1
|
ALMisned G, Kilic CS, Almansoori A, Mesbahi A, Hamad M, Tekin H. Evaluating deposited radiation energy amount and collision quantities of small-molecule radiosensitizers through Monte Carlo simulations. Heliyon 2024; 10:e33734. [PMID: 39050474 PMCID: PMC11267030 DOI: 10.1016/j.heliyon.2024.e33734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
This study investigates the photon interaction mechanism of various small molecule radiosensitizers, including Hydrogen Peroxide, Nimorazole, 5-Fluorouracil, NVX-108, and others, using the MCNP 6.3 Monte Carlo simulation code. The simulations focused on quantifying the linear attenuation coefficients, mean free path, and accumulation factors of these radiosensitizers, as well as their interactions in a simulated spherical water phantom irradiated with a 100 keV mono-energetic X-ray source. Our findings reveal significant variations in deposited energy, collision events, and mean free path among the radiosensitizers, indicating different efficacy levels in enhancing radiation therapy. Notably, NVX-108 demonstrated the highest energy deposition, suggesting its potential as a highly effective radiosensitizer. The study also examined the individual attenuation properties of these radiosensitizers against energetic photons, with NVX-108 showing the highest attenuation coefficient and a shorter mean free path, further supporting its superior potential in effective radiosensitization. It can be concluded that NVX-108 has higher interaction tendency with the energetic photons comparing other small-molecules under investigation.
Collapse
Affiliation(s)
- Ghada ALMisned
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ceyda Sibel Kilic
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - Asma Almansoori
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - A. Mesbahi
- Medical Radiation Research Team, South Morang, Melbourne, Australia
| | - Mawieh Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - H.O. Tekin
- Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Istinye University, Faculty of Engineering and Natural Sciences, Computer Engineering Department, Istanbul 34396, Turkey
| |
Collapse
|
2
|
Ameixa J, Bald I. Unraveling the Complexity of DNA Radiation Damage Using DNA Nanotechnology. Acc Chem Res 2024; 57:1608-1619. [PMID: 38780304 PMCID: PMC11154965 DOI: 10.1021/acs.accounts.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Radiation cancer therapies use different ionizing radiation qualities that damage DNA molecules in tumor cells by a yet not completely understood plethora of mechanisms and processes. While the direct action of the radiation is significant, the byproducts of the water radiolysis, mainly secondary low-energy electrons (LEEs, <20 eV) and reactive oxygen species (ROS), can also efficiently cause DNA damage, in terms of DNA strand breakage or DNA interstrand cross-linking. As a result, these types of DNA damage evolve into mutations hindering DNA replication, leading to cancer cell death. Concomitant chemo-radiotherapy explores the addition of radiosensitizing therapeutics commonly targeting DNA, such as platinum derivatives and halogenated nucleosides, to enhance the harmful effects of ionizing radiation on the DNA molecule. Further complicating the landscape of DNA damage are secondary structures such as G-quadruplexes occurring in telomeric DNA. These structures protect DNA from radiation damage, rendering them as promising targets for new and more selective cancer radiation treatments, rather than targeting linear DNA. However, despite extensive research, there is no single paradigm approach to understanding the mysterious way in which ionizing radiation causes DNA damage. This is due to the multidisciplinary nature of the field of research, which deals with multiple levels of biological organization, from the molecular building blocks of life toward cells and organisms, as well as with complex multiscale radiation-induced effects. Also, intrinsic DNA features, such as DNA topology and specific oligonucleotide sequences, strongly influence its response to damage from ionizing radiation. In this Account, we present our studies focused on the absolute quantification of photon- and low-energy electron-induced DNA damage in strategically selected target DNA sequences. Our methodology involves using DNA origami nanostructures, specifically the Rothemund triangle, as a platform to expose DNA sequences to either low-energy electrons or vacuum-ultraviolet (VUV, <15 eV) photons and subsequent atomic force microscopy (AFM) analysis. Through this approach, the effects of the DNA sequence, incorporation of halogenated radiosensitizers, DNA topology, and the radiation quality on radiation-induced DNA strand breakage have been systematically assessed and correlated with fundamental photon- and electron-driven mechanisms underlying DNA radiation damage. At lower energies, these mechanisms include dissociative electron attachment (DEA), where electrons attach to DNA molecules causing strand breaks, and dissociative photoexcitation of DNA. Additionally, further dissociative processes such as photoionization and electron impact contribute to the complex cascade of DNA damage events induced by ionizing radiation. We expect that emerging DNA origami-based approaches will lead to a paradigm shift in research fields associated with DNA damage and suggest future directions, which can foster the development of technological applications in nanomedicine, e.g., optimized cancer treatments or the molecular design of optimized radiosensitizing therapeutics.
Collapse
Affiliation(s)
- João Ameixa
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Centre
of Physics and Technological Research (CEFITEC), Department of Physics,
NOVA School of Science and Technology, University
NOVA of Lisbon, Campus de Caparica 2829-516, Portugal
| | - Ilko Bald
- Institute
of Chemistry, Hybrid Nanostructures, University
of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Wicker CA, Petery T, Dubey P, Wise-Draper TM, Takiar V. Improving Radiotherapy Response in the Treatment of Head and Neck Cancer. Crit Rev Oncog 2023; 27:73-84. [PMID: 36734873 DOI: 10.1615/critrevoncog.2022044635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The application of radiotherapy to the treatment of cancer has existed for over 100 years. Although its use has cured many, much work remains to be done to minimize side effects, and in-field tumor recurrences. Resistance of the tumor to a radiation-mediated death remains a complex issue that results in local recurrence and significantly decreases patient survival. Here, we review mechanisms of radioresistance and selective treatment combinations that improve the efficacy of the radiation that is delivered. Further investigation into the underlying mechanisms of radiation resistance is warranted to develop not just novel treatments, but treatments with improved safety profiles relative to current radiosensitizers. This review is written in memory and honor of Dr. Peter Stambrook, an avid scientist and thought leader in the field of DNA damage and carcinogenesis, and a mentor and advocate for countless students and faculty.
Collapse
Affiliation(s)
- Christina A Wicker
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45219
| | - Taylor Petery
- College of Medicine, University, of Cincinnati College of Medicine, Cincinnati, OH, 45267
| | - Poornima Dubey
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45219
| | | | - Vinita Takiar
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, OH 45219; Department of Radiation Oncology, Cincinnati Veteran's Affair Medical Center, Cincinnati, OH 45220
| |
Collapse
|
4
|
Jungles KM, Holcomb EA, Pearson AN, Jungles KR, Bishop CR, Pierce LJ, Green MD, Speers CW. Updates in combined approaches of radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Front Oncol 2022; 12:1022542. [PMID: 36387071 PMCID: PMC9643771 DOI: 10.3389/fonc.2022.1022542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer is the most prevalent non-skin cancer diagnosed in females and developing novel therapeutic strategies to improve patient outcomes is crucial. The immune system plays an integral role in the body’s response to breast cancer and modulating this immune response through immunotherapy is a promising therapeutic option. Although immune checkpoint inhibitors were recently approved for the treatment of breast cancer patients, not all patients respond to immune checkpoint inhibitors as a monotherapy, highlighting the need to better understand the biology underlying patient response. Additionally, as radiotherapy is a critical component of breast cancer treatment, understanding the interplay of radiation and immune checkpoint inhibitors will be vital as recent studies suggest that combined therapies may induce synergistic effects in preclinical models of breast cancer. This review will discuss the mechanisms supporting combined approaches with radiotherapy and immune checkpoint inhibitors for the treatment of breast cancer. Moreover, this review will analyze the current clinical trials examining combined approaches of radiotherapy, immunotherapy, chemotherapy, and targeted therapy. Finally, this review will evaluate data regarding treatment tolerance and potential biomarkers for these emerging therapies aimed at improving breast cancer outcomes.
Collapse
Affiliation(s)
- Kassidy M. Jungles
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Erin A. Holcomb
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ashley N. Pearson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kalli R. Jungles
- Department of Biology, Saint Mary’s College, Notre Dame, IN, United States
| | - Caroline R. Bishop
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Lori J. Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Michael D. Green
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| | - Corey W. Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH, United States
- *Correspondence: Michael D. Green, ; Corey W. Speers,
| |
Collapse
|
5
|
Tang S, Zhao L, Wu XB, Wang Z, Cai LY, Pan D, Li Y, Zhou Y, Shen Y. Identification of a Novel Cuproptosis-Related Gene Signature for Prognostic Implication in Head and Neck Squamous Carcinomas. Cancers (Basel) 2022; 14:cancers14163986. [PMID: 36010978 PMCID: PMC9406337 DOI: 10.3390/cancers14163986] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Head and neck squamous carcinoma (HNSC) is a common malignancy that requires novel therapeutic targets. Cuproptosis is an emerging research hotspot. The purpose of this study is to mine the cuproptosis-related genes to find prognosis-related genes. We successfully identified a 24-gene signature for predicting overall survival (OS) in HNSC patients and may expand the range of potential targets for treating HNSC. Abstract Head and neck squamous carcinoma (HNSC) is a frequent and deadly malignancy that is challenging to manage. The existing treatment options have considerable efficacy limitations. Hence, the identification of new therapeutic targets and the development of efficacious treatments are urgent needs. Cuproptosis, a non-apoptotic programmed cell death caused by excess copper, has only very recently been discovered. The present study investigated the prognostic importance of genes involved in cuproptosis through the mRNA expression data and related clinical information of HNSC patients downloaded from public databases. Our results revealed that many cuproptosis-related genes were differentially expressed between normal and HNSC tissues in the TCGA cohort. Moreover, 39 differentially expressed genes were associated with the prognosis of HNSC patients. Then, a 24-gene signature was identified in the TCGA cohort utilizing the LASSO Cox regression model. HNSC expression data used for validation were obtained from the GEO database. Consequently, we divided patients into high- and low-risk groups based on the 24-gene signature. Furthermore, we demonstrated that the high-risk group had a worse prognosis when compared to the low-risk group. Additionally, significant differences were found between the two groups in metabolic pathways, immune microenvironment, etc. In conclusion, we found a cuproptosis-related gene signature that can be used effectively to predict OS in HNSC patients. Thus, targeting cuproptosis might be an alternative and promising strategy for HNSC patients.
