insufficient sexual differentiation of the germ cell niche. The molecular features of the mOGCTs underline their similarity to pluripotent precursor cells (primordial germ cells, PGCs) and other stem cells. This similarity combined with the process of ovary development, explain why mOGCTs present so early in life, and with greater histological complexity, than most somatic solid tumors.
Collapse
Affiliation(s)
- Sigrid Marie Kraggerud
- Department of Cancer Prevention, Institute for Cancer Research, Oslo University Hospital, N-0310 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
9
|
Port M, Seidl C, Ruf CG, Riecke A, Meineke V, Abend M. Reliable and sample saving gene expression analysis approach for diagnostic tool development. HEALTH PHYSICS 2012; 103:159-168. [PMID: 22951474 DOI: 10.1097/hp.0b013e31824ac318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This work answers the question of whether it is necessary to hybridize individual instead of pooled RNA samples on microarrays for screening gene targets suitable as diagnostic tools for radiation exposure scenarios, while at the same time meeting comparable microarray quality criteria. For developing new clinical diagnostic tools, a two-stage study design was employed in five projects. At first, pooled and not individual RNA samples were hybridized on microarrays for screening purposes. Potential gene candidates were selected based on their fold-change only. This was followed by a validation/quantification step using individual RNA samples and quantitative RT-PCR. Quality criteria from the screening approach with pooled RNA samples were compared with published data from the MicroArray Quality Control (MAQC) consortium that hybridized each reference RNA sample separately and established quality criteria for microarrays. When comparing both approaches, only insignificant differences for quality criteria such as false positives, sensitivity, specificity, and overall agreement were found. However, material, costs, and time were drastically reduced when hybridizing pooled RNA and gene targets applicable for clinical diagnostic purposes could be successfully selected. In search of new diagnostic tools for radiation exposure scenarios, the two stage study design using either pooled or individual RNA samples on microarrays shows comparable quality criteria, but the RNA pooling approach saves unique material, costs, and efforts and successfully selects gene targets that can be used for the desired diagnostic purposes.
Collapse
Affiliation(s)
- Matthias Port
- Clinic for Hematology, Hemostaseology, Oncology and Stem CellTransplantation, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Abend M, Pfeiffer RM, Ruf C, Hatch M, Bogdanova TI, Tronko MD, Riecke A, Hartmann J, Meineke V, Boukheris H, Sigurdson AJ, Mabuchi K, Brenner AV. Iodine-131 dose dependent gene expression in thyroid cancers and corresponding normal tissues following the Chernobyl accident. PLoS One 2012; 7:e39103. [PMID: 22848350 PMCID: PMC3405097 DOI: 10.1371/journal.pone.0039103] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
The strong and consistent relationship between irradiation at a young age and subsequent thyroid cancer provides an excellent model for studying radiation carcinogenesis in humans. We thus evaluated differential gene expression in thyroid tissue in relation to iodine-131 (I-131) doses received from the Chernobyl accident. Sixty three of 104 papillary thyroid cancers diagnosed between 1998 and 2008 in the Ukrainian-American cohort with individual I-131 thyroid dose estimates had paired RNA specimens from fresh frozen tumor (T) and normal (N) tissue provided by the Chernobyl Tissue Bank and satisfied quality control criteria. We first hybridized 32 randomly allocated RNA specimen pairs (T/N) on 64 whole genome microarrays (Agilent, 4×44 K). Associations of differential gene expression (log2(T/N)) with dose were assessed using Kruskall-Wallis and trend tests in linear mixed regression models. While none of the genes withstood correction for the false discovery rate, we selected 75 genes with a priori evidence or P kruskall/P trend <0.0005 for validation by qRT-PCR on the remaining 31 RNA specimen pairs (T/N). The qRT-PCR data were analyzed using linear mixed regression models that included radiation dose as a categorical or ordinal variable. Eleven of 75 qRT-PCR assayed genes (ACVR2A, AJAP1, CA12, CDK12, FAM38A, GALNT7, LMO3, MTA1, SLC19A1, SLC43A3, ZNF493) were confirmed to have a statistically significant differential dose-expression relationship. Our study is among the first to provide direct human data on long term differential gene expression in relation to individual I-131 doses and to identify a set of genes potentially important in radiation carcinogenesis.
