1
|
Kroehling L, Chen A, Spinella A, Reed E, Kukuruzinka M, Varelas X, Monti S. A highly resolved integrated single-cell atlas of HPV-negative head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.02.640812. [PMID: 40093171 PMCID: PMC11908118 DOI: 10.1101/2025.03.02.640812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Head and Neck Squamous Cell Carcinomas (HNSCC) are the seventh most prevalent form of cancer and are associated with human papilloma virus infection (HPV-positive) or with tobacco and alcohol use (HPV-negative). HPV-negative HNSCCs have a high recurrence rate, and individual patients' responses to treatment vary greatly due to the high level of cellular heterogeneity of the tumor and its microenvironment. Here, we describe a HNSCC single cell atlas, which we created by integrating six publicly available datasets encompassing over 230,000 cells across 54 patients. We contextualized the relationships between existing signatures and cell populations, identified new subpopulations, and show the power of this large-scale resource to robustly identify associations between transcriptional signatures and clinical phenotypes that would not be possible to discover using fewer patients. We reveal a previously undefined myeloid population, sex-associated changes in cell type proportions, and novel interactions between CXCL8-positive fibroblasts and vascular endothelial cells. Beyond our findings, the atlas will serve as a public resource for the high-resolution characterization of tumor heterogeneity of HPV-negative HNSCC.
Collapse
Affiliation(s)
- Lina Kroehling
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Andrew Chen
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Anthony Spinella
- Department of Biochemistry and Cell Biology, Boston University Medical Center, Boston, MA, USA
| | - Eric Reed
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maria Kukuruzinka
- Department of Molecular and Cell Biology, Department of Translational Dental Medicine, Boston University Medical Center, Boston, Massachusetts USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Medical Center, Boston, MA, USA
| | - Stefano Monti
- Bioinformatics Program, Faculty of Computing and Data Science, Boston University, Boston, Massachusetts, USA
- Section of Computational Biomedicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Xu J, Zhang H, Nie Z, He W, Zhao Y, Huang Z, Jia L, Du Z, Zhang B, Xia S. Cancer stem-like cells stay in a plastic state ready for tumor evolution. Neoplasia 2025; 61:101134. [PMID: 39919692 PMCID: PMC11851212 DOI: 10.1016/j.neo.2025.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Cell plasticity emerges as a novel cancer hallmark and is pivotal in driving tumor heterogeneity and adaptive resistance to different therapies. Cancer stem-like cells (CSCs) are considered the root of cancer. While first defined as tumor-initiating cells with the potential to develop a heterogeneous tumor, CSCs further demonstrate their roles in cancer metastasis and adaptive therapeutic resistance. Generally, CSCs come from the malignant transformation of somatic stem cells or the de-differentiation of other cancer cells. The resultant cells gain more plasticity and are ready to differentiate into different cell states, enabling them to adapt to therapies and metastatic ecosystems. Therefore, CSCs are likely the nature of tumor cells that gain cell plasticity. However, the phenotypic plasticity of CSCs has never been systematically discussed. Here, we review the distinct intrinsic signaling pathways and unique microenvironmental niches that endow CSC plasticity in solid tumors to adapt to stressful conditions, as well as emerging opportunities for CSC-targeted therapy.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houde Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihao Nie
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyou He
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichao Zhao
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhenhui Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China.
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Galvan C, Flores AA, Cerrilos V, Avila I, Murphy C, Zheng W, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. SCIENCE ADVANCES 2024; 10:eadn2806. [PMID: 39303037 PMCID: PMC11414736 DOI: 10.1126/sciadv.adn2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
We previously showed that inhibition of glycolysis in cutaneous squamous cell carcinoma (SCC)-initiating cells had no effect on tumorigenesis, despite the perceived requirement of the Warburg effect, which was thought to drive carcinogenesis. Instead, these SCCs were metabolically flexible and sustained growth through glutaminolysis, another metabolic process frequently implicated to fuel tumorigenesis in various cancers. Here, we focused on glutaminolysis and genetically blocked this process through glutaminase (GLS) deletion in SCC cells of origin. Genetic deletion of GLS had little effect on tumorigenesis due to the up-regulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We went on to show that posttranscriptional regulation of nutrient transporters appears to mediate metabolic flexibility in this SCC model. To define the limits of this flexibility, we genetically blocked both glycolysis and glutaminolysis simultaneously and found the abrogation of both of these carbon utilization pathways was enough to prevent both papilloma and frank carcinoma.
Collapse
Affiliation(s)
- Carlos Galvan
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| | - Aimee A. Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Victoria Cerrilos
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Itzetl Avila
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Conor Murphy
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Wilson Zheng
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Heather R. Christofk
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, DGSOM, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - William E. Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Department of Medicine, DGSOM, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Nakajima K, Ogawa M. Near-infrared photoimmunotherapy and anti-cancer immunity. Int Immunol 2024; 36:57-64. [PMID: 37843836 DOI: 10.1093/intimm/dxad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/14/2023] [Indexed: 10/17/2023] Open
Abstract
The activation of the anti-cancer immune system is an important strategy to control cancer. A new form of cancer phototherapy, near-infrared photoimmunotherapy (NIR-PIT), was approved for clinical use in 2020 and uses IRDye® 700DX (IR700)-conjugated antibodies and NIR light. After irradiation with NIR light, the antibody-IR700 conjugate forms water-insoluble aggregations on the plasma membrane of target cells. This aggregation causes lethal damage to the plasma membrane, and effectively leads to immunogenic cell death (ICD). Subsequently, ICD activates anti-cancer immune cells such as dendritic cells and cytotoxic T cells. Combination therapy with immune-checkpoint blockade has synergistically improved the anti-cancer effects of NIR-PIT. Additionally, NIR-PIT can eliminate immunosuppressive immune cells in light-irradiated tumors by using specific antibodies against regulatory T cells and myeloid-derived suppressor cells. In addition to cancer-cell-targeted NIR-PIT, such immune-cell-targeted NIR-PIT has shown promising results by activating the anti-cancer immune system. Furthermore, NIR-PIT can be used to manipulate the tumor microenvironment by eliminating only targeted cells in the tumor, and thus it also can be used to gain insight into immunity in basic research.
Collapse
Affiliation(s)
- Kohei Nakajima
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| |
Collapse
|
6
|
Galvan C, Flores A, Cerrillos V, Avila I, Murphy C, Zheng W, To TT, Christofk HR, Lowry WE. Defining metabolic flexibility in hair follicle stem cell induced squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562128. [PMID: 37905122 PMCID: PMC10614763 DOI: 10.1101/2023.10.16.562128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Among the numerous changes associated with the transformation to cancer, cellular metabolism is one of the first discovered and most prominent[1, 2]. However, despite the knowledge that nearly every cancer is associated with the strong upregulation of various metabolic pathways, there has yet to be much clinical progress on the treatment of cancer by targeting a single metabolic enzyme directly[3-6]. We previously showed that inhibition of glycolysis through lactate dehydrogenase (LDHA) deletion in cancer cells of origin had no effect on the initiation or progression of cutaneous squamous cell carcinoma[7], suggesting that these cancers are metabolically flexible enough to produce the necessary metabolites required for sustained growth in the absence of glycolysis. Here we focused on glutaminolysis, another metabolic pathway frequently implicated as important for tumorigenesis in correlative studies. We genetically blocked glutaminolysis through glutaminase (GLS) deletion in cancer cells of origin, and found that this had little effect on tumorigenesis, similar to what we previously showed for blocking glycolysis. Tumors with genetic deletion of glutaminolysis instead upregulated lactate consumption and utilization for the TCA cycle, providing further evidence of metabolic flexibility. We also found that the metabolic flexibility observed upon inhibition of glycolysis or glutaminolysis is due to post-transcriptional changes in the levels of plasma membrane lactate and glutamine transporters. To define the limits of metabolic flexibility in cancer initiating hair follicle stem cells, we genetically blocked both glycolysis and glutaminolysis simultaneously and found that frank carcinoma was not compatible with abrogation of both of these carbon utilization pathways. These data point towards metabolic flexibility mediated by regulation of nutrient consumption, and suggest that treatment of cancer through metabolic manipulation will require multiple interventions on distinct pathways.
Collapse
|
7
|
Kleszcz R. Advantages of the Combinatorial Molecular Targeted Therapy of Head and Neck Cancer-A Step before Anakoinosis-Based Personalized Treatment. Cancers (Basel) 2023; 15:4247. [PMID: 37686523 PMCID: PMC10486994 DOI: 10.3390/cancers15174247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular initiators of Head and Heck Squamous Cell Carcinoma (HNSCC) are complex. Human Papillomavirus (HPV) infection is linked to an increasing number of HNSCC cases, but HPV-positive tumors generally have a good prognosis. External factors that promote the development of HPV-negative HNSCC include tobacco use, excessive alcohol consumption, and proinflammatory poor oral hygiene. On a molecular level, several events, including the well-known overexpression of epidermal growth factor receptors (EGFR) and related downstream signaling pathways, contribute to the development of HNSCC. Conventional chemotherapy is insufficient for many patients. Thus, molecular-based therapy for HNSCC offers patients a better chance at a cure. The first molecular target for therapy of HNSCC was EGFR, inhibited by monoclonal antibody cetuximab, but its use in monotherapy is insufficient and induces resistance. This article describes attempts at combinatorial molecular targeted therapy of HNSCC based on several molecular targets and exemplary drugs/drug candidates. The new concept of anakoinosis-based therapy, which means treatment that targets the intercellular and intracellular communication of cancer cells, is thought to be the way to improve the clinical outcome for HNSCC patients. The identification of a link between molecular targeted therapy and anakoinosis raises the potential for further progress in HPV-negative HNSCC therapy.