Collapse
Affiliation(s)
- Shouyi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Li Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Xing-Bo Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Zhen Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Lu-Yao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Dan Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Ying Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- State Institute of Drug/Medical Device Clinical Trial, West China Hospital of Stomatology, Chengdu 610041, China
- Correspondence: (Y.Z.); (Y.S.)
| | - Yingqiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu 640041, China
- Correspondence: (Y.Z.); (Y.S.)
| |
Collapse
|
6
|
Ma X, Yao M, Gao Y, Yue Y, Li Y, Zhang T, Nie G, Zhao X, Liang X. Functional Immune Cell-Derived Exosomes Engineered for the Trilogy of Radiotherapy Sensitization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106031. [PMID: 35715382 PMCID: PMC9376809 DOI: 10.1002/advs.202106031] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/13/2022] [Indexed: 05/19/2023]
Abstract
The limited efficacy of radiotherapy leads to radio-resistance and high rates of tumor recurrence and metastasis, which is caused by tumor hypoxia, rapid DNA damage repair, and especially the suppressive immune microenvironment of tumor. Lots of immune cell-derived exosomes can regulate antitumor immunity, but their application in enhancing radiotherapy is rarely studied. Herein, as a model of concept, M1 macrophage-derived exosomes (M1Exos) is engineered as effective radiotherapy sensitizers, realizing the trilogy of radiotherapy sensitization: 1) M1Exos is engineered to express catalases on the inside of membrane, which can effectively relieve tumor hypoxia, and enhance DNA damage. 2) The DNA damage repair inhibitor is loaded in M1Exos to effectively inhibit DNA damage repair. 3) M1Exos can polarize M2 macrophages into M1 phenotypes, and the anti-PD-L1 nanobody engineered on the outside of M1Exos can relieve the immunosuppression of T cells, both ultimately leading to the remodeling of the tumor suppressive microenvironment. The trilogy of radiotherapy sensitization achieves excellent antitumor efficacy, exhibiting the good utility of engineering immune cell-derived exosomes as radiotherapy sensitizers, inspiring the future efforts to explore different kinds of immune cell-derived exosomes for enhanced radiotherapy.
Collapse
Affiliation(s)
- Xiaotu Ma
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Meinan Yao
- Beijing Center for Disease Control and PreventionBeijing100013P. R. China
| | - Yu Gao
- Key Laboratory of Protein and Peptide PharmaceuticalsCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Tianjiao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology of ChinaBeijing100190P. R. China
- IGDB‐NCNST Joint Research CenterInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101P. R. China
| | - Xiaolong Liang
- Department of UltrasoundPeking University Third HospitalBeijing100191P. R. China
| |
Collapse
|
7
|
Valle L, Katz J, Duffy A, Hueman M, Wang HW, Hughes M, Sissung T, Figg W, Citrin D. Enhanced toxicity to chemoradiation in a patient with Anti-Jo-1-antisynthetase syndrome. BJR Case Rep 2022; 8:20210188. [PMID: 36101738 PMCID: PMC9461731 DOI: 10.1259/bjrcr.20210188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/05/2022] Open
Abstract
Appropriate counseling of patients with autoimmune connective tissue disorders (ACTDs) is often challenging for radiation oncologists, especially regarding anticipated side-effects of radiation treatment. These patients can have highly variable and unpredictable sequelae from radiation therapy, and the uncertainty builds when radiation is convoluted by the addition of concurrent chemotherapy. While many patients may experience a mild intensification of toxicity above what is expected, some patients experience much more severe toxicity. These patients become critical learning cases, enabling a better understanding of the delicate and complex ways in which radiation response is altered in the context of ACTDs while allowing other patients with similar ACTD profiles to benefit from past experience. Our report makes an important contribution to this space by describing a particularly severe case of toxicity that manifested in such a patient and the ensuing clinical decision-making. Comprehensive genotyping of classic pharmacokinetic and pharmacodynamic pathway genes (including mutations in DPD and CDA) did not reveal any signatures that might explain her enhanced toxicity and we demonstrate that severe toxicity can still manifest in the era of modern conformal radiation treatments for rectal cancer. We urge caution in the treatment of patients with rare ACTDs, but also emphasize that curative treatment should not be withheld in such patients. We conclude by advocating for the development and maintenance of a prospective multiinstitutional database of patients with ACTDs to help inform and improve future practice.
Collapse
Affiliation(s)
- Luca Valle
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - James Katz
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, USA
| | - Austin Duffy
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew Hueman
- Surgical Oncology Division, Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marybeth Hughes
- Division of Surgical Oncology, Department of Surgery, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Tristan Sissung
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William Figg
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Deborah Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
8
|
Karlsson H, Fryknäs M, Senkowski W, Larsson R, Nygren P. Selective radiosensitization by nitazoxanide of quiescent clonogenic colon cancer tumour cells. Oncol Lett 2022; 23:123. [PMID: 35261637 PMCID: PMC8867181 DOI: 10.3892/ol.2022.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/31/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Henning Karlsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Wojciech Senkowski
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala S‑751 85, Sweden
| |
Collapse
|
9
|
Edwards DM, Speers C, Wahl DR. Targeting Noncanonical Regulators of the DNA Damage Response to Selectively Overcome Cancer Radiation Resistance. Semin Radiat Oncol 2021; 32:64-75. [PMID: 34861997 DOI: 10.1016/j.semradonc.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Donna M Edwards
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI; Department of Radiation Oncology, Rogel Cancer Center, Ann Arbor, MI.
| |
Collapse
|
10
|
Metabolic reprograming of antioxidant defense: a precision medicine perspective for radiotherapy of lung cancer? Biochem Soc Trans 2021; 49:1265-1277. [PMID: 34110407 DOI: 10.1042/bst20200866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
Radiotherapy plays a key role in the management of lung cancer patients in curative and palliative settings. Traditionally, radiotherapy was either given alone or in combination with surgery, classical cytotoxic chemotherapy, or both. Technical and physical innovations achieved during the last two decades have helped to enhance the accuracy of radiotherapy dose delivery and have facilitated geometric radiotherapy individualization. Furthermore, multimodal combinations with molecularly tailored drugs or immunotherapy yielded promising survival benefits in selected patients. Yet high locoregional failure rates and frequent development of metastases still limit the patient outcome. One major obstacle to successful treatment is the high molecular heterogeneity observed in lung cancer. So far, clinical radiotherapy does not routinely use the knowledge on molecular subtypes with regard to therapy individualization and predictive biomarkers are missing. Herein, altered cancer metabolism has attracted novel attention during recent years as it promotes tumor growth and progression as well as resistance to anticancer therapies. The present perspective will exemplarily highlight how clinically relevant molecular subtypes defined by co-occurring somatic mutations in KRAS-driven lung cancer impact the metabolic phenotype of cancer cells, how the metabolic phenotype supports intrinsic radioresistance by the improved antioxidant defense, and also discuss potential subtype-specific actionable metabolic vulnerabilities. Understanding metabolic phenotypes of radioresistance and metabolic bottlenecks of cancer cells undergoing radiotherapy in a cancer-specific context will offer largely unexploited future avenues for biological individualization and optimization of radiotherapy. Transcriptional profiles will provide additional benefit in defining metabolic phenotypes associated with radioresistance, particularly in cases, where such dependencies cannot be identified by specific somatic mutations.
Collapse
|
11
|
Reuvers TGA, Kanaar R, Nonnekens J. DNA Damage-Inducing Anticancer Therapies: From Global to Precision Damage. Cancers (Basel) 2020; 12:E2098. [PMID: 32731592 PMCID: PMC7463878 DOI: 10.3390/cancers12082098] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/11/2022] Open
Abstract
DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-eradicating mechanisms such as apoptosis. A detailed understanding of DNA damage induction and the DDR has greatly improved our knowledge of the classical DNA damage-inducing therapies, radiotherapy and cytotoxic chemotherapy, and has paved the way for rational improvement of these treatments. Moreover, compounds targeting specific DDR proteins, selectively impairing DNA damage repair in cancer cells, form a promising novel therapy class that is now entering the clinic. In this review, we give an overview of the current state and ongoing developments, and discuss potential avenues for improvement for DNA damage-inducing therapies, with a central focus on the role of the DDR in therapy response, toxicity and resistance. Furthermore, we describe the relevance of using combination regimens containing DNA damage-inducing therapies and how they can be utilized to potentiate other anticancer strategies such as immunotherapy.
