1
|
Rais T, Riaz R, Siddiqui T, Shakeel A, Khan A, Zafar H. Innovations in colorectal cancer treatment: trifluridine and tipiracil with bevacizumab for improved outcomes - a review. Front Oncol 2024; 14:1296765. [PMID: 39070141 PMCID: PMC11272516 DOI: 10.3389/fonc.2024.1296765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Colorectal cancer ranks second in cancer-related deaths throughout the world. At the time of diagnosis, at least 20% of the patients with CRC had already developed metastases. Treating and effectively managing metastatic colorectal cancer remains an unsolved task for the health sector. Research and clinical trials have been done to find the best possible solution for patients diagnosed with metastatic colorectal cancer. The approval of the combination therapy of trifluridine and tipiracil with bevacizumab for previously treated metastatic colorectal cancer (CRC) by the Food and Drug Administration (FDA) is a remarkable breakthrough in CRC treatment. Our goal through this article is to give detailed knowledge about the pathogenesis of CRC, its prevalence, and its clinical features. Here, we have also discussed the past medical treatments that have been used for treating mCRC, including the anti-EGFR therapy, aflibercept, ramucirumab, and regorafenib. However, the focus of this document is to assess the combination of LONSURF (trifluridine/tipiracil) and bevacizumab by reviewing the clinical trials and relevant research.
Collapse
Affiliation(s)
- Taruba Rais
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Rumaisa Riaz
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Tasmiyah Siddiqui
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Amna Shakeel
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Afsheen Khan
- Internal Medicine, Dow University of Health Sciences (DUHS), Karachi, Pakistan
| | - Habiba Zafar
- Internal Medicine, Jinnah Sindh Medical University (JSMU), Karachi, Pakistan
| |
Collapse
|
2
|
Tardito S, Matis S, Zocchi MR, Benelli R, Poggi A. Epidermal Growth Factor Receptor Targeting in Colorectal Carcinoma: Antibodies and Patient-Derived Organoids as a Smart Model to Study Therapy Resistance. Int J Mol Sci 2024; 25:7131. [PMID: 39000238 PMCID: PMC11241078 DOI: 10.3390/ijms25137131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Therefore, the need for new therapeutic strategies is still a challenge. Surgery and chemotherapy represent the first-line interventions; nevertheless, the prognosis for metastatic CRC (mCRC) patients remains unacceptable. An important step towards targeted therapy came from the inhibition of the epidermal growth factor receptor (EGFR) pathway, by the anti-EGFR antibody, Cetuximab, or by specific tyrosine kinase inhibitors (TKI). Cetuximab, a mouse-human chimeric monoclonal antibody (mAb), binds to the extracellular domain of EGFR thus impairing EGFR-mediated signaling and reducing cell proliferation. TKI can affect the EGFR biochemical pathway at different steps along the signaling cascade. Apart from Cetuximab, other anti-EGFR mAbs have been developed, such as Panitumumab. Both antibodies have been approved for the treatment of KRAS-NRAS wild type mCRC, alone or in combination with chemotherapy. These antibodies display strong differences in activating the host immune system against CRC, due to their different immunoglobulin isotypes. Although anti-EGFR antibodies are efficient, drug resistance occurs with high frequency. Resistant tumor cell populations can either already be present before therapy or develop later by biochemical adaptations or new genomic mutations in the EGFR pathway. Numerous efforts have been made to improve the efficacy of the anti-EGFR mAbs or to find new agents that are able to block downstream EGFR signaling cascade molecules. Indeed, we examined the importance of analyzing the anti-EGFR antibody-drug conjugates (ADC) developed to overcome resistance and/or stimulate the tumor host's immunity against CRC growth. Also, patient-derived CRC organoid cultures represent a useful and feasible in vitro model to study tumor behavior and therapy response. Organoids can reflect tumor genetic heterogeneity found in the tissue of origin, representing a unique tool for personalized medicine. Thus, CRC-derived organoid cultures are a smart model for studying the tumor microenvironment and for the preclinical assay of anti-EGFR drugs.
Collapse
Affiliation(s)
- Samuele Tardito
- Center for Cancer and Immunology Research, Children’s National Hospital, Washington, DC 20010, USA;
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Maria Raffaella Zocchi
- Department of Immunology, Transplant and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132 Milan, Italy;
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRRCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| |
Collapse
|
3
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Yu Z, Gao Y. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1117. [PMID: 37974093 PMCID: PMC10655341 DOI: 10.1186/s12885-023-11600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND RAS mutations affect prognosis in patients with metastatic colorectal cancer (mCRC) and have been identified as strong negative predictive markers for anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) therapy, but many tumors containing wild-type RAS genes still do not respond to these therapies. Some additional biomarkers may have prognostic or predictive roles, but conclusions remain controversial. METHODS We performed a meta-analysis and systematic review of randomized controlled trials comparing anti-EGFR mAb therapy with alternative therapy that investigated the prognostic and predictive impact of additional biomarkers in RAS wild-type (wt) mCRC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) for progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) for objective response rate (ORR) were calculated. The prognostic value of biomarkers was investigated by separately pooling HR and OR for different treatment groups in an individual study. The predictive value was assessed by pooling study interactions between treatment effects and biomarker subgroups. RESULTS Thirty publications reporting on eighteen trials were selected, including a total of 13,507 patients. In prognostic analysis, BRAF mutations were associated with poorer PFS [HRs = 3.76 (2.47-5.73) and 2.69 (1.82-3.98)] and OS [HRs = 2.66 (1.95-3.65) and 2.45 (1.55-3.88)] in both the experimental and control arms; low miR-31-3p expression appeared to have longer PFS and OS. In terms of predictive effect, a lack of response to anti-EGFR therapy was observed in patients with BRAF mutant tumors (Pinteraction < 0.01 for PFS). Patients with tumors with any mutation in the KRAS/NRAS/BRAF/PIK3CA gene also showed similar results compared with all wild-type tumors (Pinteraction for PFS, OS, and ORR were < 0.01, < 0.01 and 0.01, respectively). While low miR-31-3p expression could predict PFS (Pinteraction = 0.01) and OS (Pinteraction = 0.04) benefit. The prognostic and predictive value regarding PIK3CA mutations, PTEN mutations or deletions, EGFR, EREG/AREG, HER2, HER3, and HER4 expression remains uncertain. CONCLUSIONS In RAS wt mCRC patients receiving EGFR-targeted therapy, BRAF mutation is a powerful prognostic and therapy-predictive biomarker, with no effect found for PIK3CA mutation, PTEN mutation or deletion, but the combined biomarker KRAS/NRAS/BRAF/PIK3CA mutations predict resistance to anti-EGFR therapy. Low miR-31-3p expression may have positive prognostic and therapy predictive effects. Evidence on the prognostic and predictive roles of EGFR and its ligands, and HER2/3/4 is insufficient.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Ham-Karim H, Negm O, Ahmad N, Ilyas M. Investigating genomic, proteomic, and post-transcriptional regulation profiles in colorectal cancer: a comparative study between primary tumors and associated metastases. Cancer Cell Int 2023; 23:192. [PMID: 37670299 PMCID: PMC10478430 DOI: 10.1186/s12935-023-03020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Approximately 50% of patients with primary colorectal carcinoma develop liver metastases. This study investigates the possible molecular discrepancies between primary colorectal cancer (pCRC) and their respective metastases. METHODS A total of 22 pairs of pCRC and metastases were tested. Mutation profiling of 26 cancer-associated genes was undertaken in 22/22primary-metastasis tumour pairs using next-generation sequencing, whilst the expression of a panel of six microRNAs (miRNAs) was investigated using qPCRin 21/22 pairs and 22 protein biomarkers was tested using Reverse Phase Protein Array (RPPA)in 20/22 patients' tumour pairs. RESULTS Among the primary and metastatic tumours the mutation rates for the individual genes are as follows:TP53 (86%), APC (44%), KRAS (36%), PIK3CA (9%), SMAD4 (9%), NRAS (9%) and 4% for FBXW7, BRAF, GNAS and CDH1. The primary-metastasis tumour mutation status was identical in 54/60 (90%) loci. However, there was discordance in heterogeneity status in 40/58 genetic loci (z-score = 6.246, difference = 0.3793, P < 0.0001). Furthermore, there was loss of concordance in miRNA expression status between primary and metastatic tumours, and 57.14-80.95% of the primary-metastases tumour pairs showed altered primary-metastasis relative expression in all the miRNAs tested. Moreover, 16 of 20 (80%) tumour pairs showed alteration in at least 3 of 6 (50%) of the protein biomarker pathways analysed. CONCLUSION The molecular alterations of primary colorectal tumours differ significantly from those of their matched metastases. These differences have profound implications for patients' prognoses and response to therapy.
Collapse
Affiliation(s)
- Hersh Ham-Karim
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Chaq-Chaq-Qualaraisi, Sulaimani, Iraq.
| | - Ola Negm
- Division of Medical Sciences and Graduate Entry Medicine, Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Narmeen Ahmad
- Kurdistan Institution for Strategic Studies and Scientific Research, Qirga, Sulaimani, KRG, Iraq
| | - Mohammad Ilyas
- Department of Pharmacy, College of Medicine, Komar University of Science and Technology, Chaq-Chaq-Qualaraisi, Sulaimani, Iraq
- Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Tan ES, Fan W, Knepper TC, Schell MJ, Sahin IH, Fleming JB, Xie H. Prognostic and Predictive Value of PIK3CA Mutations in Metastatic Colorectal Cancer. Target Oncol 2022; 17:483-492. [PMID: 35767139 DOI: 10.1007/s11523-022-00898-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Comprehensive genomic profiling is used to guide the management of metastatic colorectal cancer (mCRC); however, the role of PIK3CA mutations, present in up to 20% of mCRCs, is unclear. OBJECTIVE This study aimed to evaluate the association of PIK3CA mutations with other common mutations in mCRC and determine the prognostic and predictive value of PIK3CA mutations. PATIENTS AND METHODS A retrospective chart review was performed on patients in the Moffitt Clinical Genomic Database with mCRC. A meta-analysis was performed to further evaluate the predictive value of PIK3CA mutations to the response to anti-epidermal growth factor receptor (EGFR) therapy. RESULTS Among 639 patients, PIK3CA was positively correlated with KRAS mutation (r = 0.11, p = 0.006) and negatively correlated with TP53 mutation (r = - 0.18, p ≤ 0.001) and ERBB2 amplification (r = - 0.08, p = 0.046). The median overall survival (OS) of patients with PIK3CA-mutant mCRC (n = 49) was 35.5 (95% confidence interval [CI] 18.7-48.1) months vs. 55.3 (95% CI 47.5-65.6) months for PIK3CA wild-type mCRC (n = 286) [p = 0.003]. This OS difference remained significant with exon 9 and exon 20 subset analyses. There was no significant difference in response rate between patients with PIK3CA wild-type (n = 97) versus mutant (n = 9) mCRC who received anti-EGFR therapy (43% vs. 56%, p = 0.61) and no significant difference in median progression-free survival (PFS) of 10.3 versus 7.2 months (p = 0.60). However, our meta-analysis of 12 studies, including ours, using a common effect model identified that PIK3CA mutations are associated with reduced response to anti-EGFR therapy, with a relative risk of 0.56 (95% CI 0.38-0.82). CONCLUSION Our study identified PIK3CA mutations as a poor prognostic factor, and our meta-analysis identified PIK3CA mutations as predictive of decreased response to anti-EGFR therapy in patients with mCRC.