Collapse
Affiliation(s)
- Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, 4, Święcickiego Str., 60-781 Poznan, Poland
| |
Collapse
|
8
|
Duan H, Wang L, Wang S, He Y. Surface modification potentials of cell membrane-based materials for targeted therapies: a chemotherapy-focused review. Nanomedicine (Lond) 2023; 18:1281-1303. [PMID: 37753724 DOI: 10.2217/nnm-2023-0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Nanotechnology has significant potential for cancer management at all stages, including prevention, diagnosis and treatment. In therapeutic applications, nanoparticles (NPs) have biological stability, targeting and body-clearance issues. To overcome these difficulties, biomimetic or cell membrane-coating methods using immune cell membranes are advised. Macrophage or neutrophil cell membrane-coated NPs may impede cancer progression in malignant tissue. Immune cell surface proteins and their capacity to maintain activity after membrane extraction and NP coating determine NP functioning. Immune cell surface proteins may offer NPs higher cellular interactions, blood circulation, antigen recognition for targeting, progressive drug release and reduced in vivo toxicity. This article examines nano-based systems with immune cell membranes, their surface modification potential, and their application in cancer treatment.
Collapse
Affiliation(s)
- Hongliang Duan
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun, 130000, China
| | - LiJuan Wang
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| | - Sen Wang
- Department of Thyroid Surgery, the Second Hospital of Jilin University, Changchun, 130000, China
| | - Yangfang He
- Department of Endocrinology, the Second Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
9
|
Enzian P, Rahmanzadeh R. Photochemical Internalization with Fimaporfin: Enhanced Bleomycin Treatment for Head and Neck Cancer. Pharmaceutics 2023; 15:2040. [PMID: 37631254 PMCID: PMC10458762 DOI: 10.3390/pharmaceutics15082040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) still represents the world's sixth most common tumor entity, with increasing incidence. The reachability of light makes HNSCC suitable for light-based therapies such as Photochemical Internalization (PCI). The drug Bleomycin is cytotoxic and used as an anti-tumor medication. Since Bleomycin is endocytosed as a relatively large molecule, part of it is degraded in lysosomes before reaching its intracellular target. The goal of our study was to improve the intracellular availability of Bleomycin with PCI. We investigate the intracellular delivery of Bleomycin after PCI with the photosensitizer Fimaporfin. A systematic variation of Bleomycin and Fimaporfin concentrations and light irradiation led to the pronounced cell death of HNSCC cells. After optimization, the same level of tumor cell death of 75% was reached with a 20-fold lower Bleomycin concentration. This would allow treatment of HNSCC with high local tumor cell death and reduce the side effects of Bleomycin, e.g., lung fibrosis, at the same time. This demonstrates the increased efficacy of the anti-tumor medication Bleomycin in combination with PCI.
Collapse
Affiliation(s)
| | - Ramtin Rahmanzadeh
- Institute of Biomedical Optics, University of Lübeck, 23562 Lübeck, Germany;
| |
Collapse
|
10
|
Kumar HA, Desai A, Mohiddin G, Mishra P, Bhattacharyya A, Nishat R. Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S826-S830. [PMID: 37694019 PMCID: PMC10485429 DOI: 10.4103/jpbs.jpbs_81_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
Cancer stem cells (CSCs) are a small sub-population of cells within a tumor mass proficient of tumor initiation and progression. Distinguishing features possessed by CSCs encompass self-renewal, regeneration and capacity to differentiate. These cells are attributed to the phenomenon of aggression, recurrence and metastasis in neoplasms. Due to their cancer initiating and contributing features, a proper understanding of these CSCs and its microenvironment would aid in better understanding of cancer and designing better targeted therapeutic strategies for improved clinical outcome, thus improving the prognosis. This article dispenses a narrative review of CSCs in the context of head and neck carcinoma under the sub headings of overview of cancer stem cells, methods of isolation of these cells, putative CSC markers of head and neck cancer, signaling pathways used by these cells and their therapeutic implications.
Collapse
Affiliation(s)
- Harish A. Kumar
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Anupama Desai
- Department of Periodontology and Oral Implantology, A.M.E’S Dental College, Raichur, Karnataka, India
| | - Gouse Mohiddin
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Pallavi Mishra
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Arnab Bhattacharyya
- Department of Oral Pathology and Microbiology, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneshwar, Odhisa, India
| | - Roquaiya Nishat
- Oral Pathology and Microbiology, Private Practitioner, Shri Balaji Dental Clinic, Patia, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Suzuki H, Kitamura K, Goto N, Ishikawa K, Ouchida T, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 3 Monoclonal Antibody C 44Mab-6 Was Established for Multiple Applications. Int J Mol Sci 2023; 24:8411. [PMID: 37176118 PMCID: PMC10179237 DOI: 10.3390/ijms24098411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Cluster of differentiation 44 (CD44) promotes tumor progression through the recruitment of growth factors and the acquisition of stemness, invasiveness, and drug resistance. CD44 has multiple isoforms including CD44 standard (CD44s) and CD44 variants (CD44v), which have common and unique functions in tumor development. Therefore, elucidating the function of each CD44 isoform in a tumor is essential for the establishment of CD44-targeting tumor therapy. We have established various anti-CD44s and anti-CD44v monoclonal antibodies (mAbs) through the immunization of CD44v3-10-overexpressed cells. In this study, we established C44Mab-6 (IgG1, kappa), which recognized the CD44 variant 3-encoded region (CD44v3), as determined via an enzyme-linked immunosorbent assay. C44Mab-6 reacted with CD44v3-10-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/CD44v3-10) or some cancer cell lines (COLO205 and HSC-3) via flow cytometry. The apparent KD of C44Mab-6 for CHO/CD44v3-10, COLO205, and HSC-3 was 1.5 × 10-9 M, 6.3 × 10-9 M, and 1.9 × 10-9 M, respectively. C44Mab-6 could detect the CD44v3-10 in Western blotting and stained the formalin-fixed paraffin-embedded tumor sections in immunohistochemistry. These results indicate that C44Mab-6 is useful for detecting CD44v3 in various experiments and is expected for the application of tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Kaishi Kitamura
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
| | - Tsunenori Ouchida
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (K.K.); (N.G.); (K.I.); (T.O.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
12
|
Suzuki H, Ozawa K, Tanaka T, Kaneko MK, Kato Y. Development of a Novel Anti-CD44 Variant 7/8 Monoclonal Antibody, C44Mab-34, for Multiple Applications against Oral Carcinomas. Biomedicines 2023; 11:biomedicines11041099. [PMID: 37189717 DOI: 10.3390/biomedicines11041099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) has been investigated as a cancer stem cell (CSC) marker as it plays critical roles in tumor malignant progression. The splicing variants are overexpressed in many carcinomas, especially squamous cell carcinomas, and play critical roles in the promotion of tumor metastasis, the acquisition of CSC properties, and resistance to treatments. Therefore, each CD44 variant (CD44v) function and distribution in carcinomas should be clarified for the establishment of novel tumor diagnosis and therapy. In this study, we immunized mouse with a CD44 variant (CD44v3–10) ectodomain and established various anti-CD44 monoclonal antibodies (mAbs). One of the established clones (C44Mab-34; IgG1, kappa) recognized a peptide that covers both variant 7- and variant 8-encoded regions, indicating that C44Mab-34 is a specific mAb for CD44v7/8. Moreover, C44Mab-34 reacted with CD44v3–10-overexpressed Chinese hamster ovary-K1 (CHO) cells or the oral squamous cell carcinoma (OSCC) cell line (HSC-3) by flow cytometry. The apparent KD of C44Mab-34 for CHO/CD44v3–10 and HSC-3 was 1.4 × 10−9 and 3.2 × 10−9 M, respectively. C44Mab-34 could detect CD44v3–10 in Western blotting and stained the formalin-fixed paraffin-embedded OSCC in immunohistochemistry. These results indicate that C44Mab-34 is useful for detecting CD44v7/8 in various applications and is expected to be useful in the application of OSCC diagnosis and therapy.