Collapse
Affiliation(s)
- Thom G. A. Reuvers
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| | - Julie Nonnekens
- Department of Molecular Genetics, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.G.A.R.); (R.K.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, Dr. Molenwaterplein 40, 3015 GD Rotterdam, The Netherlands
- Oncode Institute, Office Jaarbeurs Innovation Mile (JIM), Jaarbeursplein 6, 3561 AL Utrecht, The Netherlands
| |
Collapse
|
12
|
Qu Y, Tan HY, Chan YT, Jiang H, Wang N, Wang D. The functional role of long noncoding RNA in resistance to anticancer treatment. Ther Adv Med Oncol 2020; 12:1758835920927850. [PMID: 32536982 PMCID: PMC7268113 DOI: 10.1177/1758835920927850] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is one of the fundamental methods of cancer treatment. However, drug resistance remains the main cause of clinical treatment failure. We comprehensively review the newly identified roles of long noncoding RNAs (lncRNAs) in oncobiology that are associated with drug resistance. The expression of lncRNAs is tissue-specific and often dysregulated in human cancers. Accumulating evidence suggests that lncRNAs are involved in chemoresistance of cancer cells. The main lncRNA-driven mechanisms of chemoresistance include regulation of drug efflux, DNA damage repair, cell cycle, apoptosis, epithelial-mesenchymal transition (EMT), induction of signaling pathways, and angiogenesis. LncRNA-driven mechanisms of resistance to various antineoplastic agents have been studied extensively. There are unique mechanisms of resistance against different types of drugs, and each mechanism may have more than one contributing factor. We summarize the emerging strategies that can be used to overcome the technical challenges in studying and addressing lncRNA-mediated drug resistance.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Hongbo Jiang
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
13
|
Nezami N, Camacho JC, Kokabi N, El-Rayes BF, Kim HS. Phase Ib trial of gemcitabine with yttrium-90 in patients with hepatic metastasis of pancreatobiliary origin. J Gastrointest Oncol 2019; 10:944-956. [PMID: 31602333 DOI: 10.21037/jgo.2019.05.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Gemcitabine, a chemotherapy for hepatic metastasis with pancreatic cancer (PC) or intrahepatic cholangiocarcinoma (ICC) origin, may radiosensitize the targeted tumor cells for yttrium-90 radioembolization (90Y-RE). This clinical trial was designed to investigate the effects of a combination of 90Y-RE and gemcitabine in hepatic metastasis of PC or ICC origin. Methods Fourteen patients who had histopathologic diagnosis of unresectable hepatic metastasis of PC or ICC origin were enrolled into the open-label phase Ib clinical trial. Induction dose of gemcitabine on day 1 was followed by 90Y-RE on day 2 with predetermined doses of gemcitabine to follow till week 12. Maximal tolerated dose (MTD) of gemcitabine in combination with 90Y-RE, associated toxicities and hepatic progression free survival (HPFS) were assessed. The tumor response rate was evaluated using both RECIST and PERCIST criteria. Results Eight patients met the study criteria; three with PC and five with ICC. The mean age of the patients was 69.4 years. Seven out of 8 patients tolerated predetermined gemcitabine regime (dose level 1 at 400 mg/m2 and dose level 2 at 600 mg/m2). All of the patients developed grade 1 toxicities. Three patients (37.5%) had grade 2 hepatobiliary toxicity and one patient (12.5%) had grade 3 hepatobiliary toxicity, who was hospitalized for a short-term. The median HPFS was 8.7 months for all patients. The objective response rate was 62%. Conclusions A combination of 90Y-RE and gemcitabine at 600 mg/m2 is a safe and potential treatment option for hepatic metastasis of pancreaticobiliary origin.
Collapse
Affiliation(s)
- Nariman Nezami
- Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Juan C Camacho
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nima Kokabi
- Division of Interventional Radiology, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bassel F El-Rayes
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hyun S Kim
- Section of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA.,Section of Medical Oncology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
14
|
Yasui H, Iizuka D, Hiraoka W, Kuwabara M, Matsuda A, Inanami O. Nucleoside analogs as a radiosensitizer modulating DNA repair, cell cycle checkpoints, and apoptosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:439-452. [PMID: 31560250 DOI: 10.1080/15257770.2019.1670839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The combination of low dose of radiation and an anticancer drug is a potent strategy for cancer therapy. Nucleoside analogs are known to have a radiosensitizing effects via the inhibition of DNA damage repair after irradiation. Certain types of nucleoside analogs have the inhibitory effects on RNA synthesis, but not DNA synthesis, with multiple functions in cell cycle modulation and apoptosis. In this review, the most up-to-date findings regarding radiosensitizing nucleoside analogs will be discussed, focusing especially on the mechanisms of action.
Collapse
Affiliation(s)
- Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakako Hiraoka
- Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Mikinori Kuwabara
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Karlsson H, Senkowski W, Fryknäs M, Mansoori S, Linder S, Gullbo J, Larsson R, Nygren P. A novel tumor spheroid model identifies selective enhancement of radiation by an inhibitor of oxidative phosphorylation. Oncotarget 2019; 10:5372-5382. [PMID: 31523395 PMCID: PMC6731106 DOI: 10.18632/oncotarget.27166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023] Open
Abstract
There is a need for preclinical models that can enable identification of novel radiosensitizing drugs in clinically relevant high-throughput experiments. We used a new high-throughput compatible total cell kill spheroid assay to study the interaction between drugs and radiation in order to identify compounds with radiosensitizing activity. Experimental drugs were compared to known radiosensitizers and cytotoxic drugs clinically used in combination with radiotherapy. VLX600, a novel iron-chelating inhibitor of oxidative phosphorylation, potentiated the effect of radiation in tumor spheroids in a synergistic manner. This effect was specific to spheroids and not observed in monolayer cell cultures. In conclusion, the total cell kill spheroid assay is a feasible high-throughput method in the search for novel radiosensitizers. VLX600 shows encouraging characteristics for development as a novel radiosensitizer.
Collapse
Affiliation(s)
- Henning Karlsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Mårten Fryknäs
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Stig Linder
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Cancer Center Karolinska, Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Joachim Gullbo
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Peter Nygren
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Turnbull T, Douglass M, Williamson NH, Howard D, Bhardwaj R, Lawrence M, Paterson DJ, Bezak E, Thierry B, Kempson IM. Cross-Correlative Single-Cell Analysis Reveals Biological Mechanisms of Nanoparticle Radiosensitization. ACS NANO 2019; 13:5077-5090. [PMID: 31009200 PMCID: PMC6546286 DOI: 10.1021/acsnano.8b07982] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanoparticle radiosensitization has been demonstrated well to enhance the effects of radiotherapy, motivate the improvement of therapeutic ratios, and decrease morbidity in cancer treatment. A significant challenge exists in optimizing formulations and translation due to insufficient knowledge of the associated mechanisms, which have historically been limited to physical concepts. Here, we investigated a concept for the role of biological mechanisms. The mere presence of gold nanoparticles led to a down-regulation of thymidylate synthase, important for DNA damage repair in the radioresistant S-phase cells. By developing a cross-correlative methodology to reveal probabilistic gold nanoparticle uptake by cell sub-populations and the associated sensitization as a function of the uptake, a number of revealing observations have been achieved. Surprisingly, for low numbers of nanoparticles, a desensitization action was observed. Sensitization was discovered to preferentially impact S-phase cells, in which impairment of the DNA damage response by the homologous recombination pathway dominates. This small but radioresistant cell population correlates with much greater proliferative ability. Thus, a paradigm is presented whereby enhanced DNA damage is not necessarily due to an increase in the number of DNA double-strand breaks (DSBs) created but can be from a nanoparticle-induced impairment of the damage response by down-regulating repair proteins such as thymidylate synthase.
Collapse
Affiliation(s)
- Tyron Turnbull
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Michael Douglass
- Department of Medical Physics , Royal Adelaide Hospital , Adelaide , South Australia 5000 , Australia
- Department of Physics , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Nathan H Williamson
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
- Section on Quantitative Imaging and Tissue Sciences, NICHD , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Douglas Howard
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Richa Bhardwaj
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Mark Lawrence
- Department of Critical Care Medicine , Flinders University , Adelaide , South Australia 5042 , Australia
| | | | - Eva Bezak
- Department of Physics , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Benjamin Thierry
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| | - Ivan M Kempson
- Future Industries Institute , University of South Australia , Mawson Lakes , South Australia 5095 , Australia
| |
Collapse
|
17
|
Jin XF, Auernhammer CJ, Ilhan H, Lindner S, Nölting S, Maurer J, Spöttl G, Orth M. Combination of 5-Fluorouracil with Epigenetic Modifiers Induces Radiosensitization, Somatostatin Receptor 2 Expression, and Radioligand Binding in Neuroendocrine Tumor Cells In Vitro. J Nucl Med 2019; 60:1240-1246. [DOI: 10.2967/jnumed.118.224048] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
|
18
|
Synergistic effect and reduced toxicity by intratumoral injection of cytarabine-loaded hyaluronic acid hydrogel conjugates combined with radiotherapy on lung cancer. Invest New Drugs 2019; 37:1146-1157. [DOI: 10.1007/s10637-019-00740-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
19
|
Chen CW, Li Y, Hu S, Zhou W, Meng Y, Li Z, Zhang Y, Sun J, Bo Z, DePamphilis ML, Yen Y, Han Z, Zhu W. DHS (trans-4,4'-dihydroxystilbene) suppresses DNA replication and tumor growth by inhibiting RRM2 (ribonucleotide reductase regulatory subunit M2). Oncogene 2018; 38:2364-2379. [PMID: 30518875 PMCID: PMC6705423 DOI: 10.1038/s41388-018-0584-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
DNA replication machinery is responsible for accurate and efficient duplication of the chromosome. Since inhibition of DNA replication can lead to replication fork stalling, resulting in DNA damage and apoptotic death, inhibitors of DNA replication are commonly used in cancer chemotherapy. Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the biosynthesis of deoxyribonucleoside triphosphates (dNTPs) that are essential for DNA replication and DNA damage repair. Gemcitabine, a nucleotide analog that inhibits RNR, has been used to treat various cancers. However, patients often develop resistance to this drug during treatment. Thus, new drugs that inhibit RNR are needed to be developed. In this study, we identified a synthetic analog of resveratrol (3,5,4’-trihydroxy-trans-stilbene), termed DHS (trans-4,4’-dihydroxystilbene), that acts as a potent inhibitor of DNA replication. Molecular docking analysis identified the RRM2 (ribonucleotide reductase regulatory subunit M2) of RNR as a direct target of DHS. At the molecular level, DHS induced cyclin F-mediated down-regulation of RRM2 by the proteasome. Thus, treatment of cells with DHS reduced RNR activity and consequently decreased synthesis of dNTPs with concomitant inhibition of DNA replication, arrest of cells at S-phase, DNA damage, and finally apoptosis. In mouse models of tumor xenografts, DHS was efficacious against pancreatic, ovarian, and colorectal cancer cells. Moreover, DHS overcame both gemcitabine resistance in pancreatic cancer and cisplatin resistance in ovarian cancer. Thus, DHS is a novel anti-cancer agent that targets RRM2 with therapeutic potential either alone or in combination with other agents to arrest cancer development.