Collapse
Affiliation(s)
- Elaine S Tan
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Wenyi Fan
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Todd C Knepper
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ibrahim H Sahin
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
6
|
Tan ES, Knepper TC, Wang X, Permuth JB, Wang L, Fleming JB, Xie H. Copy Number Alterations as Novel Biomarkers and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2022; 14:2223. [PMID: 35565354 PMCID: PMC9101426 DOI: 10.3390/cancers14092223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
In colorectal cancer, somatic mutations have played an important role as prognostic and predictive biomarkers, with some also functioning as therapeutic targets. Another genetic aberration that has shown significance in colorectal cancer is copy number alterations (CNAs). CNAs occur when a change to the DNA structure propagates gain/amplification or loss/deletion in sections of DNA, which can often lead to changes in protein expression. Multiple techniques have been developed to detect CNAs, including comparative genomic hybridization with microarray, low pass whole genome sequencing, and digital droplet PCR. In this review, we summarize key findings in the literature regarding the role of CNAs in the pathogenesis of colorectal cancer, from adenoma to carcinoma to distant metastasis, and discuss the roles of CNAs as prognostic and predictive biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaine S. Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Todd C. Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12901 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| |
Collapse
|
7
|
Chung C. Predictive and prognostic biomarkers with therapeutic targets in colorectal cancer: A 2021 update on current development, evidence, and recommendation. J Oncol Pharm Pract 2021; 28:850-869. [PMID: 33832365 DOI: 10.1177/10781552211005525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although therapeutically actionable molecular alterations are widely distributed across many cancer types, only a handful of them show evidence of clinical utility and are recommended for routine clinical practice in the management of cancers of colon and rectum (CRC). This 2021 update aims to provide a succinct summary on the use of prognostic and/or predictive biomarkers (expanded RAS, BRAF, microsatellite-high [MSI-H] or deficient mismatch repair [dMMR], neurotrophic tyrosine receptor kinase [NTRK] fusion genes, and human epidermal growth factor receptor type II [HER2] gene amplification) associated with CRC. Therapeutic implications of each relevant predictive or prognostic biomarker for patients with CRC are described, along with discussion on new developments on (1) biomarker-driven therapies such as testing of BRAF, MLH1 promoter methylation and MMR germline genes in differentiating sporadic CRC or hereditary conditions such as Lynch syndrome; (2) first-line use of immune checkpoint inhibitors in metastatic CRC; (3) risk stratification and therapy selection based on primary tumor location (left-sided vs. right-sided colon cancer); (3) atypical BRAF mutations; (4) use of EGFR directed therapy in the perioperative oligometastatic disease setting; (5) re-challenge of EGFR directed therapy and (6) personalizing therapy of fluoropyrimidine and irinotecan based on new evidence in pharmacogenomic testing. Data are collected and analyzed from available systematic reviews and meta-analyses of treatments with known therapeutic targets in CRC, which may be associated with predictive and/or prognostic biomarkers. Discussions are presented in an application-based format, with goal to empower pharmacists or other clinicians to gain awareness and understanding in biomarker-driven cancer therapy issues.
Collapse
Affiliation(s)
- Clement Chung
- 23530Houston Methodist West Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Stahler A, Stintzing S, Modest DP, Ricard I, Giessen-Jung C, Kapaun C, Ivanova B, Kaiser F, Fischer von Weikersthal L, Moosmann N, Schalhorn A, Stauch M, Kiani A, Held S, Decker T, Moehler M, Neumann J, Kirchner T, Jung A, Heinemann V. Amphiregulin Expression Is a Predictive Biomarker for EGFR Inhibition in Metastatic Colorectal Cancer: Combined Analysis of Three Randomized Trials. Clin Cancer Res 2020; 26:6559-6567. [PMID: 32943459 DOI: 10.1158/1078-0432.ccr-20-2748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Amphiregulin (AREG) and epiregulin (EREG) are ligands of EGFR. Predictive information for anti-EGFR treatment in metastatic colorectal cancer (mCRC) was observed, but data for other agents is limited. EXPERIMENTAL DESIGN Ligand mRNA expression; RAS, BRAF, PIK3CA mutations; and EGFR expression were assessed by qRT-PCR, pyrosequencing, and IHC, respectively, in mCRC tumor tissue of patients participating in the randomized controlled trials FIRE-1, CIOX, and FIRE-3. Normalized mRNA expression was dichotomized using median and third quartile. Overall (OS) and progression-free survival (PFS) were estimated by Kaplan-Meier method including univariate and multivariate Cox regression analyses. Penalized spline regression analysis tested interaction of mRNA expression and outcome. RESULTS Of 688 patients with available material, high AREG expression was detected in 343 (>median) and 172 (>3rd quartile) patients. High AREG expression was associated with significantly higher OS [26.2 vs. 21.5 months, HR = 0.80; 95% confidence interval (CI), 0.68-0.94; P = 0.007], PFS (10.0 vs. 8.1 months, HR = 0.74; 95% CI, 0.63-0.86; P = 0.001), and objective response rate (63.1% vs. 51.6%, P = 0.004) compared to low expression at both threshold values. This effect remained significant in multivariate Cox regression analysis (OS: P = 0.01, PFS: P = 0.002). High AREG mRNA expression interacted significantly with the efficacy of cetuximab compared with bevacizumab (OS: P = 0.02, PFS: P = 0.04) in RAS WT mCRC. CONCLUSIONS High AREG mRNA expression is a favorable prognostic biomarker for mCRC which interacted significantly with efficacy of anti-EGFR treatment.
Collapse
Affiliation(s)
- Arndt Stahler
- Department of Internal Medicine III and Comprehensive Cancer Centre Munich, University Hospital Grosshadern, Ludwig-Maximilian-Universitaet Muenchen, Munich, Germany.
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology and Tumor Immunology (CCM), Charité Universitaetsmedizin Berlin, Berlin, Germany.,DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dominik P Modest
- DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Medical Department, Division of Hematology, Oncology and Tumor Immunology (CVK), Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Ingrid Ricard
- Department of Internal Medicine III and Comprehensive Cancer Centre Munich, University Hospital Grosshadern, Ludwig-Maximilian-Universitaet Muenchen, Munich, Germany
| | - Clemens Giessen-Jung
- Department of Internal Medicine III and Comprehensive Cancer Centre Munich, University Hospital Grosshadern, Ludwig-Maximilian-Universitaet Muenchen, Munich, Germany
| | - Christine Kapaun
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Boryana Ivanova
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | | | - Nicolas Moosmann
- Department for Hematology and Oncology, Klinikum Barmherzige Brüder, Regensburg, Germany
| | - Andreas Schalhorn
- Department of Internal Medicine III and Comprehensive Cancer Centre Munich, University Hospital Grosshadern, Ludwig-Maximilian-Universitaet Muenchen, Munich, Germany
| | | | - Alexander Kiani
- Department of Medicine IV, Klinikum Bayreuth GmbH, Bayreuth, Germany
| | | | | | - Markus Moehler
- I. Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany
| | - Jens Neumann
- DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Thomas Kirchner
- DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Andreas Jung
- DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany.,Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Volker Heinemann
- Department of Internal Medicine III and Comprehensive Cancer Centre Munich, University Hospital Grosshadern, Ludwig-Maximilian-Universitaet Muenchen, Munich, Germany.,DKTK, German Cancer Consortium, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin R, He WL, Cai SR, He YL, Ye JN. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep (Oxf) 2020; 8:179-191. [PMID: 32665850 PMCID: PMC7333932 DOI: 10.1093/gastro/goaa026] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cetuximab and panitumumab, as the highly effective antibodies targeting epidermal growth factor receptor (EGFR), have clinical activity in the patients with metastatic colorectal cancer (mCRC). These agents have good curative efficacy, but drug resistance also exists at the same time. The effects of KRAS, NRAS, and BRAF mutations and HER2 amplification on the treatment of refractory mCRC have been elucidated and the corresponding countermeasures have been put forward. However, the changes in EGFR and its ligands, the mutations or amplifications of PIK3CA, PTEN, TP53, MET, HER3, IRS2, FGFR1, and MAP2K1, the overexpression of insulin growth factor-1, the low expression of Bcl-2-interacting mediator of cell death, mismatch repair-deficient, and epigenetic instability may also lead to drug resistance in mCRC. Although the emergence of drug resistance has genetic or epigenetic heterogeneity, most of these molecular changes relating to it are focused on the key signaling pathways, such as the RAS/RAF/mitogen-activated protein kinase or phosphatidylinositol 3-kinase/Akt/mammalian target of the rapamycin pathway. Accordingly, numerous efforts to target these signaling pathways and develop the novel therapeutic regimens have been carried out. Herein, we have reviewed the underlying mechanisms of the resistance to anti-EGFR therapy and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Qing-Hai Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jian Tu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Chu-Wei Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Run Lin
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wei-Ling He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jin-Ning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
10
|
Izzotti A, Ceccaroli C, Geretto M, Ruggieri FG, Schenone S, Di Maria E. Predicting Response to Neoadjuvant Therapy in Colorectal Cancer Patients the Role of Messenger-and Micro-RNA Profiling. Cancers (Basel) 2020; 12:cancers12061652. [PMID: 32580435 PMCID: PMC7352797 DOI: 10.3390/cancers12061652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer patients' responses to neoadjuvant therapy undergo broad inter-individual variations. The aim of this systematic review is to identify a molecular signature that is predictive of colon cancer downstaging and/or downgrading after neoadjuvant therapy. Among the hundreds analysed in the available studies, only 19 messenger-RNAs (mRNAs) and six micro-RNAs (miRNAs) were differentially expressed in responders versus non-responders in two or more independent studies. Therefore, a mRNA/miRNA signature can be designed accordingly, with limitations caused by the retrospective nature of these studies, the heterogeneity in study designs and the downgrading/downstaging assessment criteria. This signature can be proposed to tailor neoadjuvant therapy regimens on an individual basis.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-353-8522
| | | | - Marta Geretto
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
| | | | - Sara Schenone
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
| | - Emilio Di Maria
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
- Unit of Medical Genetics, Galliera Hospital, 16128 Genoa, Italy
| |
Collapse
|
11
|
Zhao X, Feng H, Wang Y, Wu Y, Guo Q, Feng Y, Ma M, Guo W, Song X, Zhang Y, Han S, Cao L. Septin4 promotes cell death in human colon cancer cells by interacting with BAX. Int J Biol Sci 2020; 16:1917-1928. [PMID: 32398959 PMCID: PMC7211164 DOI: 10.7150/ijbs.44429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/01/2020] [Indexed: 01/10/2023] Open
Abstract
Septin4 is a tumor suppressor protein that promotes cell programmed death in various cell types through specifically antagonizing XIAP (X linked inhibitor of apoptosis), little is known its other novel binding partner and role in colorectal cancer. In this study, we found that Septin4 significantly expressed lower in human colon cancer when compared to peri-tumor benign cells, and its low expression was significantly associated with worse prognostic outcomes. Furthermore, Septin4 participated in DOX-induced colon cancer cell death in vitro. Septin4-overexpressing colon cancer cells displayed augmented apoptotic cell death and ROS production. Additionally, Septin4-knockdown cells revealed a resistance of DOX-induced cell death and reduced ROS production. Importantly, we first identified that BAX is a novel Septin4 binding partner and the interaction is enhanced under DOX treatment. Finally, Septin4-knockdown promoted colon cells growth in vivo. These observations suggest that Septin4 as an essential molecule contribute to the occurrence and development of human colon cancer and provide new technical approaches for targeted treatment of this disease.
Collapse
Affiliation(s)
- Xin Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Hao Feng
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yang Wang
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province, China
| | - Yanmei Wu
- Panjin Liaohe Oilfield Gem Flower Hospital, Panjin, Liaoning Province, China
| | - Qiqiang Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Yanling Feng
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Mengtao Ma
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Wendong Guo
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuai Han
- Department of Neurosurgery, the First Hospital of China Medical University, Shenyang Liaoning Province, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, Ministry of Education; Institute of Translational Medicine, Collegeof Medical Science, China Medical University; Liaoning Province, Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, Shenyang, Liaoning Province, China
| |
Collapse
|
12
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 851] [Impact Index Per Article: 212.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
13
|
Prognostic implications of EGFR protein expression in sporadic colorectal tumors: Correlation with copy number status, mRNA levels and miRNA regulation. Sci Rep 2020; 10:4662. [PMID: 32170146 PMCID: PMC7070091 DOI: 10.1038/s41598-020-61688-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/26/2020] [Indexed: 11/10/2022] Open
Abstract
Sporadic colorectal cancer (sCRC) is the third most frequent cancer worldwide and the second most common cause of cancer-related deaths (mainly due metastatic dissemination). We investigated the immunohistochemical expression of frequently altered proteins in primary tumors from 51 patients (25 liver metastatic and 26 non-metastatic cases) with a median 103 months follow-up (103 months). We evaluated EGFR copy number (using SNP arrays and FISH) and its expression and regulation (by mRNA and miRNA arrays). We found differences between metastatic and non-metastatic sCRCs for MLH1 (p = 0.05), PMS2 (p = 0.02), CEA (p < 0.001) and EGFR (p < 0.001) expression. EGFR expression was associated with lymph node metastases (p = 0.001), liver metastases at diagnosis (p < 0.001), and advanced stage (p < 0.001). There were associations between EGFR expression-, EGFR gene copy number- and EGFR mRNA levels. We found potential interactions of two miRNAs targeting EGFR expression, (miR-134 and miR-4328, in non-metastatic and metastatic tumors, respectively). EGFR expression was associated with a worse outcome (p = 0.005). Multivariate analysis of prognostic factors for overall survival identified that, the expression of EGFR expression (p = 0.047) and pTNM stage (p < 0.001) predicted an adverse outcome. EGFR expression could be regulated by amplification or polysomies (in metastatic tumors), or miRNAs (miRNA-134, in non-metastatic tumors). EGFR expression in sCRC appears to be related to metastases and poor outcome.