Collapse
Affiliation(s)
- Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kazuki Ozawa
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
13
|
Wang YY, Wang WD, Sun ZJ. Cancer stem cell-immune cell collusion in immunotherapy. Int J Cancer 2023. [PMID: 36602290 DOI: 10.1002/ijc.34421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Immunotherapy has pioneered a new era of tumor treatment, in which the immune checkpoint blockade (ICB) exerts significant superiority in overcoming tumor immune escape. However, the formation of an immune-suppressive tumor microenvironment (TME) and the lack of effective activation of the immune response have become major obstacles limiting its development. Emerging reports indicate that cancer stem cells (CSCs) potentially play important roles in treatment resistance and progressive relapse, while current research is usually focused on CSCs themselves. In this review, we mainly emphasize the collusions between CSCs and tumor-infiltrating immune cells. We focus on the summary of CSC-immune cell crosstalk signaling pathways in ICB resistance and highlight the application of targeted drugs to improve the ICB response.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Da Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
14
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
15
|
Dhumal SN, Choudhari SK, Patankar S, Ghule SS, Jadhav YB, Masne S. Cancer Stem Cell Markers, CD44 and ALDH1, for Assessment of Cancer Risk in OPMDs and Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Head Neck Pathol 2021; 16:453-465. [PMID: 34655409 PMCID: PMC9187836 DOI: 10.1007/s12105-021-01384-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Tumour heterogeneity in oral cancer is attributed to the presence of cancer stem cells (CSCs). CSCs are the most migratory and metastatic cellular subpopulation within tumours. Assessment of CSC markers as significant predictors of lymph node metastasis may prove valuable in the clinical setting. Furthermore, analysis of this panel of putative stem cell markers in oral dysplasia may additionally inform of the likelihood for oral potentially malignant disorders (OPMDs) to progress to oral squamous cell carcinoma (OSCC). The present study aims to assess the significance of CSC markers in the progression of OPMDs to OSCC and assessment of lymph node metastasis in OSCC. CD44 and ALDH1 were assessed immunohistochemically in 25 normal, 30 OPMDs, and 24 OSCCs. CD44 is a membranous marker and ALDH1 is a cytoplasmic marker. The immunohistochemical expression of these markers were compared between OPMDs with and without dysplasia, as well as between low-risk and high-risk dysplasias. Similarly, expression was compared between OSCC with and without lymph node metastasis and among grades of OSCC. Positive CD44 expression was seen in all normal mucosal tissues. The expression decreased from normal epithelium to OPMDs but increased in OSCC. CD44 expression was positive in 21 cases of OSCC (87.5%) and reduced from well-differentiated to poorly differentiated OSCC. CD44 staining index was higher in OSCC without lymph node metastasis (3.59) when compared with OSCC with lymph node metastasis (1.33). There was a statistically significant difference observed in the ALDH1 staining index among three groups (p < 0.05), with highest expression seen in OSCC. Within OPMDs, the ALDH1 staining index was statistically higher in OPMDs with dysplasia as compared to OPMDs without dysplasia. Furthermore, the expression was higher in OPMDs with high-risk dysplasia when compared with low-risk dysplasia, but this was not statistically significant (p = 0.82). In conclusion, The CD44 positive population possesses properties of CSCs in head and neck carcinoma, and continuous shedding could be found after CD44 down-regulation. The present study reports differences in ALDH1 expression between OPMDs with and without dysplasia, dysplastic and non-dysplastic epithelia, and low-risk and high-risk dysplasia. These findings may suggest ALDH1 as a specific marker for dysplasia. CD44 demonstrated a difference in staining index in OSCC without lymph node metastasis versus OSCC with lymph node metastasis. These findings may suggest CD44 as a marker for lymph node metastasis. Both proteins may play key roles in the tumorigenicity of CSCs in OPMDs and OSCC.
Collapse
Affiliation(s)
| | | | - Sangeeta Patankar
- YMT Dental College and Research Institute, Navi Mumbai, Maharashtra India
| | | | - Yogesh B. Jadhav
- YMT Dental College and Research Institute, Navi Mumbai, Maharashtra India
| | - Sneha Masne
- YMT Dental College and Research Institute, Navi Mumbai, Maharashtra India
| |
Collapse
|
16
|
Joshi JS, Vora HH, Ghosh NR, Tankshali RN, Jetly DH, Trivedi TI. Nonhomologous end joining repair pathway molecules as predictive biomarkers for patients with oral squamous cell carcinoma. J Cancer Res Ther 2021; 17:1031-1038. [PMID: 34528560 DOI: 10.4103/jcrt.jcrt_582_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Purpose Nonhomologous end-joining (NHEJ) is critical for the repair of either pathologic double-strand breaks (DSBs) and/or for the repair of physiologic DSBs created during radiotherapy to kill the tumor cell. Therefore, patients with higher expression of NHEJ repair proteins might develop resistance to ionizing radiation, allowing the disease to recur. As cancer of the oral cavity is a serious health problem globally, the present study aimed to examine the expression of Ku70/80, X-ray repair cross-complementing protein 4 (XRCC4) and DNA ligase IV-core molecules of the NHEJ pathway in patients with oral cancer. Materials and Methods Protein expression of Ku70/80, XRCC4, and DNA ligase IV were studied by Immunohistochemistry and mRNA expression of Ku70 and Ku80 were studied using reverse transcription polymerase chain reaction. Data were analyzed statistically using SPSS. Results A univariate survival analysis revealed an association of Ku70 mRNA with shorter overall survival (OS). While protein expression of XRCC4 showed an association with reduced relapse-free survival and shorter OS. Multivariate survival analysis demonstrated that XRCC4 and DNA ligase IV are independent prognosticators for predicting adverse disease outcomes. Conclusion Strong expression of repair proteins - XRCC4 and DNA ligase IV is associated with unfavorable disease outcome in patients with oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Jigna S Joshi
- Stem Cell Biology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Hemangini H Vora
- Immunohematology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Nandita R Ghosh
- Tumor Biology Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Rajen N Tankshali
- Department of Surgical Oncology, Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Dhaval H Jetly
- Department of Onco-Pathology, Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| | - Trupti I Trivedi
- Clinical Carcinogenesis Lab, Department of Cancer Biology, The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
17
|
Discrimination of Cancer Stem Cell Markers ALDH1A1, BCL11B, BMI-1, and CD44 in Different Tissues of HNSCC Patients. ACTA ACUST UNITED AC 2021; 28:2763-2774. [PMID: 34287293 PMCID: PMC8293237 DOI: 10.3390/curroncol28040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer stem cells (CSCs) are accountable for the progress of head and neck squamous cell carcinoma (HNSCC). This exploratory study evaluated the expression of molecular CSC markers in different tissues of HNSCC patients. Tissue specimens of primary tumor, lymph node metastases and macroscopically healthy mucosa of 12 consecutive HNSCC patients, that were treated with surgery and adjuvant radio(chemo)therapy upon indication, were collected. Samples were assessed for the expression of p16 as a surrogate for HPV-related disease and different molecular stem cell markers (ALDH1A1, BCL11B, BMI-1, and CD44). In the cohort, seven patients had HPV-related HNSCC; six thereof were oropharyngeal squamous cell carcinoma. While expression of BMI-1 and BCL11B was significantly lower in healthy mucosa than both tumor and lymph node metastasis, there were no differences between tumor and lymph node metastasis. In the HPV-positive sub-cohort, these differences remained significant for BMI-1. However, no significant differences in these three tissues were found for ALDH1A1 and CD44. In conclusion, this exploratory study shows that CSC markers BMI-1 and BCL11B discriminate between healthy and cancerous tissue, whereas ALDH1A1 and CD44 were expressed to a comparable extent in healthy mucosa and cancerous tissues.