Collapse
Affiliation(s)
- Chi-Wei Chen
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuya Hu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Wei Zhou
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA.,Department of Colorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiao Meng
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Yi Zhang
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Jing Sun
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Zhou Bo
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | | | - Yun Yen
- City of Hope National Medical Center, Duarte, CA, USA
| | - Zhiyong Han
- Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, South Orange, NJ, USA.
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,GW Cancer Center, The George Washington University, Washington, DC, USA.
| |
Collapse
|
20
|
Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R. Recent advances in radiation oncology. Ecancermedicalscience 2017; 11:785. [PMID: 29225692 PMCID: PMC5718253 DOI: 10.3332/ecancer.2017.785] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy (RT) is very much a technology-driven treatment modality in the management of cancer. RT techniques have changed significantly over the past few decades, thanks to improvements in engineering and computing. We aim to highlight the recent developments in radiation oncology, focusing on the technological and biological advances. We will present state-of-the-art treatment techniques, employing photon beams, such as intensity-modulated RT, volumetric-modulated arc therapy, stereotactic body RT and adaptive RT, which make possible a highly tailored dose distribution with maximum normal tissue sparing. We will analyse all the steps involved in the treatment: imaging, delineation of the tumour and organs at risk, treatment planning and finally image-guidance for accurate tumour localisation before and during treatment delivery. Particular attention will be given to the crucial role that imaging plays throughout the entire process. In the case of adaptive RT, the precise identification of target volumes as well as the monitoring of tumour response/modification during the course of treatment is mainly based on multimodality imaging that integrates morphological, functional and metabolic information. Moreover, real-time imaging of the tumour is essential in breathing adaptive techniques to compensate for tumour motion due to respiration. Brief reference will be made to the recent spread of particle beam therapy, in particular to the use of protons, but also to the yet limited experience of using heavy particles such as carbon ions. Finally, we will analyse the latest biological advances in tumour targeting. Indeed, the effectiveness of RT has been improved not only by technological developments but also through the integration of radiobiological knowledge to produce more efficient and personalised treatment strategies.
Collapse
Affiliation(s)
- Cristina Garibaldi
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giulia Marvaso
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Samantha Dicuonzo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Damaris Patricia Rojas
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Federica Cattani
- Unit of Medical Physics, European Institute of Oncology, 20141 Milan, Italy
| | - Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 80–211 Gdańsk, Poland
| | - Delia Ciardo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| | | | - Rosalinda Ricotti
- Department of Radiation Oncology, European Institute of Oncology, 20141 Milan, Italy
| |
Collapse
|
21
|
Poštulka J, Slavíček P, Fedor J, Fárník M, Kočišek J. Energy Transfer in Microhydrated Uracil, 5-Fluorouracil, and 5-Bromouracil. J Phys Chem B 2017; 121:8965-8974. [DOI: 10.1021/acs.jpcb.7b07390] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Poštulka
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
| | - P. Slavíček
- Department
of Physical Chemistry, University of Chemistry and Technology, Technická
5, Prague 6, Czech Republic
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Fedor
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - M. Fárník
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - J. Kočišek
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| |
Collapse
|
22
|
Rizzuto I, Ghazaly E, Peters GJ. Pharmacological factors affecting accumulation of gemcitabine's active metabolite, gemcitabine triphosphate. Pharmacogenomics 2017; 18:911-925. [PMID: 28594276 DOI: 10.2217/pgs-2017-0034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gemcitabine is an anticancer agent acting against several solid tumors. It requires nucleoside transporters for cellular uptake and deoxycytidine kinase for activation into active gemcitabine-triphosphate, which is incorporated into the DNA and RNA. However, it can also be deaminated in the plasma. The intracellular level of gemcitabine-triphosphate is affected by scheduling or by combination with other chemotherapeutic regimens. Moreover, higher concentrations of gemcitabine-triphosphate may affect the toxicity, and possibly the clinical efficacy. As a consequence, different nucleoside analogs have been synthetized with the aim to increase the concentration of gemcitabine-triphosphate into cells. In this review, we summarize currently published evidence on pharmacological factors affecting the intracellular level of gemcitabine-triphosphate to guide future trials on the use of new nucleoside analogs.
Collapse
Affiliation(s)
| | | | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Rezaee M, Hill RP, Jaffray DA. The Exploitation of Low-Energy Electrons in Cancer Treatment. Radiat Res 2017; 188:123-143. [PMID: 28557630 DOI: 10.1667/rr14727.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Given the distinct characteristics of low-energy electrons (LEEs), particularly at energies less than 30 eV, they can be applied to a wide range of therapeutic modalities to improve cancer treatment. LEEs have been shown to efficiently produce complex molecular damage resulting in substantial cellular toxicities. Since LEEs are produced in copious amounts from high-energy radiation beam, including photons, protons and ions; the control of LEE distribution can potentially enhance the therapeutic radio of such beams. LEEs can play a substantial role in the synergistic effect between radiation and chemotherapy, particularly halogenated and platinum-based anticancer drugs. Radiosensitizing entities containing atoms of high atomic number such as gold nanoparticles can be a source of LEE production if high-energy radiation interacts with them. This can provide a high local density of LEEs in a cell and produce cellular toxicity. Auger-electron-emitting radionuclides also create a high number of LEEs in each decay, which can induce lethal damage in a cell. Exploitation of LEEs in cancer treatment, however, faces a few challenges, such as dosimetry of LEEs and selective delivery of radiosensitizing and chemotherapeutic molecules close to cellular targets. This review first discusses the rationale for utilizing LEEs in cancer treatment by explaining their mechanism of action, describes theoretical and experimental studies at the molecular and cellular levels, then discusses strategies for achieving modification of the distribution and effectiveness of LEEs in cancerous tissue and their associated clinical benefit.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Hill
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - David A Jaffray
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Ontario Cancer Institute and Campbell Family Institute for Cancer Research and Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Sarkisjan D, van den Berg J, Smit E, Lee YB, Kim DJ, Peters GJ. The radiosensitizing effect of fluorocyclopentenyl-cytosine (RX-3117) in ovarian and lung cancer cell lines. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 35:619-630. [PMID: 27906620 DOI: 10.1080/15257770.2016.1216565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RX-3117 (fluorocyclopentenyl-cytosine) is a novel cytidine analog currently being evaluated in a Phase Ib clinical trial in cancer patients with solid tumors. The radiosensitizing effect of RX-3117 was studied in A2780 ovarian cancer cells and non-small cell lung cancer cell lines and related to cell survival and the effect on cell cycle and cell cycle proteins. RX-3117 has a schedule-dependent radiosensitizing effect, but only at pre-incubation (dose modifying factors: 1.4-1.8), observed at pulse and fractionated irradiation. Radiosensitizion was also seen in a three-dimensional spheroid model. At the low radiosensitizing concentration, RX-3117 in combination with radiation led to an accumulation of cells in S-phase, which was accompanied with an increase of cell cycle proteins such as p-Chk2 and p-cdc25C. In addition, RX-3117 caused DNA damage and increased apoptosis. In conclusion, our in vitro experiments showed a radiosensitizing effect of RX-3117.
Collapse
Affiliation(s)
- Dzjemma Sarkisjan
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Jaap van den Berg
- b Department of Radio Therapy , VU University Medical Center , Amsterdam , The Netherlands
| | - Evelyn Smit
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| | - Young B Lee
- c Rexahn Pharmaceuticals, Inc. , Rockville , Maryland , USA
| | - Deog J Kim
- c Rexahn Pharmaceuticals, Inc. , Rockville , Maryland , USA
| | - Godefridus J Peters
- a Department of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
| |
Collapse
|
25
|
Wahl DR, Lawrence TS. Integrating chemoradiation and molecularly targeted therapy. Adv Drug Deliv Rev 2017; 109:74-83. [PMID: 26596559 DOI: 10.1016/j.addr.2015.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 11/08/2015] [Indexed: 12/25/2022]
Abstract
While the advent of combined chemoradiation has improved outcomes for innumerable patients with locally advanced cancers, further improvements are urgently needed. Escalation of either chemotherapy or radiotherapy is associated with unacceptable toxicity. An alternative strategy is the integration of chemoradiation and molecularly targeted therapies, which exploits biological differences between cancer and normal tissue and should therefore increase efficacy while maintaining tolerable toxicity. Combining chemoradiation with agents that modulate tumor-specific pathways such as cell cycle checkpoints, PARP signaling, EGFR signaling, the PI3K/AKT/mTOR axis and androgen signaling has shown immense promise in preclinical and clinical studies, as have combinations with environmentally-targeted agents against the immune system and angiogenesis. The optimal application of these strategies will likely require consideration of molecular heterogeneity between patients and within individual tumors.
Collapse
|
26
|
Luna Pais H, Alho I, Vendrell I, Mansinho A, Costa L. Radionuclides in oncology clinical practice – review of the literature. Dalton Trans 2017; 46:14475-14487. [DOI: 10.1039/c7dt01929g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Radionuclide therapy is a promising type of targeted therapy for cancer and its use is becoming more common in several types of malignant tumors.