Collapse
|
14
|
Kim YH, Kim HK, Kim HY, Gawk H, Bae SH, Sim HW, Kang EK, Seoh JY, Jang H, Hong KM. FAK-Copy-Gain Is a Predictive Marker for Sensitivity to FAK Inhibition in Breast Cancer. Cancers (Basel) 2019; 11:E1288. [PMID: 31480645 PMCID: PMC6769494 DOI: 10.3390/cancers11091288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancers with copy-gain drug-target genes are excellent candidates for targeted therapy. In order to search for new predictive marker genes, we investigated the correlation between sensitivity to targeted drugs and the copy gain of candidate target genes in NCI-60 cells. METHODS For eight candidate genes showing copy gains in NCI-60 cells identified in our previous study, sensitivity to corresponding target drugs was tested on cells showing copy gains of the candidate genes. RESULTS Breast cancer cells with Focal Adhesion Kinase (FAK)-copy-gain showed a significantly higher sensitivity to the target inhibitor, FAK inhibitor 14 (F14). In addition, treatment of F14 or FAK-knockdown showed a specific apoptotic effect only in breast cancer cells showing FAK-copy-gain. Expression-profiling analyses on inducible FAK shRNA-transfected cells showed that FAK/AKT signaling might be important to the apoptotic effect by target inhibition. An animal experiment employing a mouse xenograft model also showed a significant growth-inhibitory effect of F14 on breast cancer cells showing FAK-copy-gain, but not on those without FAK-copy-gain. CONCLUSION FAK-copy-gain may be a predictive marker for FAK inhibition therapy in breast cancer.
Collapse
Affiliation(s)
- Young-Ho Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Hyun-Kyoung Kim
- Department of Pharmacology and New Drug Development Research Institute, Chonbuk National University Medical School, Jeonju 54689, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - HyeRan Gawk
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Seung-Hyun Bae
- Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Hye Won Sim
- Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Eun-Kyung Kang
- Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Ju-Young Seoh
- Departments of Microbiology, Ewha Womans University School of Medicine, Ewha Medical Research Center, Seoul 07804, Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang 10408, Korea.
- Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Korea.
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, Goyang 10408, Korea.
| |
Collapse
|
15
|
Taieb J, Jung A, Sartore-Bianchi A, Peeters M, Seligmann J, Zaanan A, Burdon P, Montagut C, Laurent-Puig P. The Evolving Biomarker Landscape for Treatment Selection in Metastatic Colorectal Cancer. Drugs 2019; 79:1375-1394. [PMID: 31347092 PMCID: PMC6728290 DOI: 10.1007/s40265-019-01165-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The approval of targeted therapies for metastatic colorectal cancer (mCRC) has led to important improvements in patient outcomes. However, it is still necessary to increase individualisation of treatments based on tumour genetic profiles to optimise efficacy, while minimising toxicity. As such, there is currently great focus on the discovery and validation of further biomarkers in mCRC, with many new potential prognostic and predictive markers being identified alongside developments in patient molecular profiling technologies. Here, we review data for validated and emerging biomarkers impacting treatment strategies in mCRC. We completed a structured literature search of the PubMed database to identify relevant publications, limiting for English-language publications published between 1 January 2014 and 11 July 2018. In addition, we performed a manual search of the key general oncology and CRC-focused congresses to identify abstracts reporting emerging mCRC biomarker data, and of ClinicalTrials.gov to identify ongoing clinical trials investigating emerging biomarkers in mCRC and/or molecular-guided clinical trials. There is solid evidence supporting the use of BRAF status as a prognostic biomarker and DYPD, UGT1A1, RAS, and microsatellite instability as predictive biomarkers in mCRC. There are a number of emerging biomarkers that may prove to be clinically relevant in the future to have prognostic (HPP1 methylation), predictive (HER3, microRNAs, anti-angiogenic markers, and CRC intrinsic subtypes), or both prognostic and predictive values (HER2, CpG island methylator phenotype, tumour mutational load, gene fusions, and consensus molecular subtypes). As such, new biomarker-led treatment strategies in addition to anti-epidermal growth factor receptor and anti-angiogenetic treatments are being explored. Biomarkers that are not recommended to be tested in clinical practice or are unlikely to be imminently clinically relevant for mCRC include thymidylate transferase, ERCC1, PIK3CA, and PTEN. We highlight the clinical utility of existing and emerging biomarkers in mCRC and provide recommended treatment strategies according to the biomarker status. An update on ongoing molecular-guided clinical trials is also provided.
Collapse
Affiliation(s)
- Julien Taieb
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France.
| | - Andreas Jung
- Pathology Institute, Ludwig Maximilians University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marc Peeters
- Department of Oncology, Antwerp University Hospital/Antwerp University, Edegem, Belgium
| | - Jenny Seligmann
- Division of Cancer Studies and Pathology, St James's Institute of Oncology, Leeds, UK
| | - Aziz Zaanan
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France
| | - Peter Burdon
- European Medical, Amgen (Europe) GmbH, Rotkreuz, Switzerland
| | - Clara Montagut
- Medical Oncology Department, Hospital del Mar-IMIM, CIBERONC, HM Delfos, Barcelona, Spain
| | - Pierre Laurent-Puig
- Sorbonne Paris Cité, Paris Descartes University, Georges Pompidou European Hospital, Paris, France
| |
Collapse
|
16
|
Van Haele M, Vander Borght S, Ceulemans A, Wieërs M, Metsu S, Sagaert X, Weynand B. Rapid clinical mutational testing of KRAS, BRAF and EGFR: a prospective comparative analysis of the Idylla technique with high-throughput next-generation sequencing. J Clin Pathol 2019; 73:35-41. [PMID: 31296605 DOI: 10.1136/jclinpath-2019-205970] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
AIMS Precision medicine therapy is remodelling the diagnostic landscape of cancer. The success of these new therapies is often based on the presence or absence of a specific mutation in a tumour. The Idylla platform is designed to determine the mutational status of a tumour as quickly and accurately as possible, as a rapid, accurate diagnosis is of the utmost importance for the treatment of patients. This is the first complete prospective study to investigate the robustness of the Idylla platform for EGFR, KRAS and BRAF mutations in non-small cell lung cancer, metastatic colorectal cancer and metastatic melanoma, respectively. METHODS We compared prospectively the Idylla platform with the results we obtained from parallel high-throughput next-generation sequencing, which is the current gold standard for mutational testing. Furthermore, we evaluated the benefits and disadvantages of the Idylla platform in clinical practice. Additionally, we reviewed all the published Idylla performance articles. RESULTS There was an overall agreement of 100%, 94% and 94% between the next-generation panel and the Idylla BRAF, KRAS and EGFR mutation test. Two interesting discordant findings among 48 cases were observed and will be discussed together with the advantages and shortcoming of both techniques. CONCLUSION Our observations demonstrate that the Idylla cartridge for the EGFR, KRAS and BRAF mutations is highly accurate, rapid and has a limited hands-on time compared with next-generation sequencing.
Collapse
Affiliation(s)
- Matthias Van Haele
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium .,Pathology, University Hospitals Leuven, Leuven, Belgium
| | | | - An Ceulemans
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michiel Wieërs
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Xavier Sagaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Pathology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Clinical Pharmacokinetics and Pharmacodynamics of the Epidermal Growth Factor Receptor Inhibitor Panitumumab in the Treatment of Colorectal Cancer. Clin Pharmacokinet 2019; 57:455-473. [PMID: 28853050 PMCID: PMC5856878 DOI: 10.1007/s40262-017-0590-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite progress in the treatment of metastatic colorectal cancer (mCRC) in the last 15 years, it is still a condition with a relatively low 5-year survival rate. Panitumumab, a fully human monoclonal antibody directed against the epidermal growth factor receptor (EGFR), is able to prolong survival in patients with mCRC. Panitumumab is used in different lines of therapy in combination with chemotherapy, and as monotherapy for the treatment of wild-type (WT) RAS mCRC. It is administered as an intravenous infusion of 6 mg/kg every 2 weeks and has a t½ of approximately 7.5 days. Elimination takes place via two different mechanisms, and immunogenicity rates are low. Only RAS mutations have been confirmed as a negative predictor of efficacy with anti-EGFR antibodies. Panitumumab is generally well tolerated and has a manageable toxicity profile, despite a very high prevalence of dermatologic side effects. This article presents an overview of the clinical pharmacokinetics and pharmacodynamics of panitumumab, including a description of the studies that led to its approval in the different lines of therapy of mCRC.
Collapse
|
18
|
Nagamine A, Araki T, Nagano D, Miyazaki M, Yamamoto K. L-Lactate dehydrogenase B may be a predictive marker for sensitivity to anti-EGFR monoclonal antibodies in colorectal cancer cell lines. Oncol Lett 2019; 17:4710-4716. [PMID: 30944657 DOI: 10.3892/ol.2019.10075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/31/2019] [Indexed: 01/19/2023] Open
Abstract
Recently, proteins derived from cancer cells have been widely investigated as biomarkers for predicting the efficacy of chemotherapy. In this study, to identify a sensitive biomarker for the efficacy of anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), proteins derived from 6 colorectal cancer (CRC) cell lines with different sensitivities to cetuximab, an anti-EGFR mAb, were analyzed. Cytoplasmic and membrane proteins extracted from each CRC cell line were digested using trypsin and analyzed comprehensively using mass spectrometry. As a result, 148 and 146 peaks from cytoplasmic proteins and 363 and 267 peaks from membrane proteins were extracted as specific peaks for cetuximab-resistant and -sensitive CRC cell lines, respectively. By analyzing the proteins identified from the peptide peaks, cytoplasmic L-lactate dehydrogenase B (LDHB) was detected as a marker of cetuximab sensitivity, and it was confirmed that LDHB expression was increased in cetuximab-resistant CRC cell lines. Furthermore, LDHB expression levels were significantly upregulated with the acquisition of resistance to cetuximab in cetuximab-sensitive CRC cell lines. In conclusion, LDHB was identified as an important factor affecting cetuximab sensitivity using comprehensive proteome analysis for the first time.