Collapse
|
18
|
Broner EC, Trujillo JA, Korzinkin M, Subbannayya T, Agrawal N, Ozerov IV, Zhavoronkov A, Rooper L, Kotlov N, Shen L, Pearson AT, Rosenberg AJ, Savage PA, Mishra V, Chatterjee A, Sidransky D, Izumchenko E. Doublecortin-Like Kinase 1 (DCLK1) Is a Novel NOTCH Pathway Signaling Regulator in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 11:677051. [PMID: 34336664 PMCID: PMC8323482 DOI: 10.3389/fonc.2021.677051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Despite recent advancements, the 5 year survival of head and neck squamous cell carcinoma (HNSCC) hovers at 60%. DCLK1 has been shown to regulate epithelial-to-mesenchymal transition as well as serving as a cancer stem cell marker in colon, pancreatic and renal cancer. Although it was reported that DCLK1 is associated with poor prognosis in oropharyngeal cancers, very little is known about the molecular characterization of DCLK1 in HNSCC. In this study, we performed a comprehensive transcriptome-based computational analysis on hundreds of HNSCC patients from TCGA and GEO databases, and found that DCLK1 expression positively correlates with NOTCH signaling pathway activation. Since NOTCH signaling has a recognized role in HNSCC tumorigenesis, we next performed a series of in vitro experiments in a collection of HNSCC cell lines to investigate the role of DCLK1 in NOTCH pathway regulation. Our analyses revealed that DCLK1 inhibition, using either a pharmacological inhibitor or siRNA, resulted in substantially decreased proliferation, invasion, migration, and colony formation. Furthermore, these effects paralleled downregulation of active NOTCH1, and its downstream effectors, HEY1, HES1 and HES5, whereas overexpression of DCLK1 in normal keratinocytes, lead to an upregulation of NOTCH signaling associated with increased proliferation. Analysis of 233 primary and 40 recurrent HNSCC cancer biopsies revealed that high DCLK1 expression was associated with poor prognosis and showed a trend towards higher active NOTCH1 expression in tumors with elevated DCLK1. Our results demonstrate the novel role of DCLK1 as a regulator of NOTCH signaling network and suggest its potential as a therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Esther C. Broner
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Jonathan A. Trujillo
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | | | | | - Nishant Agrawal
- Section of Otolaryngology-Head and Neck Surgery, University of Chicago, Chicago, IL, United States
| | - Ivan V. Ozerov
- InSilico Medicine Hong Kong Ltd., Pak Shek Kok, Hong Kong
| | | | - Lisa Rooper
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Nikita Kotlov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Le Shen
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Alexander T. Pearson
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Ari J. Rosenberg
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Peter A. Savage
- Department of Pathology, The University of Chicago Medicine, Chicago, IL, United States
| | - Vasudha Mishra
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| | - Aditi Chatterjee
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - David Sidransky
- Department of Otolaryngology and Head & Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
19
|
Cancer Stem Cells in Head and Neck Squamous Cell Carcinoma-Treatment Modalities. BALKAN JOURNAL OF DENTAL MEDICINE 2021. [DOI: 10.2478/bjdm-2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Summary
Head and neck squamous cell carcinoma (HNSCC) belongs to the most frequent cancer subtypes in the world. Mutations due to genetic and chromosomal instability, syndromes such as Fanconi anemia and the Bloom syndrome, environmental risk factors such as tobacco smoking, alcohol and human papillomavirus infection (HPV) subtypes 16,18,31,33,35,52,58 are implicated in its pathogenesis. The HNSCC belongs to the solid tumors of epithelial origin and consists of stromal, inflammatory, cancer cells and most importantly a fraction of them, the cancer stem cells (CSCs). The identification of the CSCs through their biomarkers such as CD44, CD10, CD166, CD133, CD271, ALDH, Oct4, Nanog, Sox2 and Bmi1, the maintenance of their subpopulation through epithelial to mesenchymal transition, the role of HPV infection regarding their prognosis and of their microenvironment regarding their resistance to therapy, all constitute key elements that must be taken thoroughly into consideration in order to develop an effective targeted therapy. There are already therapies in place targeting specific related biomarkers, important biochemical pathways and growth factors. The aim of this literature review is to illustrate the treatment modalities available against the cancer stem cells of head and neck squamous cell carcinoma.
Collapse
|
20
|
Saito S, Ozawa H, Imanishi Y, Sekimizu M, Watanabe Y, Ito F, Ikari Y, Nakahara N, Kameyama K, Ogawa K. Cyclooxygenase-2 expression is associated with chemoresistance through cancer stemness property in hypopharyngeal carcinoma. Oncol Lett 2021; 22:533. [PMID: 34084214 PMCID: PMC8161457 DOI: 10.3892/ol.2021.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is one of the two isoforms of COX, an enzyme that catalyzes the conversion of arachidonic acid to prostaglandins. COX-2 is associated with the progression in various types of cancer, and its expression has been associated with a poor prognosis in head and neck squamous cell carcinoma (HNSCC). Furthermore, COX-2 expression has been associated with resistance to anticancer drugs. However, the precise mechanism of COX-2 for chemoresistance in HNSCC has not been fully elucidated. The present study aimed to investigate the effect of COX-2 on cancer stem cell (CSC) property and to reveal its effect on chemoresistance using in vitro and clinicopathological assays in HNSCC cells and tissues. The current study analyzed the immunohistochemical expression levels of COX-2 and clinicopathological factors using matched samples of pretreatment biopsy and surgical specimens from patients with hypopharyngeal carcinoma who underwent tumor resection with preoperative chemotherapy, including docetaxel. Additionally, the chemoresistance to docetaxel with or without a COX-2 inhibitor (celecoxib) was examined in HNSCC cell lines by MTS assays. To evaluate the association of COX-2 expression with stemness property, the expression levels of CSC-associated genes after exposure to celecoxib were assessed by reverse transcription-quantitative PCR. A sphere formation assay was also performed using ultra-low attachment dishes and microscopic imaging. The immunohistochemical analysis of biopsy specimens revealed a negative association between COX-2 expression in biopsy specimens and the pathological effect of induction chemotherapy in surgical specimens. The cell survival rate under exposure to docetaxel was decreased by the addition of celecoxib. COX-2 inhibition led to downregulation of CSC-associated gene expression and sphere formation. The present findings suggested that COX-2 expression may be associated with chemoresistance through the cancer stemness property, and inhibition of COX-2 may enhance chemo-sensitivity in HNSCC. Therefore, COX-2 may be an attractive target for the treatment of HNSCC.
Collapse
Affiliation(s)
- Shin Saito
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yorihisa Imanishi
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Mariko Sekimizu
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshihiro Watanabe
- Department of Otorhinolaryngology-Head and Neck Surgery, International University of Health and Welfare, Narita, Chiba 286-8582, Japan
| | - Fumihiro Ito
- Department of Otorhinolaryngology-Head and Neck Surgery, National Hospital Organization Tokyo Medical Center, Tokyo 152-8902, Japan
| | - Yuichi Ikari
- Department of Otorhinolaryngology-Head and Neck Surgery, Kawasaki Municipal Kawasaki Hospital, Kawasaki, Kanagawa 210-0013, Japan
| | - Nana Nakahara
- Department of Otorhinolaryngology-Head and Neck Surgery, Saitama City Hospital, Saitama 336-8522, Japan
| | - Kaori Kameyama
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology-Head and Neck Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
21
|
Kanno Y, Chen CY, Lee HL, Chiou JF, Chen YJ. Molecular Mechanisms of Chemotherapy Resistance in Head and Neck Cancers. Front Oncol 2021; 11:640392. [PMID: 34026617 PMCID: PMC8138159 DOI: 10.3389/fonc.2021.640392] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy resistance is a huge barrier for head and neck cancer (HNC) patients and therefore requires close attention to understand its underlay mechanisms for effective strategies. In this review, we first summarize the molecular mechanisms of chemotherapy resistance that occur during the treatment with cisplatin, 5-fluorouracil, and docetaxel/paclitaxel, including DNA/RNA damage repair, drug efflux, apoptosis inhibition, and epidermal growth factor receptor/focal adhesion kinase/nuclear factor-κB activation. Next, we describe the potential approaches to combining conventional therapies with previous cancer treatments such as immunotherapy, which may improve the treatment outcomes and prolong the survival of HNC patients. Overall, by parsing the reported molecular mechanisms of chemotherapy resistance within HNC patient’s tumors, we can improve the prediction of chemotherapeutic responsiveness, and reveal new therapeutic targets for the future.
Collapse
Affiliation(s)
- Yuzuka Kanno
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Chang-Yu Chen
- Division of Molecular Regulation of Inflammatory and Immune Disease, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan.,Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ju Chen
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,Translational Laboratory, Research Department, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Lüttich L, Besso MJ, Heiden S, Koi L, Baumann M, Krause M, Dubrovska A, Linge A, Kurth I, Peitzsch C. Tyrosine Kinase c-MET as Therapeutic Target for Radiosensitization of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:1865. [PMID: 33919702 PMCID: PMC8070694 DOI: 10.3390/cancers13081865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 11/23/2022] Open
Abstract
The receptor tyrosine kinase c-MET activates intracellular signaling and induces cell proliferation, epithelial-to-mesenchymal-transition and migration. Within the present study, we validated the prognostic value of c-MET in patients with head and neck squamous cell carcinoma (HNSCC) treated with radio(chemo)therapy using the Cancer Genome Atlas database and found an association of increased MET gene expression and protein phosphorylation with reduced disease-specific and progression-free survival. To investigate the role of c-MET-dependent radioresistance, c-MET-positive cells were purified from established HNSCC cell lines and a reduced radiosensitivity and enhanced sphere-forming potential, compared to the c-MET-depleted cell population, was found in two out of four analyzed cell lines pointing to regulatory heterogeneity. We showed that c-MET is dynamically regulated after irradiation in vitro and in vivo. Interestingly, no direct impact of c-MET on DNA damage repair was found. The therapeutic potential of eight c-MET targeting agents in combination with irradiation demonstrated variable response rates in six HNSCC cell lines. Amongst them, crizotinib, foretinib, and Pha665752 exhibited the strongest radiosensitizing effect. Kinase activity profiling showed an association of crizotinib resistance with compensatory PI3K/AKT and MAP kinase signaling. Overall, our results indicate that c-MET is conferring radioresistance in HNSCC through modulation of intracellular kinase signaling and stem-like features.
Collapse
Affiliation(s)
- Lina Lüttich
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - María José Besso
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Stephan Heiden
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
| | - Lydia Koi
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
| | - Michael Baumann
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Mechthild Krause
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Anna Dubrovska
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiooncology–OncoRay, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Annett Linge
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.J.B.); (I.K.)
| | - Claudia Peitzsch
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, 01307 Dresden, Germany; (L.L.); (S.H.); (L.K.); (M.B.); (M.K.); (A.D.); (A.L.)