Collapse
Affiliation(s)
- Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruf CG, Linbecker M, Port M, Riecke A, Schmelz HU, Wagner W, Meineke V, Abend M. Predicting metastasized seminoma using gene expression. BJU Int 2012; 110:E14-20. [PMID: 22243760 DOI: 10.1111/j.1464-410x.2011.10778.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED Treatment options for testis cancer depend on the histological subtype as well as on the clinical stage. An accurate staging is essential for correct treatment. The 'golden standard' for staging purposes is CT, but occult metastasis cannot be detected with this method. Currently, parameters such as primary tumour size, vessel invasion or invasion of the rete testis are used for predicting occult metastasis. Last year the association of these parameters with metastasis could not be validated in a new independent cohort. Gene expression analysis in testis cancer allowed discrimination between the different histological subtypes (seminoma and non-seminoma) as well as testis cancer and normal testis tissue. In a two-stage study design we (i) screened the whole genome (using human whole genome microarrays) for candidate genes associated with the metastatic stage in seminoma and (ii) validated and quantified gene expression of our candidate genes (real-time quantitative polymerase chain reaction) on another independent group. Gene expression measurements of two of our candidate genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2]) examined in primary testis cancers made it possible to discriminate the metastasis status in seminoma. The discriminative ability of the genes exceeded the predictive significance of currently used histological/pathological parameters. Based on gene expression analysis the present study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance. OBJECTIVE To evaluate the usefulness of gene expression profiling for predicting metastatic status in testicular seminoma at the time of first diagnosis compared with established clinical and pathological parameters. PATIENTS AND METHODS Total RNA was isolated from testicular tumours of metastasized patients (12 patients, clinical stage IIa-III), non-metastasized patients (40, clinical stage I) and adjacent 'normal' tissue (n = 36). The RNA was then converted into cDNA and real-time quantitative polymerase chain reaction was run on 94 candidate genes selected from previous work. Normalised gene expression of these genes and histological variables, e.g. tumour size and rete testis infiltration, were analysed using logistic regression analysis. RESULTS Expression of two genes (dopamine receptor D1 [DRD1] and family with sequence similarity 71, member F2 [FAM71F2], P = 0.005 and 0.024 in separate analysis and P = 0.004 and 0.016 when combining both genes, respectively) made it possible to significantly discriminate the metastasis status. Concordance increased from 77.9% (DRD1) and 72.3% (FAM71F2) in separate analysis and up to 87.7% when combining both genes in one model. Only primary tumour size in separate analysis (continuous or categorical with tumour size >6 cm) was significantly associated with metastasis (P = 0.039/P = 0.02), but concordance was lower (61%). When we combined tumour size with our two genes in one model there was no further statistical improvement or increased concordance. CONCLUSION Based on gene expression analysis our study provides suggestions for improved individual decision making either in favour of early adjuvant therapy or increased surveillance.