Collapse
Affiliation(s)
- Ayumu Nagamine
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Takuya Araki
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| | - Daisuke Nagano
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Mitsue Miyazaki
- Division of Endocrinology Metabolism and Signal Research, Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Maebashi, Gunma 371-8511, Japan
| | - Koujirou Yamamoto
- Department of Clinical Pharmacology and Therapeutics, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.,Department of Pharmacy, Gunma University Hospital, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
19
|
Liu FR, Bai S, Feng Q, Pan XY, Song SL, Fang H, Cui J, Yang JL. Anti-colorectal cancer effects of anti-p21Ras scFv delivered by the recombinant adenovirus KGHV500 and cytokine-induced killer cells. BMC Cancer 2018; 18:1087. [PMID: 30419845 PMCID: PMC6233365 DOI: 10.1186/s12885-018-4989-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common type of gastrointestinal cancer. CRC gene therapy mediated by adenovirus holds great promise for the treatment of malignancies. However, intravenous delivery of adenovirus exhibits limited anti-tumor activity in vivo when used alone. METHODS In this study, the antitumor activity of the recombinant adenovirus KGHV500 was assessed with the MTT, TUNEL, Matrigel invasion and cell migration assays. To enhance the intravenous delivery of KGHV500 in vivo, cytokine-induced killer (CIK) cells were used as a second vector to carry KGHV500. We explored whether CIK cells could carry the recombinant adenovirus KGHV500 containing the anti-p21Ras single chain fragment variable antibody (scFv) gene into tumors and enhance antitumor potency. RESULTS Our results showed that KGHV500 exhibited significant antitumor activity in vitro. In the nude mouse SW480 tumor xenograft model, the combination of CIK cells with KGHV500 could induce higher antitumor activity against colorectal cancer in vivo than that induced by either CIK or KGHV500 alone. After seven days of treatment, adenovirus and scFv were detected in tumor tissue but were not detected in normal tissues by immunohistochemistry. Therefore, KGHV500 replicates in tumors and successfully expresses anti-p21Ras scFv in a colorectal cancer xenograft model. CONCLUSIONS Our study provides a novel strategy for the treatment of colorectal cancer by combining CIK cells with the recombinant adenovirus KGHV500 which carried anti-p21 Ras scFv.
Collapse
Affiliation(s)
- Fang-Rui Liu
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Shuang Bai
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Qiang Feng
- Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Xin-Yan Pan
- Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Shu-Ling Song
- Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Hong Fang
- Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Jing Cui
- Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China
| | - Ju-Lun Yang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China. .,Department of Pathology, Kunming General Hospital, 212 Daguan Road, Kunming, Yunnan, 650032, People's Republic of China.
| |
Collapse
|
20
|
EGFR gene copy number decreases during anti-EGFR antibody therapy in colorectal cancer. Hum Pathol 2018; 82:163-171. [PMID: 30096327 DOI: 10.1016/j.humpath.2018.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/18/2022]
Abstract
Epidermal growth factor receptor (EGFR) gene copy number (GCN) increase is associated with a favorable anti-EGFR antibody treatment response in RAS wild-type metastatic colorectal cancer. However, there are limited and comparative data regarding the EGFR GCN in primary colorectal cancer tumors and corresponding metastases or the effect of anti-EGFR antibody treatment on EGFR GCN in recurrent disease. In addition, little is known about the potential EGFR GCN changes during anti-EGFR therapy in comparison with other treatment regimens. EGFR GCN was analyzed by EGFR immunohistochemistry-guided silver in situ hybridization in primary and corresponding recurrent local or metastatic tumors from 80 colorectal cancer patients. GCN levels were compared between KRAS wild-type patients having received anti-EGFR therapy and patients having received other forms of treatment after primary surgery. The EGFR GCN decrease between primary and recurrent tumors was more pronounced among the anti-EGFR-treated patients than among patients not treated with anti-EGFR therapy (P = .047). None of the patients experiencing an EGFR GCN increase of at least 1.0 between the primary and recurrent tumors were treated with anti-EGFR antibodies. When including only patients with distant metastases, an EGFR GCN decrease of at least 1.0 was more common among the anti-EGFR-treated patients than among patients not treated with anti-EGFR therapy (P = .028). Our results suggest that anti-EGFR antibody treatment is associated with EGFR GCN decrease between the primary and recurrent colorectal adenocarcinomas, whereas no GCN change is observed among patients receiving other forms of treatment after primary surgery.
Collapse
|
21
|
Azizi AH, Inam ZS, Farrell TJ. Patient with Lynch syndrome with subsequent development of small bowel adenocarcinoma. BMJ Case Rep 2018; 2018:bcr-2018-225003. [PMID: 29866690 DOI: 10.1136/bcr-2018-225003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small bowel adenocarcinoma (SBA) is a rare cancer in the general population, but the incidence increases in patients with Lynch syndrome. The present case describes a 57-year-old white woman with a history of colon cancer status posthemicolectomy and diagnosis of Lynch syndrome. Twenty years after her operation, the patient presented with vague abdominal discomfort and constipation, and underwent an exploratory laparotomy which revealed a stage 3A SBA. Genetic testing of the specimen provided evidence of microsatellite instability and faulty DNA repair supporting aetiology of Lynch syndrome. This case is unique in that SBA, if present in patients with Lynch syndrome, is usually a presenting symptom and has not been widely described in literature as an occurrence so many years after. As a result, this case highlights the importance of a low threshold for a thorough evaluation in patients with Lynch syndrome who present with signs of small bowel obstruction.
Collapse
Affiliation(s)
| | - Zaina S Inam
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Timothy J Farrell
- Surgery, Geisinger Community Medical Center, Scranton, Pennsylvania, USA
| |
Collapse
|
22
|
Mauri G, Valtorta E, Cerea G, Amatu A, Schirru M, Marrapese G, Fiorillo V, Recchimuzzo P, Cavenago IS, Bonazzina EF, Motta V, Lauricella C, Veronese S, Tosi F, Maiolani M, Rospo G, Truini M, Bonoldi E, Christiansen J, Potts SJ, Siena S, Sartore-Bianchi A. TRKA expression and NTRK1 gene copy number across solid tumours. J Clin Pathol 2018; 71:926-931. [PMID: 29802225 DOI: 10.1136/jclinpath-2018-205124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
AIMS Neurotrophic Tropomyosin Kinase Receptor 1 (NTRK1) gene encodes for the protein Tropomyosin-related kinase A (TRKA). Deregulated activity of TRKA has been shown to have oncogenic potential. We present here the results of an immunohistochemical (IHC) observational cohort study of TRKA expression together with gene copy number (GCN) assessment in various solid tumours. METHODS Formalin-fixed, paraffin-embedded consecutive samples of different tumour types were tested for TRKA expression. Samples showing TRKA IHC staining in at least 10% of cells were analysed by fluorescence in situ hybridisation to assess NTRK1 gene rearrangements and/or individual GCN gain. All patients underwent this molecular assessment within the phase I ALKA-001 clinical trial. RESULTS 1043 samples were tested and annotation for histology was available in 1023. Most of the samples were colorectal adenocarcinoma (CRC) (n=550, 52.7%) and lung adenocarcinoma (n=312, 29.9%). 24 samples (2.3%) were biliary tract carcinoma (BTC). Overall, 17 (1.6%) samples were characterised by TRKA IHC expression (four weak, eight moderate, five strong): 9/17 lung adenocarcinoma, 3/17 CRC, 3/17 BTC, 1/17 thyroid cancer and 1/17 cancer of unknown primary. Of these, 1/17 with strong TRKA IHC staining displayed NTRK1 gene rearrangement and 15/17 NTRK1 GCN gain by FISH. No correlation was found between intensity of TRKA IHC staining and number of copies of NTRK1. CONCLUSIONS TRKA expression can be found in 1.6% of solid tumours and can be paralleled by NTRK1 gene rearrangements or mostly GCN gain. The prognostic and translational therapeutic impact of the latter remains to be established.
Collapse
Affiliation(s)
- Gianluca Mauri
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulio Cerea
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Michele Schirru
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giovanna Marrapese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Vincenzo Fiorillo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Patrizia Recchimuzzo
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Ivana Stella Cavenago
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | - Valentina Motta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Calogero Lauricella
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Silvio Veronese
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Federica Tosi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Martina Maiolani
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | | | - Mauro Truini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Bonoldi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Laboratory Medicine, Division of Pathology, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| | - Andrea Sartore-Bianchi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Dipartimento di Ematologia e Onco-Ematologia, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
23
|
Anti-EGFR monoclonal antibodies and EGFR tyrosine kinase inhibitors as combination therapy for triple-negative breast cancer. Oncotarget 2018; 7:73618-73637. [PMID: 27655662 PMCID: PMC5342003 DOI: 10.18632/oncotarget.12037] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 08/22/2016] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by overexpression of epidermal growth factor receptor (EGFR) and activation of its downstream signaling pathways. Dual targeting of EGFR using one monoclonal antibody (mAb; cetuximab or panitumumab) and one tyrosine kinase inhibitor (EGFR-TKI; gefitinib or erlotinib) is a potential therapeutic approach. We investigated the effect of these therapies in EGFR-expressing TNBC cell lines that do or do not harbor the main activating mutations of EGFR pathways. Cell lines were sensitive to EGFR-TKIs, whereas mAbs were active only in MDA-MB-468 (EGFR amplification) and SUM-1315 (KRAS and PTEN wild-type) cells. MDA-MB-231 (KRAS mutated) and HCC-1937 (PTEN deletion) cells were resistant to mAbs. The combined treatment resulted in a synergistic effect on cell proliferation and superior inhibition of the RAS/MAPK signaling pathway in mAb-sensitive cells. The anti-proliferative effect was associated with G1 cell cycle arrest followed by apoptosis. Sensitivity to therapies was characterized by induction of positive regulators and inactivation of negative regulators of cell cycle. These results suggest that dual EGFR inhibition might result in an enhanced antitumor effect in a subgroup of TNBC. The status of EGFR, KRAS and PTEN could be used as a molecular marker for predicting the response to this therapeutic strategy.
Collapse
|
24
|
Zhao B, Wang L, Qiu H, Zhang M, Sun L, Peng P, Yu Q, Yuan X. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer. Oncotarget 2018; 8:3980-4000. [PMID: 28002810 PMCID: PMC5354808 DOI: 10.18632/oncotarget.14012] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy is effective for patients with RAS wild type metastatic colorectal cancer (mCRC). However, only a small percentage of mCRC patients are sensitive to anti-EGFR therapy and even the best cases finally become refractory to this therapy. It has become apparent that the RAS mutations correlate with resistance to anti-EGFR therapy. However, these resistance mechanisms only account for nearly 35% to 50% of nonresponsive patients, suggesting that there might be additional mechanisms. In fact, several novel pathways leading to escape from anti-EGFR therapy have been reported in recent years. In this review, we provide an overview of known and novel mechanisms that contribute to both primary and acquired anti-EGFR therapy resistance, and enlist possible treatment strategies to overcome or reverse this resistance.
Collapse
Affiliation(s)
- Ben Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingsheng Zhang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Li Sun
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Peng
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
25
|
Very N, Lefebvre T, El Yazidi-Belkoura I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018; 9:1380-1402. [PMID: 29416702 PMCID: PMC5787446 DOI: 10.18632/oncotarget.22377] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the fourth leading cause of cancer-related deaths in the world. Drug resistance of tumour cells remains the main challenge toward curative treatments efficiency. Several epidemiologic studies link emergence and recurrence of this cancer to metabolic disorders. Glycosylation that modifies more than 80% of human proteins is one of the most widepread nutrient-sensitive post-translational modifications. Aberrant glycosylation participates in the development and progression of cancer. Thus, some of these glycan changes like carbohydrate antigen CA 19-9 (sialyl Lewis a, sLea) or those found on carcinoembryonic antigen (CEA) are already used as clinical biomarkers to detect and monitor CRC. The current review highlights emerging evidences accumulated mainly during the last decade that establish the role played by altered glycosylations in CRC drug resistance mechanisms that induce resistance to apoptosis and activation of signaling pathways, alter drug absorption and metabolism, and led to stemness acquisition. Knowledge in this field of investigation could aid to the development of better therapeutic approaches with new predictive biomarkers and targets tied in with adapted diet.
Collapse
Affiliation(s)
- Ninon Very
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| | - Ikram El Yazidi-Belkoura
- Unité de Glycobiologie Structurale et Fonctionnelle, UGSF-UMR 8576 CNRS, Université de Lille, Lille 59000, France
| |
Collapse
|
26
|
Martins M, Mansinho A, Cruz-Duarte R, Martins SL, Costa L. Anti-EGFR Therapy to Treat Metastatic Colorectal Cancer: Not for All. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1110:113-131. [PMID: 30623369 DOI: 10.1007/978-3-030-02771-1_8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of monoclonal antibodies (mAbs) cetuximab and panitumumab, which target the transmembrane protein epidermal growth factor receptor (EGFR), mark a major step forward in the treatment of metastatic colorectal cancer (mCRC). However, this therapeutic progress proved to be effective only in a very restricted subset of patients. Although several mechanisms of resistance, both primary and acquired, have been identified, the only established predictive tumour biomarker for the treatment of mCRC patients is the RAS mutational status. RAS activating mutations predict a lack of response to these therapies while low levels of primary resistance characterize RAS wild type (WT) patients (only about 15%). However, even WT patients that initially respond to anti-EGFR therapy, eventually undergo tumour progression. In this context, there is still more to be done in the search for effective predictive markers with therapeutic applicability. In this chapter, we provide an overview on the mechanisms that contribute to resistance to EGFR-targeted therapy and highlight what is still missing in our understanding of these molecular mechanisms and approaches to overcome them.