- National Center for Tumor Diseases (NCT), 01307 Dresden, Germany
- German Cancer Consortium (DKTK) Partner Site Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Nör F, Nör C, Bento LW, Zhang Z, Bretz WA, Nör JE. Propolis reduces the stemness of head and neck squamous cell carcinoma. Arch Oral Biol 2021; 125:105087. [PMID: 33639480 DOI: 10.1016/j.archoralbio.2021.105087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the effect of Brazilian propolis on head and neck cancer stem cells in vitro. METHODS Head and neck squamous cell carcinoma (HNSCC) cell lines (UM-SCC-17B and UM-SCC-74A), human keratinocytes (HK), and primary human dermal microvascular endothelial cells (HDMEC) were treated with 0.5, 5.0, or 50 μg/mL green, brown or red Brazilian propolis or vehicle control for 24, 36, and 72 h. Cell viability was evaluated by Sulforhodamine B assay. Western blots evaluated expression of cancer stem cell (CSC) markers (i.e. ALDH, CD44, Oct-4, Bmi-1) and flow cytometry was performed to determine the impact of propolis in the fraction of CSC, defined as ALDHhighCD44high cells. RESULTS propolis significantly reduced cell viability of HNSCC and HDMEC cells, but not HK. Notably, red propolis caused a significant reduction in the percentage of CSC, reduced the number of orospheres, and downregulated the expression of stem cell markers. CONCLUSIONS Collectively, our data demonstrate an anti-CSC effect of propolis, and suggest that propolis (i.e. red propolis) might be beneficial for patients with head and neck cancer.
Collapse
Affiliation(s)
- Felipe Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Oral Pathology, Radiology & Medicine, University of Iowa College of Dentistry, Iowa City, IA, USA.
| | - Carolina Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Programme in Developmental and Stem Cell Biology, Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Letícia W Bento
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Zhaocheng Zhang
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | | - Jacques E Nör
- Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
24
|
Zhang M, Cheng S, Jin Y, Zhang N, Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med 2021; 11:e292. [PMID: 33635002 PMCID: PMC7819108 DOI: 10.1002/ctm2.292] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, cell membrane camouflaging technology has emerged as an important strategy of nanomedicine, and the modification on the membranes is also a promising approach to enhance the properties of the nanoparticles, such as cancer targeting, immune evasion, and phototherapy sensitivity. Indeed, diversified approaches have been exploited to re-engineer the membranes of nanoparticles in several studies. In this review, first we discuss direct modification strategy of cell membrane camouflaged nanoparticles (CM-NP) via noncovalent, covalent, and enzyme-involved methods. Second, we explore how the membranes of CM-NPs can be re-engineered at the cellular level using strategies such as genetic engineering and membranes fusion. Due to the innate biological properties and excellent biocompatibility, the functionalized cell membrane-camouflaged nanoparticles have been widely applied in the fields of drug delivery, imaging, detoxification, detection, and photoactivatable therapy.
Collapse
Affiliation(s)
- Minghai Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Shanshan Cheng
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Nan Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiChina
- Shanghai Key Laboratory of Gynecologic OncologyShanghaiChina
| |
Collapse
|
25
|
Liao C, An J, Tan Z, Xu F, Liu J, Wang Q. Changes in Protein Glycosylation in Head and Neck Squamous Cell Carcinoma. J Cancer 2021; 12:1455-1466. [PMID: 33531990 PMCID: PMC7847636 DOI: 10.7150/jca.51604] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is an important posttranslational modification of proteins, and it has a profound influence on diverse life processes. An abnormal polysaccharide structure and mutation of the glycosylation pathway are closely correlated with human cancer progression. Glycoproteins such as EGFR, E-cadherin, CD44, PD-1/PD-L1, B7-H3 and Muc1 play important roles in the progression of head and neck squamous cell carcinoma (HNSCC), and their levels of glycosylation and changes in glycosyl structure are closely linked to HNSCC progression and malignant transformation. The regulation of protein glycosylation in HNSCC provides potential strategies to control cancer stem cell (CSC) subgroup expansion, epithelial-mesenchymal transition (EMT), tumor-related immunity escape and autophagy. Glycoproteins with altered glycosylation can be used as biomarkers for the early diagnosis, monitoring and prognostication of HNSCC. However, the glycobiology of cancer is still a new field that needs to be deeply studied, especially in HNSCC.
Collapse
Affiliation(s)
- Chengcheng Liao
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhangxue Tan
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Fangping Xu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Jianguo Liu
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China
| | - Qian Wang
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi 563006, China.,Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Life Sciences Institute, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
26
|
Gomez KE, Wu F, Keysar SB, Morton JJ, Miller B, Chimed TS, Le PN, Nieto C, Chowdhury FN, Tyagi A, Lyons TR, Young CD, Zhou H, Somerset HL, Wang XJ, Jimeno A. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Cancer Res 2020; 80:4185-4198. [PMID: 32816856 DOI: 10.1158/0008-5472.can-20-1079] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAM) in the tumor microenvironment (TME) cooperate with cancer stem cells (CSC) to maintain stemness. We recently identified cluster of differentiation 44 (CD44) as a surface marker defining head and neck squamous cell carcinoma (HNSCC) CSC. PI3K-4EBP1-SOX2 activation and signaling regulate CSC properties, yet the upstream molecular control of this pathway and the mechanisms underlying cross-talk between TAM and CSC in HNSCC remain largely unknown. Because CD44 is a molecular mediator in the TME, we propose here that TAM-influenced CD44 signaling could mediate stemness via the PI3K-4EBP1-SOX2 pathway, possibly by modulating availability of hyaluronic acid (HA), the main CD44 ligand. HNSCC IHC was used to identify TAM/CSC relationships, and in vitro coculture spheroid models and in vivo mouse models were used to identify the influence of TAMs on CSC function via CD44. Patient HNSCC-derived TAMs were positively and negatively associated with CSC marker expression at noninvasive and invasive edge regions, respectively. TAMs increased availability of HA and increased cancer cell invasion. HA binding to CD44 increased PI3K-4EBP1-SOX2 signaling and the CSC fraction, whereas CD44-VCAM-1 binding promoted invasive signaling by ezrin/PI3K. In vivo, targeting CD44 decreased PI3K-4EBP1-SOX2 signaling, tumor growth, and CSC. TAM depletion in syngeneic and humanized mouse models also diminished growth and CSC numbers. Finally, a CD44 isoform switch regulated epithelial-to-mesenchymal plasticity as standard form of CD44 and CD44v8-10 determined invasive and tumorigenic phenotypes, respectively. We have established a mechanistic link between TAMs and CSCs in HNSCC that is mediated by CD44 intracellular signaling in response to extracellular signals. SIGNIFICANCE: These findings establish a mechanistic link between tumor cell CD44, TAM, and CSC properties at the tumor-stroma interface that can serve as a vital area of focus for target and drug discovery.
Collapse
Affiliation(s)
- Karina E Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - FangLong Wu
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Farshad N Chowdhury
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anit Tyagi
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hilary L Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
27
|
ZSCAN4 facilitates chromatin remodeling and promotes the cancer stem cell phenotype. Oncogene 2020; 39:4970-4982. [PMID: 32507861 PMCID: PMC7314663 DOI: 10.1038/s41388-020-1333-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 01/01/2023]
Abstract
Cancer stem cells (CSCs) are cells within tumors that maintain the ability to self-renew, drive tumor growth, and contribute to therapeutic resistance and cancer recurrence. In this study, we investigate the role of Zinc finger and SCAN domain containing 4 (ZSCAN4) in human head and neck squamous cell carcinoma (HNSCC). The murine Zscan4 is involved in telomere maintenance and genomic stability of mouse embryonic stem cells. Our data indicate that the human ZSCAN4 is enriched for, marks and is co-expressed with CSC markers in HNSCC. We show that transient ZSCAN4 induction for just 2 days increases CSC frequency both in vitro and in vivo and leads to upregulation of pluripotency and CSC factors. Importantly, we define for the first time the role of ZSCAN4 in altering the epigenetic profile and regulating the chromatin state. Our data show that ZSCAN4 leads to a functional histone 3 hyperacetylation at the promoters of OCT3/4 and NANOG, leading to an upregulation of CSC factors. Consistently, ZSCAN4 depletion leads to downregulation of CSC markers, decreased ability to form tumorspheres and severely affects tumor growth. Our study suggests that ZSCAN4 plays an important role in the maintenance of the CSC phenotype, indicating it is a potential therapeutic target in HNSCC.