Collapse
Affiliation(s)
- Helena Luna Pais
- Medical Oncology Department
- Hospital de Santa Maria
- 1649-035 Lisbon
- Portugal
| | - Irina Alho
- Instituto de Medicina Molecular
- Faculdade de Medicina
- Universidade de Lisboa
- 1649-035 Lisbon
- Portugal
| | - Inês Vendrell
- Medical Oncology Department
- Hospital de Santa Maria
- 1649-035 Lisbon
- Portugal
| | - André Mansinho
- Medical Oncology Department
- Hospital de Santa Maria
- 1649-035 Lisbon
- Portugal
| | - Luís Costa
- Medical Oncology Department
- Hospital de Santa Maria
- 1649-035 Lisbon
- Portugal
- Instituto de Medicina Molecular
| |
Collapse
|
27
|
Bezborodova OA, Nemtsova ER, Gevorkov AR, Boyko AV, Venediktova JB, Alekseenko IV, Kostina MB, Monastyrskaya GS, Sverdlov ED, Khmelevskiy EV, Yakubovskaya RI. Antitumor efficacy of combined gene and radiotherapy in animals. DOKL BIOCHEM BIOPHYS 2016; 470:345-348. [PMID: 27817015 DOI: 10.1134/s1607672916050112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 11/22/2022]
Abstract
Antitumor efficacy of the combined suicide gene therapy and radiotherapy was studied on the model of CT26 murine colon adenocarcinoma. CMV-FCU1-IRES-mGM-CSF-pGL3 construct with PEG-PEI-TAT (FCU1-mGM/5-FC) block copolymer as a vector was used for intratumoral administration. Tumors were irradiated with a single 5 Gy dose. The efficacy was evaluated according to the grade of tumor growth inhibition (T/C) and lifespan of the animals. Pronounced antitumor activity of the combined use of FCU1-mGM/5-FC system with radiotherapy on the background of prolonged lifespan and the synergism of the applied methods was revealed.
Collapse
Affiliation(s)
- O A Bezborodova
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia.
| | - E R Nemtsova
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| | - A R Gevorkov
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| | - A V Boyko
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| | - J B Venediktova
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| | - I V Alekseenko
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Akademika Kurchatova 46, Moscow, 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - M B Kostina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - G S Monastyrskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - E D Sverdlov
- Institute of Molecular Genetics, Russian Academy of Sciences, pl. Akademika Kurchatova 46, Moscow, 123182, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | - E V Khmelevskiy
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| | - R I Yakubovskaya
- National Medical Research Radiological Center (NMRRC), Ministry of Healthcare of the Russian Federation, Obninsk, Kaluga oblast, Russia
| |
Collapse
|
28
|
Im MM, Flanagan SA, Ackroyd JJ, Knapp B, Kramer A, Shewach DS. Late DNA Damage Mediated by Homologous Recombination Repair Results in Radiosensitization with Gemcitabine. Radiat Res 2016; 186:466-477. [PMID: 27740890 DOI: 10.1667/rr14443.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (dFdCyd) shows broad antitumor activity in solid tumors in chemotherapeutic regimens or when combined with ionizing radiation (radiosensitization). While it is known that mismatches in DNA are necessary for dFdCyd radiosensitization, the critical event resulting in radiosensitization has not been identified. Here we hypothesized that late DNA damage (≥24 h after drug washout/irradiation) is a causal event in radiosensitization by dFdCyd, and that homologous recombination repair (HRR) is required for this late DNA damage. Using γ-H2AX as a measurement of DNA damage in MCF-7 breast cancer cells, we demonstrate that 10 or 80 nM dFdCyd alone produced significantly more late DNA damage compared to that observed within 4 h after treatment. The combination of dFdCyd treatment followed by irradiation did not produce a consistent increase in DNA damage in the first 4 h after treatment, however, there was a synergistic increase 24-48 h later relative to treatment with dFdCyd or radiation alone. RNAi suppression of the essential HRR protein, XRCC3, significantly decreased both radiosensitization and late DNA damage. Furthermore, inhibition of HRR with the Rad51 inhibitor B02 prevented radiosensitization when added after, but not during, treatment with dFdCyd and radiation. To our knowledge, this is the first published study to show that radiosensitization with dFdCyd results from a synergistic increase in DNA damage at 24-48 h after drug and radiation treatment, and that this damage and radiosensitization require HRR. These results suggest that tumors that overexpress HRR will be more vulnerable to chemoradiotherapy, and treatments that increase HRR and/or mismatches in DNA will enhance dFdCyd radiosensitization.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Sheryl A Flanagan
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Jeffrey J Ackroyd
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Brendan Knapp
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Aaron Kramer
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| |
Collapse
|
29
|
Fong CW. Platinum based radiochemotherapies: Free radical mechanisms and radiotherapy sensitizers. Free Radic Biol Med 2016; 99:99-109. [PMID: 27417937 DOI: 10.1016/j.freeradbiomed.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/18/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022]
Abstract
The radiosensitizing ability of Pt drugs can in the first instance be predicted based on the ease that they undergo activation by electron attachment accompanied by structural modification prior to forming Pt-DNA adducts. Unlike cisplatin, carboplatin and nedaplatin, oxaliplatin does not undergo a facile dissociative electron transfer reaction when an electron is attached. However, oxaliplatin undergoes a facile nucleophilic assisted proton coupled electron transfer (NAPCET), which may be key element of the success of FOLFOX radiochemotherapy against certain cancers. Under acidic conditions, oxaliplatin is a superior radiosensitizer to cisplatin or carboplatin, in the presence of nucleophiles such as water, chloride ions or thiols. Oxaliplatin may also be activated as a platinating agent and radiosensitizer by a minor hydrogen radical free radical mechanism as well as the more dominant NAPCET mechanism. The radiosensitizing synergism that is shown when oxaliplatin is combined with 5-fluorouracil can be due to the formation of a π complex between the two drugs, which is more potent under acidic conditions. These factors have a bearing on Pt based chemotherapy clinical regimes as well as clinical radiochemotherapy regimes, and could be a basis for optimizing how such drug schedules are administered.
Collapse
|
30
|
Harrabi SB, Adeberg S, Winter M, Haberer T, Debus J, Weber KJ. S-phase-specific radiosensitization by gemcitabine for therapeutic carbon ion exposure in vitro. JOURNAL OF RADIATION RESEARCH 2016; 57:110-114. [PMID: 26747201 PMCID: PMC4795954 DOI: 10.1093/jrr/rrv097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/27/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Densely ionizing charged particle irradiation offers physical as well as biological advantages compared with photon irradiation. Radiobiological data for the combination of such particle irradiation (i.e. therapeutic carbon ions) with commonly used chemotherapeutics are still limited. Recent in vitro results indicate a general prevalence of additive cytotoxic effects in combined treatments, but an extension of established multimodal treatment regimens with photons to the inclusion of particle therapy needs to evaluate possible peculiarities of using high linear energy transfer (LET) radiation. The present study investigates the effect of combined radiochemotherapy using gemcitabine and high-LET irradiation with therapeutic carbon ions. In particular, the earlier observation of S-phase specific radiosensitization with photon irradiation should be evaluated with carbon ions. In the absence of the drug gemcitabine, carbon ion irradiation produced the typical survival behavior seen with X-rays-increased relative biological efficiency, and depletion of the survival curve's shoulder. By means of serum deprivation and subsequent replenishment, ∼70% S-phase content of the cell population was achieved, and such preparations showed radioresistance in both treatment arms-,photon and carbon ion irradiation. Combined modality treatment with gemcitabine caused significant reduction of clonogenic survival especially for the S-phase cells. WIDR cells exhibited S-phase-specific radioresistance with high-LET irradiation, although this was less pronounced than for X-ray exposure. The combined treatment with therapeutic carbon ions and gemcitabine caused the resistance phenomenon to disappear phenotypically.
Collapse
Affiliation(s)
- Semi B Harrabi
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 450, Heidelberg 69120, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| | - Marcus Winter
- Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 450, Heidelberg 69120, Germany
| | - Thomas Haberer
- Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 450, Heidelberg 69120, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany Heidelberg Ion Therapy Center (HIT), Im Neuenheimer Feld 450, Heidelberg 69120, Germany
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, Heidelberg 69120, Germany
| |
Collapse
|
31
|
IDO Downregulation Induces Sensitivity to Pemetrexed, Gemcitabine, FK866, and Methoxyamine in Human Cancer Cells. PLoS One 2015; 10:e0143435. [PMID: 26579709 PMCID: PMC4651508 DOI: 10.1371/journal.pone.0143435] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/04/2015] [Indexed: 01/12/2023] Open
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO) is an immune regulatory enzyme expressed by most human tumors. IDO levels in tumor cells correlate with increased metastasis and poor patient outcome and IDO is linked to tumor cell resistance to immunotherapy, radiation therapy, and chemotherapy. Knowledge of tumor cell-autonomous effects of IDO, independent of its well-known role in regulating and suppressing anti-tumor immune responses, is limited. Clonal populations of A549 human lung adenocarcinoma cells stably transfected with anti-IDO shRNA or scrambled control shRNA were used to study IDO effects on drug sensitivity and resistance. IFNγ was used to induce IDO in those cells. We show, for the first time, that IDO mediates human tumor cell resistance to the candidate anticancer drugs FK866 (an NAD+ inhibitor), methoxyamine (MX, a base excision repair [BER] inhibitor) and approved anticancer drugs pemetrexed (a folate anti-metabolite) and gemcitabine (a nucleoside analogue), and combined treatment with pemetrexed and MX, in the absence of immune cells. Concurrent knockdown of IDO and thymidylate synthase (TS, a key rate-limiting enzyme in DNA synthesis and repair) sensitizes human lung cancer cells to pemetrexed and 5FUdR to a greater degree than knockdown of either target alone. We conclude that BER in IDO-expressing A549 cells plays a major role in mediating resistance to a range of approved and candidate anticancer drugs. IDO inhibitors are undergoing clinical trials primarily to improve antitumor immune responses. We show that targeting IDO alone or in combination with TS is a potentially valuable therapeutic strategy for cancer treatment, independent of immune activity and in combination with conventional chemotherapy.