Collapse
Affiliation(s)
- Christian G Ruf
- Department of Urology, Federal Armed Forces Hospital, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Alagaratnam S, Lind GE, Kraggerud SM, Lothe RA, Skotheim RI. The testicular germ cell tumour transcriptome. ACTA ACUST UNITED AC 2011; 34:e133-50; discussion e150-1. [DOI: 10.1111/j.1365-2605.2011.01169.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
|
14
|
Looijenga LHJ, Gillis AJM, Stoop H, Biermann K, Oosterhuis JW. Dissecting the molecular pathways of (testicular) germ cell tumour pathogenesis; from initiation to treatment-resistance. ACTA ACUST UNITED AC 2011; 34:e234-51. [PMID: 21564133 DOI: 10.1111/j.1365-2605.2011.01157.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human type II germ cell tumours (GCTs) originate from an embryonic germ cell, either as a primordial germ cell or gonocyte. This start determines the biological as well as clinical characteristics of this type of cancer, amongst others their totipotency as well as their overall (exceptional) sensitivity to DNA damaging agents. The histology of the precursor lesion, either carcinoma in situ or gonadoblastoma, depends on the level of testicularization (i.e. testis formation) of the gonad. The impact of either intrinsic (genetic) - and environmental factors involved in the pathogenesis is demonstrated by disorders of sex development as well as testicular dysgenesis syndrome as risk factors, including cryptorchidism, hypospadias and disturbed fertility as parameters. This knowledge allows identification of individuals at risk for development of this type of cancer, being a population of interest for screening. Factors known to regulate pluripotency during embryogenesis are proven to be of diagnostic value for type II GCTs, including OCT3/4, even applicable for non-invasive screening. In addition, presence of stem cell factor, also known as KITLG, allows distinction between delayed matured germ cells and the earliest stages of malignant transformation. This is of special interest because of the identified association between development of type II GCTs of the testis and a limited number of single nucleotide polymorphisms, including some likely related to KITL. Transition from the precursor lesion to an invasive cancer is associated with gain of the short arm of chromosome 12, in which multiple genes might be involved, including KRAS2 and possibly NANOG (pseudogenes). While most precursor lesions will progress to an invasive cancer, only a limited number of cancers will develop treatment resistance. Putative explanatory mechanisms are identified, including presence of microsatellite instability, BRAF mutations, apoptosis suppression and p21 sub-cellular localization. It remains to be investigated how these different pathways integrate to each other and how informative they are at the patient-individual level. Further understanding will allow development of more targeted treatment, which will benefit quality of life of these young cancer patients.
Collapse
Affiliation(s)
- L H J Looijenga
- Department of Pathology, Erasmus MC-University Medical Center Rotterdam, Josephine Nefkens Institute, Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Gilbert D, Rapley E, Shipley J. Testicular germ cell tumours: predisposition genes and the male germ cell niche. Nat Rev Cancer 2011; 11:278-88. [PMID: 21412254 DOI: 10.1038/nrc3021] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Testicular germ cell tumours (TGCTs) of adults and adolescents are putatively derived from primordial germ cells or gonocytes. Recently reported genome-wide association studies implicate six gene loci that predispose to TGCT development. Remarkably, the functions of proteins encoded by genes within these regions bridge our understanding between the pathways involved in primordial germ cell physiology, male germ cell development and the molecular pathology of TGCTs. Furthermore, this improved understanding of the mechanisms underlying TGCT development and dissemination has clinical relevance for the management of patients with these tumours.
Collapse
Affiliation(s)
- Duncan Gilbert
- Sussex Cancer Centre, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, East Sussex, UK
| | | | | |
Collapse
|
16
|
Testis cancer cells have a genetic determination for a high sensitivity to apoptosis inducing stimuli. Urol Oncol 2010; 28:49-58. [DOI: 10.1016/j.urolonc.2008.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 11/05/2008] [Accepted: 11/08/2008] [Indexed: 11/19/2022]
|
17
|
Port M, Wang Y, Schmelz HU, Pottek T, Meineke V, Ruf C, Abend M. A gene signature of primary tumor identifies metastasized seminoma. Urol Oncol 2009; 29:764-73. [PMID: 19945308 DOI: 10.1016/j.urolonc.2009.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/09/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The aim of this study was the prediction of metastatic status in seminoma based on examination of the primary tumor. METHODS Total RNA was isolated from metastasized seminoma (n = 10, T1N1-2M0), non-metastasized seminoma (n = 21, T1-3N0M0), and corresponding normal tissues. Pooled RNA from 10 biopsies of each tissue type was hybridized on whole genome microarrays for screening purposes. Ninety-two selected gene candidates were quantitatively examined using real-time quantitative polymerase chain reaction (RTQ-PCR). RESULTS Agreement in gene expression was 88% between the whole genome microarrays and RTQ-PCR. Metastasized seminoma showed 1,912 up-regulated and 2,179 down-regulated genes with ≥ 2-fold differences in gene expression compared non-metastasized seminoma. RTQ-PCR of selected genes showed that mean gene expression values were significantly reduced in metastasized compared with non-metastasized seminoma. The presence of metastases could be predicted based on an 85-gene expression signature by using logistic regression. Sensitivity and accuracy of the 10-fold cross-validation model were 77.8% and 84.2%, respectively. CONCLUSION A logistic regression model using an 85 gene expression signature allowed identification of metastasized seminoma from the primary tumor with a sensitivity of 77.8%.