Collapse
|
28
|
Wang J, Cui R, Clement CG, Nawgiri R, Powell DW, Pinchuk IV, Watts TL. Activation PDGFR-α/AKT Mediated Signaling Pathways in Oral Squamous Cell Carcinoma by Mesenchymal Stem/Stromal Cells Promotes Anti-apoptosis and Decreased Sensitivity to Cisplatin. Front Oncol 2020; 10:552. [PMID: 32411595 PMCID: PMC7199219 DOI: 10.3389/fonc.2020.00552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 01/31/2023] Open
Abstract
Desmoplasia, a hallmark of a head and neck cancer, has both biologic and physiologic effects on cancer progression and chemotherapeutic response. Mesenchymal stem/stromal cells (MSCs), also known as mesenchymal stromal progenitor cells, have been shown to play a role in cancer progression, alter apoptotic responses, and confer resistance to chemotherapy in various carcinomas. The pathophysiology of MSCs with respect to tumorigenesis is widely reported in other cancers and is sparsely reported in oral squamous cell carcinomas (OSCCs). We previously reported paracrine mediated PDGF-AA/PDGFR-α signaling to underlie MSCs chemotaxis in OSCC. Given the poor clinical response to primary chemotherapy, we hypothesized that MSCs may alter cancer cell sensitivity to cisplatin through activation of PDGFR-α mediated signaling pathways. Co-culture of MSCs with human derived OSCC cell lines, JHU-012 and −019, resulted in a significant increase in the production of PDGF-AA and MCP-1 compared to cancer cells grown alone (p < 0.005) and was accompanied by an increase in the phosphorylation state of PDGFR-α (p < 0.02) and downstream target AKT at S473 (p < 0.025) and T308 (p < 0.02). JHU-012 and −019 cancer cells grown in co-culture were significantly less apoptotic (p < 0.001), expressed significantly higher levels of Bcl-2 (p < 0.04) with a concomitant significant decrease in bid expression (p < 0.001) compared to cancer cells grown alone. There was a significant increase in the cisplatin dose response curve in cancer cell clones derived from JHU-012 and 019 cancer cells grown in co-culture with MSCs compared to clones derived from cancer cells grown alone (p < 0.001). Moreover clones derived from JHU-012 cells grown in co-culture with MSCs were significantly more susceptible to cisplatin following pretreatment with, crenolanib, a PDGFR inhibitor, compared to cancer cells grown alone or in co-culture with MSCs (p < 0.0001). These findings suggest that crosstalk between cancer cells and MSCs is mediated, at least in part, by activation of autocrine PDGF-AA/PDGFR-α loop driving AKT-mediated signaling pathways, resulting in reduced cancer cell sensitivity to cisplatin through alterations in apoptosis.
Collapse
Affiliation(s)
- Jia Wang
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ruwen Cui
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, United States
| | - Cecila G Clement
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ranjana Nawgiri
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Don W Powell
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Internal Medicine, Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tammara L Watts
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
29
|
Nazari F, Oklejas AE, Nör JE, Pearson AT, Jackson TL. In Silico Models Accurately Predict In Vivo Response for IL6 Blockade in Head and Neck Cancer. Cancer Res 2020; 80:1451-1460. [PMID: 32041834 DOI: 10.1158/0008-5472.can-19-1846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/28/2019] [Accepted: 02/05/2020] [Indexed: 11/16/2022]
Abstract
Malignant features of head and neck squamous cell carcinoma (HNSCC) may be derived from the presence of stem-like cells that are characterized by uniquely high tumorigenic potential. These cancer stem cells (CSC) function as putative drivers of tumor initiation, therapeutic evasion, metastasis, and recurrence. Although they are an appealing conceptual target, CSC-directed cancer therapies remain scarce. One promising CSC target is the IL6 pathway, which is strongly correlated with poor patient survival. In this study we created and validated a multiscale mathematical model to investigate the impact of cross-talk between tumor cell- and endothelial cell (EC)-secreted IL6 on HNSCC growth and the CSC fraction. We then predicted and analyzed the responses of HNSCC to tocilizumab (TCZ) and cisplatin combination therapy. The model was validated with in vivo experiments involving human ECs coimplanted with HNSCC cell line xenografts. Without artificial tuning to the laboratory data, the model showed excellent predictive agreement with the decrease in tumor volumes observed in TCZ-treated mice, as well as a decrease in the CSC fraction. This computational platform provides a framework for preclinical cisplatin and TCZ dose and frequency evaluation to be tested in future clinical studies. SIGNIFICANCE: A mathematical model is used to rapidly evaluate dosing strategies for IL6 pathway modulation. These results may lead to nonintuitive dosing or timing treatment schedules to optimize synergism between drugs.
Collapse
Affiliation(s)
- Fereshteh Nazari
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois
| | - Alexandra E Oklejas
- Departments of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Jacques E Nör
- Departments of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan
| | - Alexander T Pearson
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois.
| | | |
Collapse
|
30
|
Suo X, Zhang J, Zhang Y, Liang XJ, Zhang J, Liu D. A nano-based thermotherapy for cancer stem cell-targeted therapy. J Mater Chem B 2020; 8:3985-4001. [DOI: 10.1039/d0tb00311e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) exhibit high resistance to conventional therapy and are responsible for cancer metastasis and tumor relapse.
Collapse
Affiliation(s)
- Xiaomin Suo
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Juncai Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Yue Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology
- Beijing 100190
- People's Republic of China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| | - Dandan Liu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Hebei University
- Baoding 071002
- People's Republic of China
- College of Chemistry and Environmental Science
| |
Collapse
|
31
|
Ludwig N, Szczepanski MJ, Gluszko A, Szafarowski T, Azambuja JH, Dolg L, Gellrich NC, Kampmann A, Whiteside TL, Zimmerer RM. CD44(+) tumor cells promote early angiogenesis in head and neck squamous cell carcinoma. Cancer Lett 2019; 467:85-95. [DOI: 10.1016/j.canlet.2019.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
|
32
|
Cancer Stem Cells and Oral Carcinogenesis; a Review Article. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2019. [DOI: 10.5812/ijcm.96139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Li M, Chen H, Wu T. LIN28: A cancer stem cell promoter for immunotherapy in head and neck squamous cell carcinoma. Oral Oncol 2019; 98:92-95. [PMID: 31574415 DOI: 10.1016/j.oraloncology.2019.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Lin28, a highly conserved RNA-binding protein, plays an important role in differentiation, metabolism, proliferation, pluripotency, and tumourigenicity. Lin28 overexpression promotes tumour-cell proliferation and metastasis in various human cancers, including head and neck cancer. Multiple studies demonstrate that Lin28 critically contributes to anti-tumour immunity and production of cancer stem cells in head and neck squamous cell carcinoma (HNSCC). Thus, Lin28 has potential application in HNSCC treatment.
Collapse
Affiliation(s)
- Mengxue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Heng Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Tianfu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| |
Collapse
|
34
|
Hernández-Camarero P, López-Ruiz E, Griñán-Lisón C, García MÁ, Chocarro-Wrona C, Marchal JA, Kenyon J, Perán M. Pancreatic (pro)enzymes treatment suppresses BXPC-3 pancreatic Cancer Stem Cell subpopulation and impairs tumour engrafting. Sci Rep 2019; 9:11359. [PMID: 31388092 PMCID: PMC6684636 DOI: 10.1038/s41598-019-47837-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/23/2019] [Indexed: 01/01/2023] Open
Abstract
Cancer stem cells (CSCs) subpopulation within the tumour is responsible for metastasis and cancer relapse. Here we investigate in vitro and in vivo the effects of a pancreatic (pro)enzyme mixture composed of Chymotrypsinogen and Trypsinogen (PRP) on CSCs derived from a human pancreatic cell line, BxPC3. Exposure of pancreatic CSCs spheres to PRP resulted in a significant decrease of ALDEFLUOR and specific pancreatic CSC markers (CD 326, CD 44 and CxCR4) signal tested by flow cytometry, further CSCs markers expression was also analyzed by western and immunofluorescence assays. PRP also inhibits primary and secondary sphere formation. Three RT2 Profiler PCR Arrays were used to study gene expression regulation after PRP treatment and resulted in, (i) epithelial-mesenchymal transition (EMT) inhibition; (ii) CSCs related genes suppression; (iii) enhanced expression of tumour suppressor genes; (iv) downregulation of migration and metastasis genes and (v) regulation of MAP Kinase Signalling Pathway. Finally, in vivo anti-tumor xenograft studies demonstrated high anti-tumour efficacy of PRP against tumours induced by BxPC3 human pancreatic CSCs. PRP impaired engrafting of pancreatic CSC’s tumours in nude mice and displayed an antigrowth effect toward initiated xenografts. We concluded that (pro)enzymes treatment is a valuable strategy to suppress the CSC population in solid pancreatic tumours.
Collapse
Affiliation(s)
- Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Elena López-Ruiz
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Biopathology and Regenerative Medicine, Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine, Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - María Ángel García
- Biopathology and Regenerative Medicine, Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology 3 and Immunology, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Carlos Chocarro-Wrona
- Biopathology and Regenerative Medicine, Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine, Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Julian Kenyon
- The Dove Clinic for Integrated Medicine, Twyford, SO21 1RG, UK.
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain. .,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| |
Collapse
|
35
|
Girardi D, Barrichello A, Fernandes G, Pereira A. Targeting the Hedgehog Pathway in Cancer: Current Evidence and Future Perspectives. Cells 2019; 8:cells8020153. [PMID: 30759860 PMCID: PMC6406365 DOI: 10.3390/cells8020153] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Hedgehog pathway (HhP) plays an important role in normal embryonic development and its abnormal function has been linked to a variety of neoplasms. Recently, the complex mechanisms involved in this pathway have been deciphered and the cross talks with other important pathways involved in carcinogenesis have been characterized. This knowledge has led to the development of targeted therapies against key components of HhP, which culminated in the approval of vismodegib for the treatment of advanced basal cell carcinoma in 2012. Since then, other compounds have been developed and evaluated in preclinical and clinical studies with interesting results. Today, several medications against components of the HhP have demonstrated clinical activity as monotherapies and in combination with cytotoxic treatment or other targeted therapies against mitogenic pathways that are linked to the HhP. This review aims to clarify the mechanism of the HhP and the complex crosstalk with others pathways involved in carcinogenesis and to discuss both the evidence associated with the growing number of medications and combined therapies addressing this pathway and future perspectives.