Collapse
|
32
|
Continuing EGFR-TKI treatment in combination with super-selective arterial infusion chemotherapy beyond disease progression for patients with advanced EGFR-mutant non-small cell lung cancer. Med Oncol 2015; 32:256. [PMID: 26496741 DOI: 10.1007/s12032-015-0704-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 02/06/2023]
Abstract
Regional therapy has shown promising results in patients with an oligo-metastasis after the occurrence of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). This study evaluated the efficacy and safety of continuing EGFR-TKI therapy concurrently with arterial infusion chemotherapy in 6 patients (median age 55.9 years) with advanced EGFR-mutant non-small cell lung cancer (NSCLC) who had a locally progressive, centrally located lung lesion after EGFR-TKI therapy. The patients received a super-selective arterial infusion of docetaxel (75 mg/m(2)) every 28 days concurrently with EGFR-TKI therapy until further progressive disease (PD) or unacceptable adverse effects (AEs) occurred. Treatment outcomes were assessed via progression-free survival (PFS) times (PFS-1: time to PD after EGFR-TKI therapy; PFS-2: time to further PD after arterial infusion chemotherapy with EGFR-TKI therapy), the occurrence of treatment-related AEs, and patient responses to the QLQ-LC13 quality-of-life questionnaire. Three of the 6 patients achieved partial responses, and three had stable disease. The median PFS-1 was 10.42 months, and the median PFS-2 was 4.1 months (range, 2.1-5.7 months). The median overall survival (OS) was 28.6 months (range, 24.1-32.9 months). All AEs were either grade 1 or grade 2 in severity, and no unexpected AEs were observed. One patient died of lung cancer. The patients reported significant reductions from baseline in symptoms of cough, chest pain, dyspnea, and hemoptysis (P < 0.05 for all comparisons). Thus, continuing EGFR-TKI therapy in combination with super-selective arterial infusion chemotherapy beyond PD for patients with advanced EGFR-mutant NSCLC is feasible, and this approach warrants further investigation.
Collapse
|
33
|
Acute skin toxicity management in head and neck cancer patients treated with radiotherapy and chemotherapy or EGFR inhibitors: Literature review and consensus. Crit Rev Oncol Hematol 2015; 96:167-82. [DOI: 10.1016/j.critrevonc.2015.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 04/26/2015] [Accepted: 06/04/2015] [Indexed: 12/27/2022] Open
|
34
|
Cuneo KC, Nyati MK, Ray D, Lawrence TS. EGFR targeted therapies and radiation: Optimizing efficacy by appropriate drug scheduling and patient selection. Pharmacol Ther 2015; 154:67-77. [PMID: 26205191 PMCID: PMC4570853 DOI: 10.1016/j.pharmthera.2015.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/01/2015] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays an important role in tumor progression and treatment resistance for many types of malignancies including head and neck, colorectal, and nonsmall cell lung cancer. Several EGFR targeted therapies are efficacious as single agents or in combination with chemotherapy. Given the toxicity associated with chemoradiation and poor outcomes seen in several types of cancers, combinations of EGFR targeted agents with or without chemotherapy have been tested in patients receiving radiation. To date, the only FDA approved use of an anti-EGFR therapy in combination with radiation therapy is for locally advanced head and neck cancer. Given the important role EGFR plays in lung and colorectal cancer and the benefit of EGFR inhibition combined with chemotherapy in these disease sites, it is perplexing why EGFR targeted therapies in combination with radiation or chemoradiation have not been more successful. In this review we summarize the clinical findings of EGFR targeted therapies combined with radiation and chemoradiation regimens. We then discuss the interaction between EGFR and radiation including radiation induced EGFR signaling, the effect of EGFR on DNA damage repair, and potential mechanisms of radiosensitization. Finally, we examine the potential pitfalls with scheduling EGFR targeted therapies with chemoradiation and the use of predictive biomarkers to improve patient selection.
Collapse
Affiliation(s)
- Kyle C Cuneo
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States; Ann Arbor Veterans Affairs Hospital, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Mukesh K Nyati
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Dipankar Ray
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States
| | - Theodore S Lawrence
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, United States.
| |
Collapse
|
35
|
Chen MC, Zhou B, Zhang K, Yuan YC, Un F, Hu S, Chou CM, Chen CH, Wu J, Wang Y, Liu X, Smith DL, Li H, Liu Z, Warden CD, Su L, Malkas LH, Chung YM, Hu MCT, Yen Y. The Novel Ribonucleotide Reductase Inhibitor COH29 Inhibits DNA Repair In Vitro. Mol Pharmacol 2015; 87:996-1005. [PMID: 25814515 DOI: 10.1124/mol.114.094987] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/26/2015] [Indexed: 01/07/2023] Open
Abstract
COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1-defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5- and DR-green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent.
Collapse
Affiliation(s)
- Mei-Chuan Chen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Bingsen Zhou
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Keqiang Zhang
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yate-Ching Yuan
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Frank Un
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Shuya Hu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Chih-Ming Chou
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Jun Wu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yan Wang
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Xiyong Liu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - D Lynne Smith
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Hongzhi Li
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Zheng Liu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Charles D Warden
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Leila Su
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Linda H Malkas
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Young Min Chung
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Mickey C-T Hu
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| | - Yun Yen
- Departments of Molecular Pharmacology (B.Z., K.Z., F.U., S.H., X.L., D.L.S., Y.Y.), Molecular Medicine (Y.-C.Y., H.L., Z.L., C.D.W., L.S.), Molecular and Cellular Biology (L.H.M.), and Division of Comparative Medicine (J.W., Y.W.), City of Hope National Medical Center, Duarte, California; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology Stanford University School of Medicine, Stanford, California; (Y.M.C., M.C.-T.H.); Ph.D. Program for the Clinical Drug Discovery from Botanical Herbs, College of Pharmacy (M.-C.C.), and Graduate Institute of Pharmacognosy, College of Pharmacy, (M.-C.C), Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology (C.-H.C., Y.Y.), and Department of Biochemistry, School of Medicine, College of Medicine (C.-M.C.), Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
36
|
Reitkopf-Brodutch S, Confino H, Schmidt M, Cooks T, Efrati M, Arazi L, Rath-Wolfson L, Marshak G, Kelson I, Keisari Y. Ablation of experimental colon cancer by intratumoral 224Radium-loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy. Int J Radiat Biol 2015; 91:179-86. [PMID: 25179346 DOI: 10.3109/09553002.2015.959666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We developed (224)Ra-loaded wires, which release by recoil alpha emitting nuclei into solid tumors and cause tumor cell killing. This research examined if the major damage was inflicted by alpha particles emitted from these atoms or by direct gamma and beta emissions from the inserted wires. We also examined the efficacy of this treatment against colon cancer in combination with chemotherapy. MATERIALS AND METHODS Mouse colon carcinomas (CT-26 xenografts), treated by intra-tumoral radioactive wires loaded with (224)Ra atoms were monitored for effects on tumor growth, intratumoral tissue damage and distribution of alpha emitting atoms. The effects were compared with those of (224)Ra-loaded wires coated with poly methyl methacrylate (PMMA), which blocks atom recoil. Similar experiments were performed with radioactive wires combined with systemic 5-FU. RESULTS (224)Ra-loaded wires inhibited tumor growth and formed necrotic areas inside the tumor. PMMA coated wires did not inhibit tumor growth, and caused minor intratumoral damage. Autoradiography images of tumors treated with (224)Ra-loaded wires revealed a spread of alpha emitters over several mm, whereas PMMA-coated wires showed no such spread. Injection of 5-FU with (224)Ra-loaded wires augmented tumor growth retardation and cure. CONCLUSIONS (224)Ra-loaded wires ablate solid tumors by the release of alpha-particle emitting atoms inside the tissue, an effect that can be enhanced by combining this method with chemotherapy.
Collapse
Affiliation(s)
- Shira Reitkopf-Brodutch
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Im MM, Flanagan SA, Ackroyd JJ, Shewach DS. Drug metabolism and homologous recombination repair in radiosensitization with gemcitabine. Radiat Res 2015; 183:114-23. [PMID: 25564718 DOI: 10.1667/rr13807.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gemcitabine (difluorodeoxycytidine; dFdCyd) is a potent radiosensitizer, noted for its ability to enhance cytotoxicity with radiation at noncytotoxic concentrations in vitro and subchemotherapeutic doses in patients. Radiosensitization in human tumor cells requires dFdCyd-mediated accumulation of cells in S phase with inhibition of ribonucleotide reductase, resulting in ≥80% deoxyadenosine triphosphate (dATP) depletion and errors of replication in DNA. Less is known of the role of specific DNA replication and repair pathways in the radiosensitization mechanism. Here the role of homologous recombination (HR) in relationship to the metabolic and cell cycle effects of dFdCyd was investigated using a matched pair of CHO cell lines that are either proficient (AA8 cells) or deficient (irs1SF cells) in HR based on expression of the HR protein XRCC3. The results demonstrated that the characteristics of radiosensitization in the rodent AA8 cells differed significantly from those in human tumor cells. In the AA8 cells, radiosensitization was achieved only under short (≤4 h) cytotoxic incubations, and S-phase accumulation did not appear to be required for radiosensitization. In contrast, human tumor cell lines were radiosensitized using noncytotoxic concentrations of dFdCyd and required early S-phase accumulation. Studies of the metabolic effects of dFdCyd demonstrated low dFdCyd concentrations did not deplete dATP by ≥80% in AA8 and irs1SF cells. However, at higher concentrations of dFdCyd, failure to radiosensitize the HR-deficient irs1SF cells could not be explained by a lack of dATP depletion or lack of S-phase accumulation. Thus, these parameters did not correspond to dFdCyd radiosensitization in the CHO cells. To evaluate directly the role of HR in radiosensitization, XRCC3 expression was suppressed in the AA8 cells with a lentiviral-delivered shRNA. Partial XRCC3 suppression significantly decreased radiosensitization [radiation enhancement ratio (RER) = 1.6 ± 0.15], compared to nontransduced (RER = 2.7 ± 0.27; P = 0.012), and a substantial decrease compared to nonspecific shRNA-transduced (RER = 2.5 ± 0.42; P = 0.056) AA8 cells. Although the results support a role for HR in radiosensitization with dFdCyd in CHO cells, the differences in the underlying metabolic and cell cycle characteristics suggest that dFdCyd radiosensitization in the nontumor-derived CHO cells is mechanistically distinct from that in human tumor cells.