Collapse
Affiliation(s)
- Matthias Port
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Hussain SA, Ma YT, Palmer DH, Hutton P, Cullen MH. Biology of testicular germ cell tumors. Expert Rev Anticancer Ther 2009; 8:1659-73. [PMID: 18925857 DOI: 10.1586/14737140.8.10.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Germ cell tumors are derived from cells of the germ cell lineage and are the most common solid malignancies to affect young Caucasian men between the ages of 15 and 40 years. All testicular germ cell tumors develop from the same precursor lesion, intratubular germ cell neoplasia unclassified, which in turn is thought to arise from malignant transformation of a primordial germ cell or gonocyte. These tumors are characterized by extreme chemosensitivity and are considered a model for curative disease. In spite of this, a small subset of patients with metastatic disease fail to achieve a complete response with cisplatin-based chemotherapy or relapse from complete remission. Understanding the molecular biology may help the design of new therapies for those patients with a poor prognosis and could also improve the treatment of cancer in general. Current understanding of the role of genetic and epigenetic factors in the etiology of germ cell tumors and the biochemical mechanisms underlying chemotherapy sensitivity and resistance is discussed in detail in this review.
Collapse
Affiliation(s)
- Syed A Hussain
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham , UK.
| | | | | | | | | |
Collapse
|
19
|
Seidl C, Port M, Apostolidis C, Bruchertseifer F, Schwaiger M, Senekowitsch-Schmidtke R, Abend M. Differential gene expression triggered by highly cytotoxic alpha-emitter-immunoconjugates in gastric cancer cells. Invest New Drugs 2009; 28:49-60. [PMID: 19139817 DOI: 10.1007/s10637-008-9214-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/19/2008] [Indexed: 12/20/2022]
Abstract
Immunoconjugates composed of the alpha-emitter (213)Bi and the monoclonal antibody d9MAb specifically target HSC45-M2 gastric cancer cells expressing mutant d9-E-cadherin. These conjugates efficiently killed tumor cells in a nude mouse peritoneal carcinomatosis model. To elucidate the molecular responses of HSC45-M2 cells to alpha-emitter irradiation, whole genome gene expression profiling was performed. For that purpose HSC45-M2 cells were incubated with lethal doses of (213)Bi-d9MAb. RNA was isolated at 6, 24 and 48 h after irradiation, transcribed into cDNA and hybridized to whole genome microarrays. Results of microarray analysis were validated using RTQ-PCR showing correspondence of approximately 90%. Following incubation with (213)Bi-d9MAb, 682-1125 genes showed upregulation and 666-1278 genes showed downregulation at one time point, each. Eight genes appeared upregulated and 12 genes downregulated throughout. Molecular functions and biological processes of differentially expressed genes were categorized according to the PANTHER database. Following (213)Bi-d9MAb irradiation also a time-dependent shift in terms of overrepresentation of biological processes was observed. Among the genes showing continuous upregulation, COL4A2, NEDD9 and C3 have not been associated with the cellular response to high LET radiation so far. The same holds true for WWP2, RFX3, HIST4H4 and JADE1 that showed continuous downregulation. According to PANTHER, three of the consistently upregulated (ITM2C, FLJ11000, MSMB) and downregulated (HCG9, GAS2L3, FLJ21439) genes, respectively, have not been associated with any biological process or molecular function so far. Thus, these findings revealed interesting new targets for selective elimination of tumor cells and new insights regarding response of tumor cells to alpha-emitter exposure.
Collapse
Affiliation(s)
- Christof Seidl
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Strasse 22, 81675, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
20
|
[Value of targeted treatment for testicular cancer: from molecular approaches to clinical possibilities]. Urologe A 2008; 47:1328-33. [PMID: 18587552 DOI: 10.1007/s00120-008-1750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to the introduction of tyrosine kinase-inhibitors in the treatment of metastatic renal cell cancer, targeted therapy raises hopes for other urological tumors as well. Even if excellent cure rates, achieved by standardization of diagnosis und therapy, have made testicular cancer a curable disease, up to 6% of young patients still die from tumors refractory to therapy. The quality of life of patients in advanced stages needing aggressive treatment should be improved by new therapies with reduced side effects. The role of tyrosine kinase inhibitors and angiogenesis inhibitors as well as intervention in the cell cycle and induction of apoptosis are discussed.