Collapse
Affiliation(s)
- Marta Martins
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | - André Mansinho
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Raquel Cruz-Duarte
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Soraia Lobo Martins
- Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Luís Costa
- Instituto de Medicina Molecular - João Lobo Antunes, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Oncology Division, Santa Maria Hospital, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| |
Collapse
|
27
|
Chen IJ, Chuang CH, Hsieh YC, Lu YC, Lin WW, Huang CC, Cheng TC, Cheng YA, Cheng KW, Wang YT, Chen FM, Cheng TL, Tzou SC. Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci Rep 2017; 7:11587. [PMID: 28912497 PMCID: PMC5599682 DOI: 10.1038/s41598-017-11886-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Systemic injection of therapeutic antibodies may cause serious adverse effects due to on-target toxicity to the antigens expressed in normal tissues. To improve the targeting selectivity to the region of disease sites, we developed protease-activated pro-antibodies by masking the binding sites of antibodies with inhibitory domains that can be removed by proteases that are highly expressed at the disease sites. The latency-associated peptide (LAP), C2b or CBa of complement factor 2/B were linked, through a substrate peptide of matrix metalloproteinase-2 (MMP-2), to an anti-epidermal growth factor receptor (EGFR) antibody and an anti-tumor necrosis factor-α (TNF-α) antibody. Results showed that all the inhibitory domains could be removed by MMP-2 to restore the binding activities of the antibodies. LAP substantially reduced (53.8%) the binding activity of the anti-EGFR antibody on EGFR-expressing cells, whereas C2b and CBa were ineffective (21% and 9.3% reduction, respectively). Similarly, LAP also blocked 53.9% of the binding activity of the anti-TNF-α antibody. Finally, molecular dynamic simulation showed that the masking efficiency of LAP, C2b and CBa was 33.7%, 10.3% and −5.4%, respectively, over the binding sites of the antibodies. This strategy may aid in designing new protease-activated pro-antibodies that attain high therapeutic potency yet reduced systemic on-target toxicity.
Collapse
Affiliation(s)
- I-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chin Hsieh
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Chi Lu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Chiao Huang
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Chun Cheng
- Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kai-Wen Cheng
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Ming Chen
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Shey-Cherng Tzou
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan.
| |
Collapse
|
28
|
The role of primary tumour sidedness, EGFR gene copy number and EGFR promoter methylation in RAS/BRAF wild-type colorectal cancer patients receiving irinotecan/cetuximab. Br J Cancer 2017. [PMID: 28632725 PMCID: PMC5537494 DOI: 10.1038/bjc.2017.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The data from randomised trials suggested that primary tumour sidedness could represent a prognostic and predictive factor in colorectal cancer (CRC) patients, particularly during treatment with anti-epidermal growth factor receptor (EGFR) therapy. However, an in-deep molecular selection might overcome the predictive role of primary tumour location in this setting. METHODS We conducted a retrospective analysis in which tumour samples from RAS/BRAF wild-type (WT) metastatic CRC patients treated with second-third-line irinotecan/cetuximab were analysed for EGFR gene copy number (GCN) and promoter methylation. Study objective was to evaluate the correlation of tumour sidedness, EGFR promoter methylation and EGFR GCN with clinical outcome. Median follow-up duration was 14.3 months. RESULTS Eighty-eight patients were included in the study, 27.3% had right-sided CRC, 72.7% had left-sided CRC; 36.4% had EGFR GCN<2.12 tumour, 63.6% had EGFR GCN⩾2.12 tumour; 50% had EGFR promoter-methylated tumour. Right-sided colorectal cancer (RSCRC) were associated with reduced overall response rate (ORR) (4.2% for RSCRC vs 35.9% for left sided colorectal cancer (LSCRC), P=0.0030), shorter progression-free survival (PFS) (3.0 vs 6.75 months, P<0.0001) and shorter overall survival (OS) (8 vs 13.6 months, P<0.0001). EGFR GCN<2.12 tumours were associated with reduced ORR (6.2% for EGFR GCN<2.12 vs 39.3% for EGFR GCN⩾2.12 tumours, P=0.0009), shorter PFS (3.5 vs 6.5 months, P=0.0006) and shorter OS (8.5 vs 14.0 months, P<0.0001). Epidermal growth factor receptor-methylated tumours were associated with reduced ORR (9.1% for methylated vs 45.5% for unmethylated, P=0.0001), shorter PFS (3 vs 7.67 months, P<0.0001) and shorter OS (8 vs 17 months, P<0.0001). At multivariate analysis, EGFR GCN and EGFR promoter methylation maintained their independent role for ORR (respectively P=0.0082 and 0.0025), PFS (respectively P=0.0048 and<0.0001) and OS (respectively P=0.0001 and<0.0001). CONCLUSIONS In our study, an accurate molecular selection based on an all RAS and BRAF analysis along with EGFR GCN and EGFR promoter methylation status seems to be more relevant than primary tumour sidedness in the prediction of clinical outcome during cetuximab/irinotecan therapy. However, these data need to be validated with future prospective and translational studies.
Collapse
|
29
|
van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens FALM, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM. A Phase Ib Dose-Escalation Study of Encorafenib and Cetuximab with or without Alpelisib in Metastatic BRAF-Mutant Colorectal Cancer. Cancer Discov 2017; 7:610-619. [PMID: 28363909 DOI: 10.1158/2159-8290.cd-16-0795] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/14/2016] [Accepted: 03/30/2017] [Indexed: 12/19/2022]
Abstract
Preclinical evidence suggests that concomitant BRAF and EGFR inhibition leads to sustained suppression of MAPK signaling and suppressed tumor growth in BRAFV600E colorectal cancer models. Patients with refractory BRAFV600-mutant metastatic CRC (mCRC) were treated with a selective RAF kinase inhibitor (encorafenib) plus a monoclonal antibody targeting EGFR (cetuximab), with (n = 28) or without (n = 26) a PI3Kα inhibitor (alpelisib). The primary objective was to determine the maximum tolerated dose (MTD) or a recommended phase II dose. Dose-limiting toxicities were reported in 3 patients receiving dual treatment and 2 patients receiving triple treatment. The MTD was not reached for either group and the phase II doses were selected as 200 mg encorafenib (both groups) and 300 mg alpelisib. Combinations of cetuximab and encorafenib showed promising clinical activity and tolerability in patients with BRAF-mutant mCRC; confirmed overall response rates of 19% and 18% were observed and median progression-free survival was 3.7 and 4.2 months for the dual- and triple-therapy groups, respectively.Significance: Herein, we demonstrate that dual- (encorafenib plus cetuximab) and triple- (encorafenib plus cetuximab and alpelisib) combination treatments are tolerable and provide promising clinical activity in the difficult-to-treat patient population with BRAF-mutant mCRC. Cancer Discov; 7(6); 610-9. ©2017 AACR.See related commentary by Sundar et al., p. 558This article is highlighted in the In This Issue feature, p. 539.
Collapse
Affiliation(s)
| | - Josep Tabernero
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elena Elez
- Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Johanna C Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | - Martin Schuler
- West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany, and German Cancer Consortium (DKTK), partner site University Hospital Essen, Essen, Germany
| | | | | | | | - Martijn P Lolkema
- University Medical Center Utrecht, Utrecht, the Netherlands
- Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jason E Faris
- Massachusetts General Hospital, Boston, Massachusetts
| | | | - Sunil Sharma
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Rona Yaeger
- Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Heinz-Josef Lenz
- Keck School of Medicine at the University of Southern California, Los Angeles, California
| | | | - Emin Avsar
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey
| | | | - Savina Jaeger
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Eugene Tan
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey
| | | | | | - Jan H M Schellens
- The Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
30
|
El Guerrab A, Bamdad M, Bignon YJ, Penault-Llorca F, Aubel C. Anti-EGFR monoclonal antibodies enhance sensitivity to DNA-damaging agents inBRCA1-mutated andPTEN-wild-type triple-negative breast cancer cells. Mol Carcinog 2017; 56:1383-1394. [DOI: 10.1002/mc.22596] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/14/2016] [Accepted: 11/17/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Abderrahim El Guerrab
- Centre Jean Perrin-ERTICa-EA4677; Clermont-Ferrand Cedex France
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Faculté de Médecine; Clermont-Ferrand France
| | - Mahchid Bamdad
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Faculté de Médecine; Clermont-Ferrand France
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Institut Universitaire de Technologie, Département Génie Biologique, Ensemble universitaire des Cézeaux; Aubière cedex France
| | - Yves-Jean Bignon
- Centre Jean Perrin-ERTICa-EA4677; Clermont-Ferrand Cedex France
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Faculté de Médecine; Clermont-Ferrand France
- Centre de Ressources Biologiques BB-0033-00075; Centre Jean Perrin; Clermont-Ferrand France
| | - Frédérique Penault-Llorca
- Centre Jean Perrin-ERTICa-EA4677; Clermont-Ferrand Cedex France
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Faculté de Médecine; Clermont-Ferrand France
| | - Corinne Aubel
- Centre Jean Perrin-ERTICa-EA4677; Clermont-Ferrand Cedex France
- Clermont Université-Université d'Auvergne-ERTICa-EA4677; Faculté de Médecine; Clermont-Ferrand France
| |
Collapse
|
31
|
Bai S, Feng Q, Pan XY, Zou H, Chen HB, Wang P, Zhou XL, Hong YL, Song SL, Yang JL. Overexpression of wild-type p21Ras plays a prominent role in colorectal cancer. Int J Mol Med 2017; 39:861-868. [PMID: 28259994 PMCID: PMC5360420 DOI: 10.3892/ijmm.2017.2903] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the most common gastrointestinal type of cancer. The overexpression of Ras proteins, particularly p21Ras, are involved in the development of CRC. However, the subtypes of the p21Ras proteins that are overexpressed and the mutation status remain unknown restricting the development of therapeutic antibodies targeting p21Ras proteins. The present study aimed to investigate the mutation status of ras genes associated with Ras proteins that are overexpressed in CRC and explore whether or not wild-type p21Ras could be a target for CRC therapy. p21Ras expression was examined immunohistochemically in normal colorectal epithelium, benign lesions and malignant colorectal tumor tissues by monoclonal antibody (Mab) KGH-R1 which is able to react with three types of p21Ras proteins: H-p21Ras, N-p21Ras and K-p21Ras. Then, the expression levels of p21Ras subtypes were determined in CRC by a specific Mab for each p21Ras subtype. Mutation status of ras genes in p21Ras-overexpressing CRC was detected by DNA sequencing. There was rare p21Ras expression in normal colorectal epithelium but a high level of p21Ras expression in CRC, with a significant increase from normal colorectal epithelium to inflammatory polyps, low-grade intraepithelial neoplasia, high-grade intraepithelial neoplasia and invasive colorectal adenocarcinoma, respectively. Overexpression of K-p21Ras was found in all CRC tissues tested, overexpression of N-p21Ras was found in 85.7% of the CRC tissues, while H-p21Ras expression was not found in any CRC tissue. DNA sequencing showed that there were no K-ras mutations in 60% of the K-p21Ras-overexpressing CRC, while 40% of the CRC tissues harbored K-ras mutations. N-ras mutations were not found in any N-p21Ras-overexpressing CRC. Our findings indicate that overexpression of wild-type p21Ras may play a prominent role in the development of CRC in addition to ras mutations and could be a promising target for CRC therapy.