Collapse
Affiliation(s)
- Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan 48109
| | | | | | | |
Collapse
|
38
|
Abstract
Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology.
Collapse
Affiliation(s)
- Andrew Z Wang
- All authors: Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Joel E Tepper
- All authors: Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
39
|
Kopyra J, Keller A, Bald I. On the role of fluoro-substituted nucleosides in DNA radiosensitization for tumor radiation therapy. RSC Adv 2014. [DOI: 10.1039/c3ra46735j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
40
|
Abstract
Pancreatic cancer is a deadly and aggressive disease. Less than 1% of diagnosed patients survive 5 years with an average survival time of only 4–8 months. The only option for metastatic pancreatic cancer is chemotherapy where only the antimetabolites gemcitabine and 5-fluorouracil are used clinically. Unfortunately, efforts to improve chemotherapy regimens by combining, 5-fluorouracil or gemcitabine with other drugs, such as cisplatin or oxaliplatin, have not increased cell killing or improved patient survival. The novel antimetabolite zebularine shows promise, inducing apoptosis and arresting cellular growth in various pancreatic cancer cell lines. However, resistance to these antimetabolites remains a problem highlighting the need to discover and develop new antimetabolites that will improve a patient’s overall survival.
Collapse
Affiliation(s)
- Malyn May Asuncion Valenzuela
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Jonathan W Neidigh
- Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| | - Nathan R Wall
- Center for Health Disparities Research and Molecular Medicine, Loma Linda University, Loma Linda, California, USA ; Department of Basic Sciences, Division of Biochemistry, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
41
|
Hypoxia-Directed Drug Strategies to Target the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:111-45. [DOI: 10.1007/978-1-4614-5915-6_6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Rezaee M, Alizadeh E, Cloutier P, Hunting DJ, Sanche L. A single subexcitation-energy electron can induce a double-strand break in DNA modified by platinum chemotherapeutic drugs. ChemMedChem 2013; 9:1145-9. [PMID: 24376113 DOI: 10.1002/cmdc.201300462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Indexed: 11/08/2022]
Abstract
The sensitization of malignant cells to ionizing radiation is the clinical rationale for the use of platinum-drug-based concurrent chemoradiotherapy (CCRT) for cancer treatment; however, the specific mechanisms of radiosensitization and their respective contributions still remain unknown. Biological mechanisms such as inhibition of DNA repair may contribute to the efficacy of CCRT; nevertheless, there is a dearth of information on the possible contribution of nanoscopic mechanisms to the generation of lethal DNA lesions, such as double-strand breaks (DSB). The present study demonstrates that the abundant near zero-eV (0.5 eV) electrons, created by ionizing radiation during radiotherapy, induce DSB in supercoiled plasmid DNA modified by platinum-containing anticancer drugs (Pt drugs), but not in unmodified DNA. They do so more efficiently than other types of radiation, including soft X-rays and 10 eV electrons. The formation of DSB by 0.5 eV electrons is found to be a single-hit process. These findings reveal insights into the radiosensitization mechanism of Pt drugs that can have implications for the development of optimal clinical protocols for platinum-based CCRT and the deployment of in situ sources of subexcitation-energy electrons (e.g., Auger electron-emitting radionuclides) to efficiently enhance DSB formation in DNA modified by Pt drugs in malignant cells.
Collapse
Affiliation(s)
- Mohammad Rezaee
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine & Health Sciences, University of Sherbrooke, 3001, 12e Ave. Nord, Sherbrooke, QC, J1H 5N4 (Canada).
| | | | | | | | | |
Collapse
|
43
|
Lei Y, Li HX, Jin WS, Peng WR, Zhang CJ, Bu LJ, Du YY, Ma T, Sun GP. The radiosensitizing effect of Paeonol on lung adenocarcinoma by augmentation of radiation-induced apoptosis and inhibition of the PI3K/Akt pathway. Int J Radiat Biol 2013; 89:1079-86. [PMID: 23875954 DOI: 10.3109/09553002.2013.825058] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To investigate the radiosensitizing effect and mechanism of action by the natural product Paeonol on lung adenocarcinoma both in vitro and in vivo. MATERIALS AND METHODS Two lung adenocarcinoma cell lines (human lung adenocarcinoma cell line A549 and mouse Lewis lung carcinoma (LLC) cell line) were chosen for this research. In order to select the experimental concentrations of Paeonol, cytotoxicity was determined using a MTT (3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide) assay. A clonogenic assay was performed to measure the radiosensitizing effects. Apoptosis was determined by the Tunel (terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling) assay and flow cytometry. Protein expression was analyzed by Western blotting. To test the radiosensitizing effect in vivo, a transplanted tumor model was established. RESULTS The MTT assay showed that Paeonol inhibited proliferation of cells. Paeonol concentration ranged from an IC5 (5% inhibiting concentration) to an IC20 and was used at non-toxic concentrations for subsequent experiments. The clonogenic assay showed that Paeonol enhanced the radiosensitivity of cells. Data from the Tunel assay and flow cytometry verified that Paeonol enhanced radiation-induced apoptosis. Paeonol inhibited the activation of the PI3K/AKT (Phosphatidylinositol 3-kinase/ Protein Kinase B) pathway and down-regulated the expression of COX-2 (Cyclooxygenase-2) and Survivin. Paeonol (1718 mg/kg) combined with 10 Gy irradiation inhibited the growth of a transplanted tumor model in vivo, resulting in the longest tumor growth time, tumor growth delay and the highest inhibition ratio when compared with the radiotherapy alone group. CONCLUSIONS It is reported for the first time that Paeonol has a radiosensitizing effect on lung adenocarcinoma both in vitro and in vivo. This effect could be related to the augmentation of radiation-induced apoptosis and the inhibition of the PI3K/Akt signalling pathway and its downstream proteins: COX-2 and Survivin.
Collapse
Affiliation(s)
- Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University , Hefei
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee MW, Parker WB, Xu B. New insights into the synergism of nucleoside analogs with radiotherapy. Radiat Oncol 2013; 8:223. [PMID: 24066967 PMCID: PMC3851323 DOI: 10.1186/1748-717x-8-223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/24/2013] [Indexed: 11/18/2022] Open
Abstract
Nucleoside analogs have been frequently used in combination with radiotherapy in the clinical setting, as it has long been understood that inhibition of DNA repair pathways is an important means by which many nucleoside analogs synergize. Recent advances in our understanding of the structure and function of deoxycytidine kinase (dCK), a critical enzyme required for the anti-tumor activity for many nucleoside analogs, have clarified the mechanistic role this kinase plays in chemo- and radio-sensitization. A heretofore unrecognized role of dCK in the DNA damage response and cell cycle machinery has helped explain the synergistic effect of these agents with radiotherapy. Since most currently employed nucleoside analogs are primarily activated by dCK, these findings lend fresh impetus to efforts focused on profiling and modulating dCK expression and activity in tumors. In this review we will briefly review the pharmacology and biochemistry of the major nucleoside analogs in clinical use that are activated by dCK. This will be followed by discussions of recent advances in our understanding of dCK activation via post-translational modifications in response to radiation and current strategies aimed at enhancing this activity in cancer cells.
Collapse
Affiliation(s)
- Michael W Lee
- Department of Medical Education, College of Medicine, University of Central Florida, 6850 Lake Nona Blvd,, Orlando, FL 32827, USA.
| | | | | |
Collapse
|
45
|
Müller C, Schibli R. Prospects in folate receptor-targeted radionuclide therapy. Front Oncol 2013; 3:249. [PMID: 24069581 PMCID: PMC3781362 DOI: 10.3389/fonc.2013.00249] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Targeted radionuclide therapy is based on systemic application of particle-emitting radiopharmaceuticals which are directed toward a specific tumor-associated target. Accumulation of the radiopharmaceutical in targeted cancer cells results in high doses of absorbed radiation energy whereas toxicity to non-targeted healthy tissue is limited. This strategy has found widespread application in the palliative treatment of neuroendocrine tumors using somatostatin-based radiopeptides. The folate receptor (FR) has been identified as a target associated with a variety of frequent tumor types (e.g., ovarian, lung, brain, renal, and colorectal cancer). In healthy organs and tissue FR-expression is restricted to only a few sites such as for instance the kidneys. This demonstrates why FR-targeting is an attractive strategy for the development of new therapy concepts. Due to its high FR-binding affinity (KD < 10−9 M) the vitamin folic acid has emerged as an almost ideal targeting agent. Therefore, a variety of folic acid radioconjugates for nuclear imaging have been developed. However, in spite of the large number of cancer patients who could benefit of a folate-based radionuclide therapy, a therapeutic concept with folate radioconjugates has not yet been envisaged for clinical application. The reason is the generally high accumulation of folate radioconjugates in the kidneys where emission of particle-radiation may result in damage to the renal tissue. Therefore, the design of more sophisticated folate radioconjugates providing improved tissue distribution profiles are needed. This review article summarizes recent developments with regard to a therapeutic application of folate radioconjugates. A new construct of a folate radioconjugate and an application protocol which makes use of a pharmacological interaction allowed the first preclinical therapy experiments with radiofolates. These results raise hope for future application of such new concepts also in the clinic.