Collapse
|
21
|
Palmer RD, Barbosa-Morais NL, Gooding EL, Muralidhar B, Thornton CM, Pett MR, Roberts I, Schneider DT, Thorne N, Tavaré S, Nicholson JC, Coleman N, Children's Cancer and Leukaemia Group. Pediatric malignant germ cell tumors show characteristic transcriptome profiles. Cancer Res 2008; 68:4239-47. [PMID: 18519683 DOI: 10.1158/0008-5472.can-07-5560] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant germ cell tumors (GCT) of childhood are rare and heterogeneous neoplasms thought to arise from primordial germ cells. They vary substantially in their natural history and show important clinical differences from their adult counterparts. To address the biological basis for these observations, we have undertaken a comprehensive analysis of global gene expression patterns in pediatric malignant GCTs and compared these findings with published data on adult testicular GCTs (TGCT). Our study included 27 primary tumors and assessed the principal malignant histologic types of pediatric GCT, yolk sac tumor (YST; n = 18), and seminoma (n = 9). Analysis of Affymetrix U133A GeneChip data was performed using the statistical software environment R, including gene set enrichment analysis, with cross-validation at the RNA and protein level. Unsupervised analysis showed complete separation of YSTs and seminomas by global gene expression profiles and identified a robust set of 657 discriminatory transcripts. There was no segregation of tumors of the same histology arising at different sites or at different ages within the pediatric range. In contrast, there was segregation of pediatric malignant GCTs and adult malignant TGCTs, most notably for the YSTs. The pediatric seminomas were significantly enriched for genes associated with the self-renewing pluripotent phenotype, whereas the pediatric YSTs were significantly enriched for genes associated with a differentiation and proliferation phenotype. We conclude that histologic type is the key discriminator in pediatric malignant GCTs and that the observed clinical differences between malignant GCTs of children and adults are mirrored by significant differences in global gene expression.
Collapse
Affiliation(s)
- Roger D Palmer
- MRC Cancer Cell Unit, Hutchison/MRC Research Center, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Port M, Schmelz HU, Stassen T, Müeller K, Stockinger M, Obermair R, Abend M. Correcting False Gene Expression Measurements From Degraded RNA Using RTQ-PCR. ACTA ACUST UNITED AC 2007; 16:38-49. [PMID: 17471157 DOI: 10.1097/01.pdm.0000213472.70054.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This paper describes a method allowing correcting false gene expression measured on highly degraded RNA using real-time quantitative reverse transcription-polymerase chain reaction (RTQ-PCR). RNA was isolated from different models (in vitro cell lines, in vivo models of human and dog) and different tissue types. In vitro RNA degradation and modeling of in vivo degradation were applied on intact and degraded total RNA. Gene expression (eg, Bcl-2, GAPDH, PGK, PSME3, RAB2, BAX) was measured using RTQ-PCR. 18S rRNA proved to be the most constant house-keeping gene. Less than 10-fold degraded RNA can be quantified correctly when using 18S rRNA for normalization purposes. Higher-fold degraded RNA can be quantified correctly up to a precision that is comparable to RTQ-PCR measurements on intact RNA when simulating the RNA-species and tissue-specific degradation kinetic.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Houldsworth J, Korkola JE, Bosl GJ, Chaganti RSK. Biology and Genetics of Adult Male Germ Cell Tumors. J Clin Oncol 2006; 24:5512-8. [PMID: 17158536 DOI: 10.1200/jco.2006.08.4285] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adult male germ cell tumors (GCTs) arise by transformation of totipotent germ cells. They have the unique potential to activate molecular pathways, in part mimicking those occurring during gametogenesis and normal human development, as evidenced by the array of histopathologies observed in vivo. Recent expression profiling studies of GCTs along with advances in embryonic stem-cell research have contributed to our understanding of the underlying biology of the disease. Gain of the short arm of chromosome 12 detected in almost all adult GCTs appears to be multifunctional in germ cell tumorigenesis on the basis of the observed overexpression of genes mapped to this region involved in maintenance of pluripotency and oncogenesis. Expression signatures associated with the different histopathologies have yielded clues as to the functional mechanisms involved in GCT invasion, loss of pluripotency, and lineage differentiation. Genomic and epigenomic abnormalities that contribute to or cause these events have been identified by traditional genome analyses and continue to be revealed as genome-scanning technologies develop. Given the high sensitivity of most GCTs to cisplatin-based treatment, these tumors serve as an excellent model system for the identification of factors associated with drug resistance, including differentiation status and acquisition of genomic alterations. Overall, adult male GCTs provide a unique opportunity for the examination of functional links between transformation and pluripotency, genomic and epigenomic abnormalities and lineage differentiation, and the identification of genetic features associated with chemotherapy resistance.