Collapse
Affiliation(s)
- Shuang Bai
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Qiang Feng
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan 650032, P.R. China
| | - Xin-Yan Pan
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan 650032, P.R. China
| | - Hong Zou
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan 650032, P.R. China
| | - Hao-Bin Chen
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan 650032, P.R. China
| | - Peng Wang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Xin-Liang Zhou
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| | - Yan-Ling Hong
- Department of Pathology, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Shu-Ling Song
- Department of Pathology, Kunming General Hospital, Kunming, Yunnan 650032, P.R. China
| | - Ju-Lun Yang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
32
|
Abstract
In the last 20 years, improvements in metastatic colorectal cancer treatment lead to a radical raise of outcomes with median survival reaching now more than 30 months. Despite that, the identification of predictive and/or prognostic biomarker still represents a challenging issue, and until today, although clinician and researchers might face with a deeper knowledge of biological mechanisms related to colorectal cancer, many pieces of evidence underline the heterogeneity and the dynamism of such disease. In the present review, we describe the road leading to the discovery of RAS mutations, BRAF V600E mutation, and microsatellite instability role in colorectal cancer; second, we discuss some of the possible major pitfalls of biomarker research, and lastly, we give new suggestions for future research in this field.
Collapse
|
33
|
Plasticity of Resistance and Sensitivity to Anti-Epidermal Growth Factor Receptor Inhibitors in Metastatic Colorectal Cancer. Handb Exp Pharmacol 2017; 249:145-159. [PMID: 28382467 DOI: 10.1007/164_2017_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers and the second leading cause of cancer mortality worldwide. Survival in the metastatic setting has been gradually improved by the addition to cytotoxic chemotherapy of agents targeting the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR). Considerable heterogeneity exists within CRC due to the varied genetic and epigenetic mechanisms involved in differing pathways of carcinogenesis. The knowledge of molecular abnormalities underlying colorectal tumourigenesis and the progression of dysplastic precursors to invasive and ultimately metastatic lesions has advanced in recent years by comprehensive sequencing studies. From these genome-scale analyses, we know that a handful of genes are commonly affected by somatic mutations, whereas recurrent copy-number alterations and chromosomal translocations are rarer in this disease. Even though some of these molecular abnormalities make genes acting as drivers of cancer progression, translation of this recognition for therapeutic purposes is still limited, encompassing only as standard of care the exclusion of RAS-mutated cancers for better selecting patients to candidate to EGFR-targeted therapy with monoclonal antibodies. However, the effort of ameliorating molecular selection should not be considered exhausted by demonstration of RAS and BRAF-induced resistance, as the genomic landscape of response to EGFR blockade has been demonstrated to be wider and dynamically multifaceted. In this chapter we will review main molecular biomarkers of de novo (primary) and acquired (secondary) resistance to EGFR-targeted monoclonal antibodies in metastatic CRC and discuss therapeutic implications.
Collapse
|
34
|
Khan SA, Zeng Z, Shia J, Paty PB. EGFR Gene Amplification and KRAS Mutation Predict Response to Combination Targeted Therapy in Metastatic Colorectal Cancer. Pathol Oncol Res 2016; 23:673-677. [PMID: 28025786 DOI: 10.1007/s12253-016-0166-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 12/14/2016] [Indexed: 12/27/2022]
Abstract
Genetic variability in KRAS and EGFR predicts response to cetuximab in irinotecan refractory colorectal cancer. Whether these markers or others remain predictive in combination biologic therapies including bevacizumab is unknown. We identified predictive biomarkers from patients with irinotecan refractory metastatic colorectal cancer treated with cetuximab plus bevacizumab. Patients who received cetuximab plus bevacizumab for irinotecan refractory colorectal cancer in either of two Phase II trials conducted were identified. Tumor tissue was available for 33 patients. Genomic DNA was extracted and used for mutational analysis of KRAS, BRAF, and p53 genes. Fluorescence in situ hybridization was performed to assess EGFR copy number. The status of single genes and various combinations were tested for association with response. Seven of 33 patients responded to treatment. KRAS mutations were found in 14/33 cases, and 0 responded to treatment (p = 0.01). EGFR gene amplification was seen in 3/33 of tumors and in every case was associated with response to treatment (p < 0.001). TP53 and BRAF mutations were found in 18/33 and 0/33 tumors, respectively, and there were no associations with response to either gene. EGFR gene amplification and KRAS mutations are predictive markers for patients receiving combination biologic therapy of cetuximab plus bevacizumab for metastatic colorectal cancer. One marker or the other is present in the tumor of half of all patients allowing treatment response to be predicted with a high degree of certainty. The role for molecular markers in combination biologic therapy seems promising.
Collapse
Affiliation(s)
- Sajid A Khan
- Department of Surgery, Section of Surgical Oncology, Yale University School of Medicine, 310 Cedar Street, FMB 130, New Haven, CT, 06520, USA.
| | - Zhaoshi Zeng
- Colorectal Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Colorectal Service, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Philip B Paty
- Colorectal Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
35
|
Epidermal Growth Factor Receptor (EGFR) Pathway Biomarkers in the Randomized Phase III Trial of Erlotinib Versus Observation in Ovarian Cancer Patients with No Evidence of Disease Progression after First-Line Platinum-Based Chemotherapy. Target Oncol 2016; 10:583-96. [PMID: 26004768 DOI: 10.1007/s11523-015-0369-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND In this work, we aimed to identify molecular epidermal growth factor receptor (EGFR) tissue biomarkers in patients with ovarian cancer who were treated within the phase III randomized European Organisation for Research and Treatment of Cancer-Gynaecological Cancer Group (EORTC-GCG) 55041 study comparing erlotinib with observation in patients with no evidence of disease progression after first-line platinum-based chemotherapy. METHODS Somatic mutations in KRAS, BRAF, NRAS, PIK3CA, EGFR, and PTEN were determined in 318 (38 %) and expression of EGFR, pAkt, pMAPK, E-cadherin and Vimentin, and EGFR and HER2 gene copy numbers in 218 (26 %) of a total of 835 randomized patients. Biomarker data were correlated with progression-free survival (PFS) and overall survival (OS). RESULTS Only 28 mutations were observed among KRAS, BRAF, NRAS, PIK3CA, EGFR, and PTEN (in 7.5 % of patients), of which the most frequent were in KRAS and PIK3CA. EGFR mutations occurred in only three patients. When all mutations were pooled, patients with at least one mutation in KRAS, NRAS, BRAF, PIK3CA, or EGFR had longer PFS (33.1 versus 12.3 months; HR 0.57; 95 % CI 0.33 to 0.99; P = 0.042) compared to those with wild-type tumors. EGFR overexpression was detected in 93 of 218 patients (42.7 %), and 66 of 180 patients (36.7 %) had EGFR gene amplification or high levels of copy number gain. Fifty-eight of 128 patients had positive pMAPK expression (45.3 %), which was associated with inferior OS (38.9 versus 67.0 months; HR 1.81; 95 % CI 1.11 to 2.97; P = 0.016). Patients with positive EGFR fluorescence in situ hybridization (FISH) status had worse OS (46.1 months) than those with negative status (67.0 months; HR 1.56; 95 % CI 1.01 to 2.40; P = 0.044) and shorter PFS (9.6 versus 16.1 months; HR 1.57; 95 % CI 1.11 to 2.22; P = 0.010). None of the investigated biomarkers correlated with responsiveness to erlotinib. CONCLUSIONS In this phase III study, increased EGFR gene copy number was associated with worse OS and PFS in patients with ovarian cancer. It remains to be determined whether this association is purely prognostic or is also predictive.
Collapse
|
36
|
Llovet P, Sastre J, Ortega JS, Bando I, Ferrer M, García-Alfonso P, Donnay O, Carrato A, Jiménez A, Aranda E, León A, Grávalos C, Cámara JC, Feliú J, Sanchíz B, Caldés T, Díaz-Rubio E. Prognostic Value of BRAF, PI3K, PTEN, EGFR Copy Number, Amphiregulin and Epiregulin Status in Patients with KRAS Codon 12 Wild-Type Metastatic Colorectal Cancer Receiving First-Line Chemotherapy with Anti-EGFR Therapy. Mol Diagn Ther 2016; 19:397-408. [PMID: 26341080 DOI: 10.1007/s40291-015-0165-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Mutational analysis of RAS is required for anti-epidermal growth factor receptor (EGFR) treatment for patients with metastatic colorectal cancer (mCRC). However, most patients with KRAS wild-type tumors still do not respond. Other molecules downstream of the EGFR may also play a role in resistance to EGFR therapies. OBJECTIVE Our objective was to investigate the clinical importance of biomarkers in relation to response, progression-free survival, and overall survival in patients with mCRC receiving first-line treatment with anti-EGFR therapy plus chemotherapy. METHODS We studied the EGFR pathway [EGFR, NRAS, BRAF, PIK3CA, phosphatase and tensin homolog (PTEN), amphiregulin (AREG), and epiregulin (EREG)] in 105 patients with mCRC KRAS codon 12 wild type. We analysed objective response, progression-free survival, and overall survival in molecularly defined subgroups of the patients receiving anti-EGFR therapy plus chemotherapy as first-line treatment. RESULTS We found a significant association between RAS wild-type, BRAF wild-type, EREG, and AREG overexpression and response to anti-EGFR therapy (p = 0.003, p = 0.015, p = 0.05, and p = 0.009, respectively). Progression-free survival and overall survival were lower in patients with RAS (p = 0.36 and p ≤ 0.001, respectively) or BRAF (p = 0.003 and p = 0.002, respectively) mutant tumors. Patients with EREG and AREG messenger RNA (mRNA) expression had longer survival than those with low-expression tumors; progression-free survival and overall survival were significant for AREG (p = 0.001 and p = 0.05, respectively). Patients with EGFR amplification tumors responded better to treatment and had better survival rates, although this was not significant. PIK3CA and PTEN were not associated with either response or survival. The multivariate logistic regression model for response showed only BRAF as a significant predictor after adjustment for the other covariates (p = 0.04, odds ratio 8.3, 95 % confidence interval 0.81-86.0). CONCLUSIONS RAS, BRAF, AREG, and EREG predict for efficacy of first-line anti-EGFR therapy in patients with mCRC.
Collapse
Affiliation(s)
- Patricia Llovet
- Laboratory of Molecular Oncology, Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Javier Sastre
- Medical Oncology Department, Fundación Investigación Biomédica, Hospital Clínico San Carlos, c/ Martin Lagos s/n, 28040, Madrid, Spain.,Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | - Inmaculada Bando
- Laboratory of Molecular Oncology, Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Milagros Ferrer
- Department of Pathology, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Olga Donnay
- Department of Medical Oncology, Hospital La Princesa, La Paz, Madrid, Spain
| | - Alfredo Carrato
- Department of Medical Oncology, Hospital Ramón y Cajal, Madrid, Spain
| | - Ana Jiménez
- Department of Medical Oncology, Hospital Getafe, Madrid, Spain
| | - Enrique Aranda
- Department of Medical Oncology, Hospital Reina Sofía, Córdoba, Spain
| | - Ana León
- Department of Medical Oncology, Fundación Jiménez Díaz, Madrid, Spain
| | - Cristina Grávalos
- Department of Medical Oncology, Hospital 12 de Octubre, Madrid, Spain
| | | | - Jaime Feliú
- Department of Medical Oncology, Hospital La Paz, Madrid, Spain
| | - Bárbara Sanchíz
- Medical Oncology Department, Fundación Investigación Biomédica, Hospital Clínico San Carlos, c/ Martin Lagos s/n, 28040, Madrid, Spain.,Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Trinidad Caldés
- Laboratory of Molecular Oncology, Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Eduardo Díaz-Rubio
- Medical Oncology Department, Fundación Investigación Biomédica, Hospital Clínico San Carlos, c/ Martin Lagos s/n, 28040, Madrid, Spain. .,Department of Medicine, Facultad de Medicina, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
37
|
Patients with genetically heterogeneous synchronous colorectal cancer carry rare damaging germline mutations in immune-related genes. Nat Commun 2016; 7:12072. [PMID: 27377421 PMCID: PMC4935966 DOI: 10.1038/ncomms12072] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/26/2016] [Indexed: 12/16/2022] Open
Abstract
Synchronous colorectal cancers (syCRCs) are physically separated tumours that develop simultaneously. To understand how the genetic and environmental background influences the development of multiple tumours, here we conduct a comparative analysis of 20 syCRCs from 10 patients. We show that syCRCs have independent genetic origins, acquire dissimilar somatic alterations, and have different clone composition. This inter- and intratumour heterogeneity must be considered in the selection of therapy and in the monitoring of resistance. SyCRC patients show a higher occurrence of inherited damaging mutations in immune-related genes compared to patients with solitary colorectal cancer and to healthy individuals from the 1,000 Genomes Project. Moreover, they have a different composition of immune cell populations in tumour and normal mucosa, and transcriptional differences in immune-related biological processes. This suggests an environmental field effect that promotes multiple tumours likely in the background of inflammation. Some individuals present with multiple synchronous colorectal tumours, but the genetic understanding of this is unclear. Here, the authors use a sequencing strategy to show that the synchronous tumours are genetically independent and the patients harbour rare germline damaging mutations in genes associated with the immune system.