Collapse
Affiliation(s)
- Daniel Girardi
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Adriana Barrichello
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Gustavo Fernandes
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| | - Allan Pereira
- Division of Medical Oncology, Hospital Sírio-Libanês, Brasilia, 70200-730, Brazil.
| |
Collapse
|
36
|
Nagaya T, Friedman J, Maruoka Y, Ogata F, Okuyama S, Clavijo PE, Choyke PL, Allen C, Kobayashi H. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol Res 2019; 7:401-413. [PMID: 30683733 DOI: 10.1158/2326-6066.cir-18-0546] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 01/22/2019] [Indexed: 12/22/2022]
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) induces immunogenic cell death but has mostly failed to induce durable antitumor responses in syngenic tumor mouse models. We hypothesized that adaptive immune resistance could be limiting durable responses after treatmemt with NIR-PIT. We investigated the effects of combining NIR-PIT targeting cell-surface CD44 and PD-1 blockade in multiple syngeneic tumor models. In two of three models, NIR-PIT monotherapy halted tumor growth, enhanced dendritic cell tumor infiltration, and induced de novo tumor antigen-specific T-cell responses absent at baseline. The addition of PD-1 blockade reversed adaptive immune resistance, resulting in both enhanced preexisting tumor antigen-specific T-cell responses and enhanced de novo T-cell responses induced by NIR-PIT. Enhanced immune responses correlated with shared tumor antigen expression, suggesting that antigenicity is a major determinant of response to combination NIR-PIT and PD-1 blockade. Combination treatment induced complete rejection of MC38 tumors treated with NIR-PIT, as well as untreated, distant tumors. Accordingly, tumor antigen-specific T-cell responses were measured in both treated and untreated tumors, validating the development of systemic antitumor immunity. Mice that cleared tumors resisted subsequent tumor challenge, indicating the presence of systemic immune memory. Cumulatively, these results demonstrate reversal of adaptive immune resistance following induction of innate and adaptive immunity by NIR-PIT, resulting in high rates of tumor rejection and/or significant tumor growth control in antigenic syngeneic models of cancer.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jay Friedman
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Paul E Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland.
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
37
|
Shirasaki T, Honda M, Yamashita T, Nio K, Shimakami T, Shimizu R, Nakasyo S, Murai K, Shirasaki N, Okada H, Sakai Y, Sato T, Suzuki T, Yoshioka K, Kaneko S. The osteopontin-CD44 axis in hepatic cancer stem cells regulates IFN signaling and HCV replication. Sci Rep 2018; 8:13143. [PMID: 30177680 PMCID: PMC6120883 DOI: 10.1038/s41598-018-31421-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN) is involved in cell proliferation, migration, inflammation, and tumor progression in various tissues. OPN induces stemness by interacting with CD44, but the functional relevance of OPN-mediated interferon (IFN) signaling and hepatitis C virus (HCV) replication in stem cell populations remains unclear. In this study, we investigated the effect of OPN on HCV replication and IFN signaling in cancer stem cells (CSCs) positive for epithelial cell adhesion molecule (EpCAM) and CD44. We show that the EpCAM+/CD44+ CSCs show marked HCV replication when compared to EpCAM−/CD44− cells. In addition, OPN significantly enhances this HCV replication in EpCAM+/CD44+ CSCs and markedly suppresses IFN-stimulated gene expression. The GSK-3β inhibitor BIO increases the EpCAM+/CD44+ CSC population and OPN expression and impairs IFN signaling via STAT1 degradation. Taken together, our data suggest that OPN enhances HCV replication in the EpCAM+/CD44+ CSCs, while it also negatively regulates the IFN signaling pathway via inhibition of STAT1 phosphorylation and degradation. Therefore, OPN may represent a novel therapeutic target for treating HCV-related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan. .,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of General Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ryougo Shimizu
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Saki Nakasyo
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.,Department of Advanced Medical Technology, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Natsumi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tokiharu Sato
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
38
|
Wu X, Tommasi di Vignano A, Zhou Q, Michel-Dziunycz PJ, Bai F, Mi J, Qin J, Zu T, Hofbauer GFL. The ARE-binding protein Tristetraprolin (TTP) is a novel target and mediator of calcineurin tumor suppressing function in the skin. PLoS Genet 2018; 14:e1007366. [PMID: 29723192 PMCID: PMC5953486 DOI: 10.1371/journal.pgen.1007366] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/15/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023] Open
Abstract
An increased incidence of skin inflammatory diseases is frequently observed in organtransplanted patients being treated with calcineurin inhibitor-based immunosuppressive agents. The mechanism of increased skin inflammation in this context has however not yet been clarified. Here we report an increased inflammation following inhibition of calcineurin signaling seen in both chemically induced mouse skin tumors and in tumors grafted from H-rasV12 expressing primary human keratinocytes (HKCs). Following UVB or TPA treatment, we specifically found that deletion of the calcineurin gene in mouse keratinocytes (MKCs) resulted in increased inflammation, and this was accompanied by the enhanced production of pro-inflammatory cytokines, such as TNFα, IL-8 and CXCL1. Furthermore, expression of the RNA-binding protein, tristetraprolin (TTP) was down-regulated in response to calcineurin inhibition, wherein TTP was shown to negatively regulate the production of pro-inflammatory cytokines in keratinocytes. The induction of TTP following TPA or UVB treatment was attenuated by calcineurin inhibition in keratinocytes, and correspondingly, disruption of calcineurin signaling down-regulated the amounts of TTP in both clinical and H-rasV12-transformed keratinocyte tumor models. Our results further demonstrated that calcineurin positively controls the stabilization of TTP in keratinocytes through a proteasome-dependent mechanism. Reducing the expression of TTP functionally promoted tumor growth of H-rasV12 expressing HKCs, while stabilizing TTP expression counteracted the tumor-promoting effects of calcineurin inhibition. Collectively these results suggest that calcineurin signaling, acting through TTP protein level stabilization, suppresses keratinocyte tumors by downregulating skin inflammation.
Collapse
Affiliation(s)
- Xunwei Wu
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
- Cutaneous Biology Research Centre, Massachusetts General Hospital, Charlestown, MA, United States of America
- * E-mail:
| | - Alice Tommasi di Vignano
- Cutaneous Biology Research Centre, Massachusetts General Hospital, Charlestown, MA, United States of America
| | - Qian Zhou
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | | | - Fuxiang Bai
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Jun Mi
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Jing Qin
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Tingjian Zu
- Laboratory for Tissue Engineering and Regeneration and Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China
| | | |
Collapse
|
39
|
Bianchini C, Ciorba A, Pelucchi S, Piva R, Pastore A. Targeted Therapy in Head and Neck Cancer. TUMORI JOURNAL 2018; 97:137-41. [DOI: 10.1177/030089161109700201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims and background This review focuses on recent advances in understanding the molecular mechanisms at the basis of cancer initiation and progression in the head and neck and also discusses the possible development of targeted cellular strategies. Intrinsic and acquired resistance of cancer cells to current conventional treatments, as well as recurrence, represent a major challenge in treating and curing the most aggressive and metastatic tumors also in the head and neck. Even though in some hematologic malignancies (i.e., non-Hodgkin's lymphomas) antibodies specifically designed to target tumor-specific cells have already been introduced, in solid tumors molecular targeted therapy is now entering clinical practice. Methods A Pub Med database systematic review. Results and conclusions Molecular targeting could achieve specific damage to cancer cells, at the same time preserving functionally important tissues. This could offer new prospectives in primary and adjuvant treatment also of head and neck tumors.
Collapse
Affiliation(s)
| | - Andrea Ciorba
- ENT Department, University Hospital of
Ferrara, Ferrara
| | | | - Roberta Piva
- Molecular Biology Section, Department
of Biochemistry and Molecular Biology, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
40
|
Subramanian C, Kovatch KJ, Sim MW, Wang G, Prince ME, Carey TE, Davis R, Blagg BSJ, Cohen MS. Novel C-Terminal Heat Shock Protein 90 Inhibitors (KU711 and Ku757) Are Effective in Targeting Head and Neck Squamous Cell Carcinoma Cancer Stem cells. Neoplasia 2017; 19:1003-1011. [PMID: 29121598 PMCID: PMC5681325 DOI: 10.1016/j.neo.2017.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/28/2022] Open
Abstract
Advanced head and neck squamous cell carcinoma (HNSCC) remains a therapeutic challenge due to the development of therapy resistance. Several studies have implicated the development of cancer stem cells as a possible mechanism for therapy resistance in HNSCC. Heat shock protein 90's (Hsp90's) molecular chaperone function is implicated in pathways of resistance in HNSCC. Therefore, in the present study, we investigated the efficacy of novel C-terminal Hsp90 inhibitors (KU711 and KU757) in targeting HNSCC cancer stem cells (CSCs). Treatment of HNSCC human cell lines MDA1986, UMSCC 22B, and UMSCC 22B cisplatin-resistant cells with the KU compounds indicated complete blockage of self-renewal for the resistant and parent cell lines starting from 20 μM KU711 and 1 μM KU757. Dose-dependent decrease in the cancer stem cell markers CD44, ALDH, and CD44/ALDH double-positive cells was observed for all cell lines after treatment with KU711 and KU757. When cells were treated with either drug, migration and invasion were downregulated greater than 90% even at the lowest concentrations of 20 μM KU711 and 1 μM KU757. Western blot showed >90% reduction in client protein "stemness" marker BMI-1 and mesenchymal marker vimentin, as well as increase in epithelial marker E-cadherin for both cell lines, indicating epithelial to mesenchymal transition quiescence. Several CSC-mediated miRNAs that play a critical role in HNSCC therapy resistance were also downregulated with KU treatment. In vivo, KU compounds were effective in decreasing tumor growth with no observed toxicity. Taken together, these results indicate that KU compounds are effective therapeutics for targeting HNSCC CSCs.