Collapse
Affiliation(s)
- Jane Houldsworth
- Cell Biology Program and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
24
|
Schmelz HU, Port M, Hauck EW, Schwerer MJ, Weidner W, Sparwasser C, Abend M. Apoptosis: a key effector mechanism of lymphocyte action in human nonseminomatous testicular carcinoma? BJU Int 2005; 96:158-63. [PMID: 15963141 DOI: 10.1111/j.1464-410x.2005.05587.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To correlate the number of tumour-infiltrating T lymphocytes (TILs) with the extent of apoptosis in testicular germ cell tumours, as TILs are considered to be a favourable prognostic factor of human testicular tumours, especially of seminomas, but the mechanism by which TIL contribute to an improved outcome is unclear. MATERIALS AND METHODS Tissue samples from 47 patients with nonseminomatous germ cell tumour (NSGCT) and 15 with seminomatous GCT were investigated immunohistochemically for lymphocyte infiltration and apoptosis. The apoptotic index (AI) was assessed in various categories (DNA condensation and fragmentation) using in-situ end-labelling to identify typical apoptotic DNA strand breaks, and nuclear staining to identify typical apoptotic morphology. RESULTS In seminomatous GCT there was no correlation between the number of TILs and any AI. In NSGCT there was only a relationship between lymphoid infiltration and those AIs showing morphological criteria of apoptosis in a small subgroup of NSGCT, i.e. metastasized embryonal cell carcinomas. Only 1.2% (AI, chromatin condensation) and 0.8% (AI, fragmentation and condensation) of all tumour cells showed these features of apoptosis. The overall AI in NSGCT was 7.9%. CONCLUSIONS TILs do not seem to induce apoptosis in testicular tumours. Embryonal cell carcinomas might be susceptible to lymphocyte attack, resulting in apoptosis of the tumour cell. The mechanisms of interaction between lymphocytes and testis tumour cells need further investigation.
Collapse
Affiliation(s)
- Hans U Schmelz
- Federal Armed Forces Hospital, Department of Urology, Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW This review provides an overview of some of the recent pre-clinical and clinical developments in germ cell tumors. RECENT FINDINGS Recent epidemiological studies highlight the variations in the geographic and ethnic distribution of germ cell tumors and the changing incidence of seminoma versus nonseminoma in the population. Additional studies are continuing to identify risk factors for germ cell tumors. Expression profiling, both at the gene and protein levels, is beginning to identify, at the molecular level, some of the factors associated not only with germ cell pluripotency but also with the different histologic subtypes of germ cell tumors. Work in the area of identifying potentially new serum tumor markers in germ cell tumor, as well as the role of the traditional tumor markers in predicting outcome to therapy is ongoing. Data is emerging on the role of positron emission tomography in evaluating residual lesions in seminoma. Evolving data on chemotherapy, radiation, and surgery further complements and clarifies information on these treatment modalities, and their potential toxicities, in the management of germ cell tumors. SUMMARY Ongoing preclinical and epidemiological studies highlight the complexities underlying germ cell tumor pathogenesis. With enhanced understanding of some of these processes, treatments, particularly for advanced stages, will continue to evolve.
Collapse
Affiliation(s)
- Arif Hussain
- Department of Medicine, University of Maryland School of Medicine, University of Maryland Cancer Center, and The Baltimore VA Medical Center, Baltimore, Maryland, USA.
| |
Collapse
|
26
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447509 DOI: 10.1002/cfg.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|