Collapse
|
38
|
Use of monoclonal antibodies to detect specific mutations in formalin-fixed, paraffin-embedded tissue sections. Hum Pathol 2016; 53:168-77. [DOI: 10.1016/j.humpath.2016.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/10/2016] [Accepted: 03/12/2016] [Indexed: 02/08/2023]
|
39
|
Sunakawa Y, Yang D, Moran M, Astrow SH, Tsuji A, Stephens C, Zhang W, Cao S, Takahashi T, Denda T, Shimada K, Kochi M, Nakamura M, Kotaka M, Segawa Y, Masuishi T, Takeuchi M, Fujii M, Nakajima T, Ichikawa W, Lenz HJ. Combined assessment of EGFR-related molecules to predict outcome of 1st-line cetuximab-containing chemotherapy for metastatic colorectal cancer. Cancer Biol Ther 2016; 17:751-9. [PMID: 27104867 DOI: 10.1080/15384047.2016.1178426] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several studies have reported that epidermal growth factor receptor (EGFR)-related molecules may serve as predictors of cetuximab treatment for metastatic colorectal cancer (mCRC), such as EGFR gene copy number (GCN), expression of 2 ligands of EGFR, amphiregulin (AREG) and epiregulin (EREG), and EGFR CA simple sequence repeat 1 (CA-SSR1) polymorphism; however, these biomarkers still remain not useful in clinical practice since they have been evaluated using cohorts with patients treated in various settings of chemotherapy. We therefore analyzed associations of mRNA expression of AREG and EREG, EGFR GCN, and CA-SSR1 polymorphism [short (S;≤ 19) / long (L; ≥ 20)] with clinical outcomes in 77 Japanese patients with KRAS exon 2 wild-type mCRC enrolled in phase II trials of FOLFOX (n = 28/57, UMIN000004197) or SOX (n = 49/67, UMIN000007022) plus cetuximab as first-line therapy. High AREG expression correlated with significantly better progression-free survival (median 11.6 vs. 66 months, HR 0.52, P = 0.037); moreover, it remained statistically significant in multivariate analysis (HR: 0.48, P = 0.027). S/S genotype of CA-SSR1 predicted severe skin toxicity (P = 0.040). Patients with both AREG-low and EGFR low-GCN had significantly shorter overall survival than the others (median 22.2 vs. 42.8 months, HR 2.34, P = 0.042). The multivariate analysis showed that molecular status with both AREG-low and EGFR low-GCN was a predictor of worse survival (P = 0.006). In conclusion, AREG mRNA expression and EGFR CA-SSR1 polymorphism predict survival and skin toxicity, respectively, of initial chemotherapy with cetuximab. Our results also suggest potential prognostic value of the combined assessment of AREG and EGFR GCN for first-line cetuximab treatment.
Collapse
Affiliation(s)
- Yu Sunakawa
- a Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA.,b Division of Medical Oncology, Department of Internal Medicine, Showa University Northern Yokohama Hospital , Yokohama , Kanagawa , Japan
| | - Dongyun Yang
- c Department of Preventive Medicine , Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | | | | | - Akihito Tsuji
- e Department of Clinical Oncology , Kagawa University Faculty of Medicine Cancer Center, Kagawa University Hospital , Kita-gun , Kagawa , Japan
| | | | - Wu Zhang
- a Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Shu Cao
- c Department of Preventive Medicine , Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| | - Takehiro Takahashi
- f Division of Medical Oncology, Showa University Hospital , Shinagawa-ku, Tokyo , Japan
| | - Tadamichi Denda
- g Division of Gastroenterology, Chiba Cancer Center , Chuo-ku, Chiba , Japan
| | - Ken Shimada
- h Division of Medical Oncology, Department of Internal Medicine, Showa University Koto Hospital , Toyosu, Koto-ku, Tokyo , Japan
| | - Mitsugu Kochi
- i Department of Digestive Surgery , Nihon University School of Medicine , Itabashi-ku, Tokyo , Japan
| | - Masato Nakamura
- j Aizawa Comprehensive Cancer Center, Aizawa Hospital , Matsumoto , Nagano , Japan
| | - Masahito Kotaka
- k Gastrointestinal Center, Sano Hospital , Kobe , Hyogo , Japan
| | - Yoshihiko Segawa
- l Division of Medical Oncology, Saitama Medical University International Medical Center , Hidaka , Saitama , Japan
| | - Toshiki Masuishi
- m Division of Gastroenterology, Tsuchiura Kyodo General Hospital , Tsuchiura , Ibaraki , Japan
| | - Masahiro Takeuchi
- n Department of Clinical Medicine (Biostatistics) , Kitasato University School of Pharmacy , Shirokane, Minato-ku, Tokyo , Japan
| | - Masashi Fujii
- i Department of Digestive Surgery , Nihon University School of Medicine , Itabashi-ku, Tokyo , Japan
| | | | - Wataru Ichikawa
- p Division of Medical Oncology, Showa University Fujigaoka Hospital , Yokohama , Kanagawa , Japan
| | - Heinz-Josef Lenz
- a Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
40
|
Bousquet G, Janin A. Patient-Derived Xenograft: An Adjuvant Technology for the Treatment of Metastatic Disease. Pathobiology 2016; 83:170-6. [PMID: 27010922 DOI: 10.1159/000444533] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
The occurrence of metastases severely affects prognosis for patients with cancer, making metastatic disease a daily societal challenge. Because of resistance to drugs, the potential curability with chemotherapy at the metastatic stage remains low. Large genomic analyses to identify new targets have their limitations due to intratumor heterogeneity when they are performed on tumor samples from primary tumors and because the functional value of molecular abnormalities in a cancer is usually not known. Additional tools are thus required for the development of new anticancer agents. The use of preclinical models is a key component of translational research in oncology. For four decades, xenograft models of human cancer cell lines injected subcutaneously in immunocompromised mice have been widely used, with disappointing results for predicting the clinical benefit of a new drug. Patient-derived xenografts are preclinical models rediscovered as innovative pharmacological tools, both for the preclinical development of anticancer drugs and as individual models for personalized treatment of metastatic disease. Here, we review the recent progress reported using patient-derived xenografts for the treatment of metastatic disease, and discuss the feasibility of their implementation in daily oncological care.
Collapse
Affiliation(s)
- Guilhem Bousquet
- UMR-S 1165, Laboratoire de Pathologie, Sorbonne Paris Citx00E9;, Universitx00E9; Paris Diderot, Paris, France
| | | |
Collapse
|
41
|
Liu J, Hu J, Cheng L, Ren W, Yang M, Liu B, Xie L, Qian X. Biomarkers predicting resistance to epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer with wild-type KRAS. Onco Targets Ther 2016; 9:557-65. [PMID: 26869800 PMCID: PMC4734822 DOI: 10.2147/ott.s86966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
EGFR pathway is an important therapeutic target in human tumors, including metastatic colorectal cancer (mCRC). The advent of EGFR-targeted monoclonal antibodies panitumumab and cetuximab has generated promise for the treatment of mCRC and has largely improved patients' progression-free survival (PFS) and overall survival (OS). However, treatment with anti-EGFR monoclonal antibodies is only effective in a subset of mCRC patients with wild-type KRAS. This indicates that there are other factors affecting the efficacy of anti-EGFR monoclonal antibodies. Existing studies have demonstrated that among colorectal cancer patients with wild-type KRAS, harboring mutations of BRAF, PIK3CA, NRAS, or PTEN-null may demonstrate resistance to anti-EGFR-targeted therapy, and biomarkers detection can provide better-personalized treatment for mCRC patients. How to identify and reverse the secondary resistance to anti-EGFR monoclonal antibody therapy is also another great challenge to improve the anti-EGFR efficacy in wild-type KRAS mCRC patients. Finally, both of the molecular mechanisms of response and acquired resistance would be important for the directions of future research. This review focuses on how to further improve the predictive value of anti-EGFR therapies and how to also try and avoid futile treatment for wild-type KRAS colorectal cancer patients.
Collapse
Affiliation(s)
- Jiang Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Hu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lei Cheng
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Wei Ren
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Mi Yang
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Li Xie
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016; 8:57-84. [PMID: 26753006 DOI: 10.1177/1758834015614530] [Citation(s) in RCA: 351] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. This is in spite of widespread, effective measures of preventive screening, and also major advances in treatment options. Despite advances in cytotoxic and targeted therapy, resistance to chemotherapy remains one of the greatest challenges in long-term management of incurable metastatic disease and eventually contributes to death as tumors accumulate means of evading treatment. We performed a comprehensive literature search on the data available through PubMed, Medline, Scopus, and the ASCO Annual Symposium abstracts through June 2015 for the purpose of this review. We discuss the current state of knowledge of clinically relevant mechanisms of resistance to cytotoxic and targeted therapies now in use for the treatment of CRC.
Collapse
Affiliation(s)
- William A Hammond
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Abhisek Swaika
- Division of Hematology/ Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Kabir Mody
- Division of Hematology/ Oncology, Mayo Clinic Cancer Center, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA
| |
Collapse
|
43
|
Patel SB, Gill D, Garrido-Laguna I. Profile of panitumumab as first-line treatment in patients with wild-type KRAS metastatic colorectal cancer. Onco Targets Ther 2015; 9:75-86. [PMID: 26770060 PMCID: PMC4706127 DOI: 10.2147/ott.s68558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Targeted therapies against EGFR, vascular endothelial growth factor, and vascular endothelial growth factor receptor have expanded treatment options for patients with metastatic colorectal cancer (mCRC). Unfortunately, biomarkers to identify patients that are most likely to derive benefit from targeted therapies in this disease are still needed. Indeed, only RAS mutations have been identified as predictive of lack of benefit from monoclonal antibodies against EGFR in patients with mCRC. Panitumumab is a fully humanized monoclonal antibody against EGFR. In this study, we review data to support the use of panitumumab in combination with a chemotherapy backbone, in the first line setting in patients with RAS wild-type mCRC. Ongoing efforts are aimed at identifying smaller subsets of patients within the RAS wild-type group that will derive the largest benefit from anti-EGFR therapy. In the meantime, treatment with anti-EGFR therapy should be reserved for patients with RAS wild-type mCRC.
Collapse
Affiliation(s)
- Shiven B Patel
- Department of Internal Medicine, Oncology Division and Center for Investigational Therapeutics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - David Gill
- Department of Internal Medicine, Oncology Division and Center for Investigational Therapeutics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ignacio Garrido-Laguna
- Department of Internal Medicine, Oncology Division and Center for Investigational Therapeutics, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
44
|
Mirone G, Shukla A, Marfe G. Signaling mechanisms of resistance to EGFR- and Anti-Angiogenic Inhibitors cancer. Crit Rev Oncol Hematol 2015; 97:85-95. [PMID: 26364891 DOI: 10.1016/j.critrevonc.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is among four most common malignancies and the second leading cause of cancer death in the western world. Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor (VEGF) are often overexpressed in colorectal cancer and are associated with inferior outcomes. More recently, further improvements in survival have occurred due to the use of novel targeted therapies such EGFR Tyrosine Kinase Inibitors (EGFR-TKIs), EGFR monoclonal antibodies (EGFR-mAb), and VEGF antibodies. Despite the initial clinical efficacy of these inhibitors in such cancer, resistance invariably develops, typically within 1 to 2 years. Over the past several years, multiple molecular mechanisms of resistance have been identified, and some common themes have emerged. One is the development of resistance mutations in the drug target and another it is activation of alternative signaling of key downstream pathways despite sustained inhibition of the original drug target. In this mini-review, we summarize the concepts underlying EGFR- and VEGF-mediated resistance, the specific examples known to date, and the challenges of applying this knowledge to develop improved therapeutic strategies to prevent or overcome resistance.