Collapse
Affiliation(s)
- Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute , Villigen-PSI , Switzerland
| | | |
Collapse
|
46
|
Reber J, Haller S, Leamon CP, Müller C. 177Lu-EC0800 combined with the antifolate pemetrexed: preclinical pilot study of folate receptor targeted radionuclide tumor therapy. Mol Cancer Ther 2013; 12:2436-45. [PMID: 24030631 DOI: 10.1158/1535-7163.mct-13-0422-t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeted radionuclide therapy has shown impressive results for the palliative treatment of several types of cancer diseases. The folate receptor has been identified as specifically associated with a variety of frequent tumor types. Therefore, it is an attractive target for the development of new radionuclide therapies using folate-based radioconjugates. Previously, we found that pemetrexed (PMX) has a favorable effect in reducing undesired renal uptake of radiofolates. Moreover, PMX also acts as a chemotherapeutic and radiosensitizing agent on tumors. Thus, the aim of our study was to investigate the combined application of PMX and the therapeutic radiofolate (177)Lu-EC0800. Determination of the combination index (CI) revealed a synergistic inhibitory effect of (177)Lu-EC0800 and PMX on the viability of folate receptor-positive cervical (KB) and ovarian (IGROV-1) cancer cells in vitro (CI < 0.8). In an in vivo study, tumor-bearing mice were treated with (177)Lu-EC0800 (20 MBq) and a subtherapeutic (0.4 mg) or therapeutic amount (1.6 mg) of PMX. Application of (177)Lu-EC0800 with PMXther resulted in a two- to four-fold enhanced tumor growth delay and a prolonged survival of KB and IGROV-1 tumor-bearing mice, as compared to the combination with PMXsubther or untreated control mice. PMXsubther protected the kidneys from undesired side effects of (177)Lu-EC0800 (20 MBq) by reducing the absorbed radiation dose. Intact kidney function was shown by determination of plasma parameters and quantitative single-photon emission computed tomography using (99m)Tc-DMSA. Our results confirmed the anticipated dual role of PMX. Its unique features resulted in an improved antitumor effect of folate-based radionuclide therapy and prevented undesired radio-nephrotoxicity.
Collapse
Affiliation(s)
- Josefine Reber
- Corresponding Author: Cristina Müller, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland.
| | | | | | | |
Collapse
|
47
|
Glynne-Jones R, Hadaki M, Harrison M. The status of targeted agents in the setting of neoadjuvant radiation therapy in locally advanced rectal cancers. J Gastrointest Oncol 2013; 4:264-84. [PMID: 23997939 DOI: 10.3978/j.issn.2078-6891.2013.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/21/2013] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy has a longstanding and well-defined role in the treatment of resectable rectal cancer to reduce the historically high risk of local recurrence. In more advanced borderline or unresectable cases, where the circumferential resection margin (CRM) is breached or threatened according to magnetic resonance imaging (MRI), despite optimized local multimodality treatment and the gains achieved by modern high quality total mesorectal excision (TME), at least half the patients fail to achieve sufficient downstaging with current schedules. Many do not achieve an R0 resection. In less locally advanced cases, even if local control is achieved, this confers only a small impact on distant metastases and a significant proportion of patients (30-40%) still subsequently develop metastatic disease. In fact, distant metastases have now become the predominant cause of failure in rectal cancer. Therefore, increasing the intensity and efficacy of chemotherapy and chemoradiotherapy by integrating additional cytotoxics and biologically targetted agents seems an appealing strategy to explore-with the aim of enhancing curative resection rates and improving distant control and survival. However, to date, we lack validated biomarkers for these biological agents apart from wild-type KRAS. For cetuximab, the appearance of an acneiform rash is associated with response, but low levels of magnesium appear more controversial. There are no molecular biomarkers for bevacizumab. Although some less invasive clinical markers have been proposed for bevacizumab, such as circulating endothelial cells (CECS), circulating levels of VEGF and the development of overt hypertension, these biomarkers have not been validated and are observed to emerge only after a trial of the agent. We also lack a simple method of ongoing monitoring of 'on target' effects of these biological agents, which could determine and pre-empt the development of resistance, prior to radiological and clinical assessessments or even molecular imaging. These shortcomings probably explain our current relative lack of success in the arena of combining these agents with chemoradiation.
Collapse
|
48
|
Bayraktar UD, Diaz LA, Ashlock B, Toomey N, Cabral L, Bayraktar S, Pereira D, Dittmer DP, Ramos JC. Zidovudine-based lytic-inducing chemotherapy for Epstein-Barr virus-related lymphomas. Leuk Lymphoma 2013; 55:786-94. [PMID: 23837493 DOI: 10.3109/10428194.2013.818142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Treatment of Epstein-Barr virus (EBV)-related lymphomas with lytic-inducing agents is an attractive targeted approach for eliminating virus-infected tumor cells. Zidovudine (AZT) is an excellent substrate for EBV-thymidine kinase: it can induce EBV lytic gene expression and apoptosis in primary EBV+ lymphoma cell lines. We hypothesized that the combination of AZT with lytic-inducing chemotherapy agents would be effective in treating EBV+ lymphomas. We report a retrospective analysis of 19 patients with aggressive EBV+ non-Hodgkin lymphoma, including nine cases of acquired immune deficiency syndrome-associated primary central nervous system lymphoma (AIDS-PCNSL) treated with AZT-based chemotherapy. Our results demonstrate that high-dose AZT-methotrexate is efficacious in treating highly aggressive systemic EBV+ lymphomas in the upfront setting. In primary EBV+ lymphoma cell lines, the combination of AZT with hydroxyurea resulted in synergistic EBV lytic induction and cell death. Further, AZT-hydroxyurea treatment resulted in dramatic responses in patients with AIDS-PCNSL. The combination of AZT with chemotherapy, especially lytic-inducing agents, should be explored further in clinical trials for the treatment of EBV-related lymphomas.
Collapse
|
49
|
Maseki S, Ijichi K, Nakanishi H, Hasegawa Y, Ogawa T, Murakami S. Efficacy of gemcitabine and cetuximab combination treatment in head and neck squamous cell carcinoma. Mol Clin Oncol 2013; 1:918-924. [PMID: 24649271 PMCID: PMC3916031 DOI: 10.3892/mco.2013.159] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/11/2013] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) may be curable with surgery, radiation and chemotherapy in its early stages. However, recurrence and metastasis often prevail following primary treatment in advanced stage cases and are associated with significant morbidity and mortality. In this study we investigated the combination therapy of gemcitabine and cetuximab for HNSCC. The UM-SCC-6 and UM-SCC-23 HNSCC cell lines were analyzed following treatment with gemcitabine and cetuximab. To determine the mechanism of action of this combination treatment, the cell cycle distributions following gemcitabine and/or cetuximab treatment were analyzed by flow cytometry and apoptosis assay. Gemcitabine and cetuximab combination treatment exerted an enhanced cytotoxic effect. The cell cycle analysis demonstrated that cells accumulated in the S phase following gemcitabine treatment and G1 arrest occurred following cetuximab treatment. An increase in sub-G1 phase cells was also observed following treatment with the two drugs. In an apoptosis assay, caspase 3/7 activity was found to be higher when administering a combination of gemcitabine and cetuximab compared to each agent administered alone. Gemcitabine and cetuximab are individually effective against HNSCC and an enhanced growth inhibitory effect may be expected when these agents are used in combination.
Collapse
Affiliation(s)
- Shinichiro Maseki
- Department of Otolaryngology-Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan ; Division of Oncological Pathology, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | - Kei Ijichi
- Department of Otolaryngology-Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hayao Nakanishi
- Division of Oncological Pathology, Aichi Cancer Center Research Institute, Aichi 464-8681, Japan
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Aichi 464-8681, Japan
| | - Tetsuya Ogawa
- Department of Otolaryngology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Shingo Murakami
- Department of Otolaryngology-Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
50
|
Hohenforst-Schmidt W, Zarogoulidis P, Darwiche K, Vogl T, Goldberg EP, Huang H, Simoff M, Li Q, Browning R, Turner FJ, Le Pivert P, Spyratos D, Zarogoulidis K, Celikoglu SI, Celikoglu F, Brachmann J. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:571-83. [PMID: 23898222 PMCID: PMC3718837 DOI: 10.2147/dddt.s46393] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Strategies to enhance the already established doublet chemotherapy regimen for lung cancer have been investigated for more than 20 years. Initially, the concept was to administer chemotherapy drugs locally to the tumor site for efficient diffusion through passive transport within the tumor. Recent advances have enhanced the diffusion of pharmaceuticals through active transport by using pharmaceuticals designed to target the genome of tumors. In the present study, five patients with non-small cell lung cancer epidermal growth factor receptor (EGFR) negative stage IIIa–IV International Union Against Cancer 7 (UICC-7), and with Eastern Cooperative Oncology Group (ECOG) 2 scores were administered platinum-based doublet chemotherapy using combined intratumoral-regional and intravenous route of administration. Cisplatin analogues were injected at 0.5%–1% concentration within the tumor lesion and proven malignant lymph nodes according to pretreatment histological/cytological results and the concentration of systemic infusion was decreased to 70% of a standard protocol. This combined intravenous plus intratumoral-regional chemotherapy is used as a first line therapy on this short series of patients. To the best of our knowledge this is the first report of direct treatment of involved lymph nodes with cisplatin by endobronchial ultrasound drug delivery with a needle without any adverse effects. The initial overall survival and local response are suggestive of a better efficacy compared to established doublet cisplatin–based systemic chemotherapy in (higher) standard concentrations alone according to the UICC 7 database expected survival. An extensive search of the literature was performed to gather information of previously published literature of intratumoral chemo-drug administration and formulation for this treatment modality. Our study shows a favorable local response, more than a 50% reduction, for a massive tumor mass after administration of five sessions of intratumoral chemotherapy plus two cycles of low-dose intravenous chemotherapy according to our protocol. These encouraging results (even in very sick ECOG 2 patients with central obstructive non-small cell lung cancer having a worse prognosis and quality of life than a non-small cell lung cancer in ECOG 0 of the same tumor node metastasis [TNM]-stage without central obstruction) for a chemotherapy-only protocol that differs from conventional cisplatin-based doublet chemotherapy by the route, target site, and dose paves the way for broader applications of this technique. Finally, future perspectives of this treatment and pharmaceutical design for intratumoral administration are presented.
Collapse
|