Collapse
Affiliation(s)
- Giovanna Mirone
- Department of Medical Oncology B, Regina Elena National Cancer Institute, via Elio Chianesi 53, Rome 00144, Italy.
| | - Arvind Shukla
- School of Biotechnology and Bioinformatics, D.Y. Patil University, Plot No.50, Sector- 15, C.B.D. Belapur, Navi Mumbai, 400614, Maharastra, India
| | - Gabriella Marfe
- Department of Biochemistry and Biophysics, Second University of Naples, via De Crecchio 7, Naples 80138, Italy
| |
Collapse
|
45
|
Del Prete M, Giampieri R, Faloppi L, Bianconi M, Bittoni A, Andrikou K, Cascinu S. Panitumumab for the treatment of metastatic colorectal cancer: a review. Immunotherapy 2015; 7:721-38. [PMID: 26250414 DOI: 10.2217/imt.15.46] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In recent years, the treatment of metastatic colorectal cancer (mCRC) has evolved significantly with the increase of new therapeutic options, leading to an improved median survival for these patients. In particular, the identification of molecular targets in tumor cells has led to the introduction of biological drugs for the treatment of mCRC. Panitumumab is a fully human monoclonal antibody that binds the EGF receptor of tumor cells and inhibits downstream cell signaling with antitumor effect on inhibition of tumor growth. Its use has been approved by randomized clinical trials as monotherapy in chemorefractory patients or combined with chemotherapy in the treatment of RAS wild-type mCRC, where it demonstrated a significant improvement in survival and response rate. The purpose of this review is to analyze the use and efficacy profile of panitumumab, particularly focusing on recently reported data on its use, and future perspectives in patients with mCRC.
Collapse
Affiliation(s)
- M Del Prete
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - R Giampieri
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - L Faloppi
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - M Bianconi
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - A Bittoni
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - K Andrikou
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| | - S Cascinu
- Medical Oncology, AOU Ospedali Riuniti-Università Politecnica delle Marche, via Conca 71, 60126 Ancona, Italy
| |
Collapse
|
46
|
Karapetis CS, Maru D, Waring P, Tie J, Michael MZ. Incorporating traditional and emerging biomarkers in the clinical management of metastatic colorectal cancer. Expert Rev Mol Diagn 2015; 15:1033-48. [PMID: 26166616 DOI: 10.1586/14737159.2015.1052797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The role of biomarker assessment in determining the best therapeutic options for patients with metastatic colorectal cancer has become increasingly complex and important. Biomarkers that predict the efficacy and/or toxicity of such treatments can affect medical decision making, leading to decreased harm and/or costs associated with treatment and improvements in therapeutic outcomes for patients. This review discusses traditional and emerging biomarkers of potential clinical utility for patients with metastatic colorectal cancer, current assays and methods used in clinical practice, technologies that have allowed the identification of new biomarkers and key considerations for oncologists and pathologists when determining appropriate biomarker evaluations to be undertaken for their patients.
Collapse
Affiliation(s)
- Christos S Karapetis
- Flinders Medical Centre, Sturt Road, Bedford Park, South Australia 5042, Australia
| | | | | | | | | |
Collapse
|
47
|
Saridaki Z, Weidhaas JB, Lenz HJ, Laurent-Puig P, Jacobs B, De Schutter J, De Roock W, Salzman DW, Zhang W, Yang D, Pilati C, Bouché O, Piessevaux H, Tejpar S. A let-7 microRNA-binding site polymorphism in KRAS predicts improved outcome in patients with metastatic colorectal cancer treated with salvage cetuximab/panitumumab monotherapy. Clin Cancer Res 2015; 20:4499-4510. [PMID: 25183481 DOI: 10.1158/1078-0432.ccr-14-0348] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE An inherited mutation in KRAS (LCS6-variant or rs61764370) results in altered control of the KRAS oncogene. We studied this biomarker's correlation to anti-EGFR monoclonal antibody (mAb) therapy response in patients with metastatic colorectal cancer. EXPERIMENTAL DESIGN LCS6-variant and KRAS/BRAF mutational status was determined in 512 patients with metastatic colorectal cancer treated with salvage anti-EGFR mAb therapy, and findings correlated with outcome. Reporters were tested in colon cancer cell lines to evaluate the differential response of the LCS6-variant allele to therapy exposure. RESULTS In this study, 21.2% (109 of 512) of patients with metastatic colorectal cancer had the LCS6-variant (TG/GG), which was found twice as frequently in the BRAF-mutated versus the wild-type (WT) group (P=0.03). LCS6-variant patients had significantly longer progression-free survival (PFS) with anti-EGFR mAb monotherapy treatment in the whole cohort (16.85 vs. 7.85 weeks; P=0.019) and in the double WT (KRAS and BRAF) patient population (18 vs. 10.4 weeks; P=0.039). Combination therapy (mAbs plus chemotherapy) led to improved PFS and overall survival (OS) for nonvariant patients, and brought their outcome to levels comparable with LCS6-variant patients receiving anti-EGFR mAb monotherapy. Combination therapy did not lead to improved PFS or OS for LCS6-variant patients. Cell line studies confirmed a unique response of the LCS6-variant allele to both anti-EGFR mAb monotherapy and chemotherapy. CONCLUSIONS LCS6-variant patients with metastatic colorectal cancer have an excellent response to anti-EGFR mAb monotherapy, without any benefit from the addition of chemotherapy. These findings further confirm the importance of this mutation as a biomarker of anti-EGFR mAb response in patients with metastatic colorectal cancer, and warrant further prospective confirmation.
Collapse
Affiliation(s)
- Zenia Saridaki
- Laboratory of Tumor Cell Biology School of Medicine, University of Crete, Heraklion, Greece.,Laboratory of Molecular Digestive Oncology, Department of Oncology , Katholieke Universiteit Leuven, Leuven, Belgium
| | - Joanne B Weidhaas
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Heinz-Josef Lenz
- Department of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Pierre Laurent-Puig
- UMR-S775 INSERM laboratory, Descartes University Medical School, Paris, France
| | - Bart Jacobs
- Laboratory of Molecular Digestive Oncology, Department of Oncology , Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jef De Schutter
- Laboratory of Molecular Digestive Oncology, Department of Oncology , Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - David W Salzman
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, USA
| | - Wu Zhang
- Department of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, USA
| | - Camilla Pilati
- Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Olivier Bouché
- Service d'Hépato Gastroentérologie et de Cancérologie Digestive, CHU Robert Debré, Reims, Champagne Ardenne, France
| | - Hubert Piessevaux
- Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Sabine Tejpar
- Laboratory of Molecular Digestive Oncology, Department of Oncology , Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
48
|
Hutchinson RA, Adams RA, McArt DG, Salto-Tellez M, Jasani B, Hamilton PW. Epidermal growth factor receptor immunohistochemistry: new opportunities in metastatic colorectal cancer. J Transl Med 2015; 13:217. [PMID: 26149458 PMCID: PMC4492076 DOI: 10.1186/s12967-015-0531-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
The treatment of cancer is becoming more precise, targeting specific oncogenic drivers with targeted molecular therapies. The epidermal growth factor receptor has been found to be over-expressed in a multitude of solid tumours. Immunohistochemistry is widely used in the fields of diagnostic and personalised medicine to localise and visualise disease specific proteins. To date the clinical utility of epidermal growth factor receptor immunohistochemistry in determining monoclonal antibody efficacy has remained somewhat inconclusive. The lack of an agreed reproducible scoring criteria for epidermal growth factor receptor immunohistochemistry has, in various clinical trials yielded conflicting results as to the use of epidermal growth factor receptor immunohistochemistry assay as a companion diagnostic. This has resulted in this test being removed from the licence for the drug panitumumab and not performed in clinical practice for cetuximab. In this review we explore the reasons behind this with a particular emphasis on colorectal cancer, and to suggest a way of resolving the situation through improving the precision of epidermal growth factor receptor immunohistochemistry with quantitative image analysis of digitised images complemented with companion molecular morphological techniques such as in situ hybridisation and section based gene mutation analysis.
Collapse
Affiliation(s)
- Ryan A Hutchinson
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK.
- Waring Laboratory, Department of Pathology, Centre for Translational Pathology, University of Melbourne, Parkville, 3010, VIC, Australia.
| | - Richard A Adams
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Institute of Medical Genetics Building, Heath Park, Cardiff, CF14 4XN, UK.
| | - Darragh G McArt
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK.
| | - Manuel Salto-Tellez
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK.
| | - Bharat Jasani
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 010000, Kazakhstan.
| | - Peter W Hamilton
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK.
| |
Collapse
|
49
|
Giampieri R, Mandolesi A, Abouelkhair KM, Loretelli C, Del Prete M, Faloppi L, Maristella B, Ibrahim EM, Scarpelli M, Cascinu S, Scartozzi M. Prospective study of a molecular selection profile for RAS wild type colorectal cancer patients receiving irinotecan-cetuximab. J Transl Med 2015; 13:140. [PMID: 25943333 PMCID: PMC4424481 DOI: 10.1186/s12967-015-0501-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022] Open
Abstract
Background The aim of our study was to evaluate whether a panel of biomarkers, prospectively analysed might be able to predict patients’ clinical outcome more accurately than RAS status alone. Methods K-RAS (exons 2, 3, 4) wild type colorectal cancer patients, candidates to second/third-line cetuximab with chemotherapy were prospectively allocated into 2 groups on the basis of their profile: favourable (BRAF and PIK3CA exon 20 wild type, EGFR GCN ≥ 2.6, HER-3 Rajkumar score ≤ 8, IGF-1 immunostaining < 2) or unfavourable (any of the previous markers altered or mutated). After the introduction of N-RAS status (exons 2, 3, 4) only RAS wild type patients were considered eligible. Primary aim was response rate (RR). To detect a difference in terms of RR among patients with an unfavourable profile (estimated around 25%) and patients with a favourable profile (estimated around 60%), with a probability alpha of 0.05 and beta of 0.05, required sample size was 46 patients. Secondary endpoints were progression free survival (PFS) and overall survival (OS). Results Forty-six patients were enrolled. Seventeen patients (37%) were allocated to the favourable and 29 patients (63%) to the unfavourable profile. RR in the favourable and unfavourable group was 11/17 (65%) and 2/29 (7%) (p = 0.007) respectively. The favourable group also showed an improved PFS (8 months vs. 3 months, p < 0.0001) and OS (15 months vs. 6 months, p < 0.0001). Conclusions Our results suggest that prospective selection of optimal candidates for cetuximab treatment is feasible and may be able to improve clinical outcome.
Collapse
Affiliation(s)
- Riccardo Giampieri
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Alessandra Mandolesi
- Department of Pathology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Khaled M Abouelkhair
- Department of Medical Oncology, International Medical Center of Jeddah, Jeddah, KSA.
| | - Cristian Loretelli
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Michela Del Prete
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Luca Faloppi
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Bianconi Maristella
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Ezzeldin M Ibrahim
- Department of Medical Oncology, International Medical Center of Jeddah, Jeddah, KSA.
| | - Marina Scarpelli
- Department of Pathology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Stefano Cascinu
- Department of Medical Oncology, University Hospital of Ancona, Polytechnic University of the Marche, Ancona, Italy.
| | - Mario Scartozzi
- Department of Medical Oncology, Medical Oncology, University Hospital of Cagliari, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
50
|
Choi M, Thakur A. Identifying Appropriate Colorectal Cancer-Associated Antigens for the Clinical Trials. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|