Collapse
Affiliation(s)
| | - K J Kovatch
- Department of Otolaryngology Head & Neck Surgery, University of Michigan, USA
| | - M W Sim
- Department of Otolaryngology Head & Neck Surgery, Indiana University School of Medicine, USA
| | - G Wang
- Department of Pathology, Pharmacology, University of Michigan, USA
| | - M E Prince
- Department of Otolaryngology Head & Neck Surgery, University of Michigan, USA
| | - T E Carey
- Department of Otolaryngology Head & Neck Surgery, University of Michigan, USA
| | - R Davis
- Department of Chemistry and Biochemistry, University of Notre Dame, USA
| | - B S J Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, USA
| | - M S Cohen
- Department of Surgery, University of Michigan, USA.
| |
Collapse
|
41
|
Reid P, Wilson P, Li Y, Marcu LG, Staudacher AH, Brown MP, Bezak E. In vitro investigation of head and neck cancer stem cell proportions and their changes following X-ray irradiation as a function of HPV status. PLoS One 2017; 12:e0186186. [PMID: 29028842 PMCID: PMC5640219 DOI: 10.1371/journal.pone.0186186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/27/2017] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION Some head and neck squamous cell carcinomas (HNSCC) have a distinct aetiology, which depends on the presence of oncogenic human papilloma virus (HPV). Also, HNSCC contains cancer stem cells (CSCs) that have greater radioresistance and capacity to change replication dynamics in response to irradiation compared to non-clonogenic cells. Since there is limited data on CSCs in HNSCC as a function of HPV status, better understanding of their radiobiology may enable improved treatment outcome. METHODS Baseline and post-irradiation changes in CSC proportions were investigated by flow cytometry in a HPV-negative (UM-SCC-1) and a HPV-positive (UM-SCC-47) HNSCC cell line, using fluorescent staining with CD44/ALDH markers. CSC proportions in both irradiated and unirradiated cultures were compared for the two cell lines at various times post-irradiation. To assess repopulation of CSCs, untreated cultures were depleted of CD44+/ALDH+ cells and re-cultured for 3 weeks before flow cytometry analysis. RESULTS CSC proportions in untreated cell lines were 0.57% (UM-SCC-1) and 2.87% (UM-SCC-47). Untreated cell lines depleted of CD44+/ALDH+ repopulated this phenotype to a mean of 0.15% (UM-SCC-1) and 6.76% (UM-SCC-47). All UM-SCC-47 generations showed elevated CSC proportions after irradiation, with the most significant increase at 2 days post-irradiation. The highest elevation in UM-SCC-1 CSCs was observed at 1 day post-irradiation in the 2nd generation and at 3 days after irradiation in the 3rd generation. When measured after 10 days, only the 3rd generation of UM-SCC-1 showed elevated CSCs. CONCLUSIONS CSC proportions in both cell lines were elevated after exposure and varied with time post irradiation. UM-SCC-47 displayed significant plasticity in repopulating the CSC phenotype in depleted cultures, which was not seen in UM-SCC-1.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
- * E-mail:
| | - Puthenparampil Wilson
- School of Engineering, University of South Australia, Adelaide, Australia
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Yanrui Li
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Loredana G. Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Faculty of Science, University of Oradea, Oradea, Romania
| | - Alexander H. Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael P. Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, and University of South Australia, Adelaide, Australia
- School of Medicine, University of Adelaide, Adelaide, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
42
|
Peng S, Wu C, Sun W, Liu D, Luo M, Su B, Zhang L, Mei Q, Hu G. Snail-mediated cancer stem cell-like phenotype in human CNE2 nasopharyngeal carcinoma cell. Head Neck 2017; 40:485-497. [PMID: 29024225 DOI: 10.1002/hed.24982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/18/2017] [Accepted: 09/15/2017] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cancer stem cell (CSC)-like phenotype, which has been proven to play a critical role in invasion and metastasis of many kinds of cancers, has also been reported to be associated with epithelial-mesenchymal transition. Snail, a potent repressor of E-cadherin expression, was found to have a function to regulate the aforementioned processes. METHODS In the current study, expression of putative CSCs biomarkers and the ratio of CSC-like CNE2 (cancer cell line) in total CNE2 were measured, and CSC-like characteristics were analyzed with tumor-sphere self-renewal and colony-forming assays. Migration and invasion properties were determined by using transwell and wound healing assays. Xenograft tumor assays in vivo were done to evaluate the function of Snail and radiation in the tumor forming ability. RESULTS In human nasopharyngeal carcinoma (NPC) cells, overexpression of Snail mediates a CSC-like phenotype, which enhances the initiation, invasion, and migration ability of cancer cells. CONCLUSION Thus, Snail is a potential therapeutic target in NPC.
Collapse
Affiliation(s)
- Shan Peng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Luo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
43
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
44
|
Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti-CD44-Based NIR-PIT. Mol Cancer Res 2017; 15:1667-1677. [PMID: 28923838 DOI: 10.1158/1541-7786.mcr-17-0333] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
Oral cavity squamous cell carcinoma (OSCC) is considered one of the most aggressive subtypes of cancer. Anti-CD44 monoclonal antibodies (mAb) are a potential therapy against CD44 expressing OSCC; however, to date the therapeutic effects have been disappointing. Here, a new cancer treatment is described, near-infrared photoimmunotherapy (NIR-PIT), that uses anti-CD44 mAbs conjugated to the photoabsorber IR700DX. This conjugate is injected into mice harboring one of three CD44 expressing syngeneic murine oral cancer cell (MOC) lines, MOC1 (immunogenic), MOC2 mKate2 (moderately immunogenic), and MOC2-luc (poorly immunogenic). Binding of the anti-CD44-IR700 conjugate was shown to be specific and cell-specific cytotoxicity was observed after exposure of the cells to NIR light in vitro The anti-CD44-IR700 conjugate, when assessed in vivo, demonstrated deposition within the tumor with a high tumor-to-background ratio. Tumor-bearing mice were separated into four cohorts: no treatment; 100 μg of anti-CD44-IR700 i.v. only; NIR light exposure only; and 100 μg of anti-CD44-IR700 i.v. with NIR light exposure. NIR-PIT therapy, compared with the other groups, significantly inhibited tumor growth and prolonged survival in all three cell model systems. In conclusion, these data reveal that anti-CD44 antibodies are suitable as mAb-photoabsorber conjugates for NIR-PIT in MOC cells.Implications: This study using syngeneic mouse models, which better model the disease in humans than conventional xenografts, suggests that NIR-PIT with anti-CD44-IR700 is a potential candidate for the treatment of OSCC. Mol Cancer Res; 15(12); 1667-77. ©2017 AACR.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
45
|
Forster JC, Douglass MJJ, Harriss-Phillips WM, Bezak E. Simulation of head and neck cancer oxygenation and doubling time in a 4D cellular model with angiogenesis. Sci Rep 2017; 7:11037. [PMID: 28887560 PMCID: PMC5591194 DOI: 10.1038/s41598-017-11444-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Tumor oxygenation has been correlated with treatment outcome for radiotherapy. In this work, the dependence of tumor oxygenation on tumor vascularity and blood oxygenation was determined quantitatively in a 4D stochastic computational model of head and neck squamous cell carcinoma (HNSCC) tumor growth and angiogenesis. Additionally, the impacts of the tumor oxygenation and the cancer stem cell (CSC) symmetric division probability on the tumor volume doubling time and the proportion of CSCs in the tumor were also quantified. Clinically relevant vascularities and blood oxygenations for HNSCC yielded tumor oxygenations in agreement with clinical data for HNSCC. The doubling time varied by a factor of 3 from well oxygenated tumors to the most severely hypoxic tumors of HNSCC. To obtain the doubling times and CSC proportions clinically observed in HNSCC, the model predicts a CSC symmetric division probability of approximately 2% before treatment. To obtain the doubling times clinically observed during treatment when accelerated repopulation is occurring, the model predicts a CSC symmetric division probability of approximately 50%, which also results in CSC proportions of 30-35% during this time.
Collapse
Affiliation(s)
- Jake C Forster
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia. .,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia.
| | - Michael J J Douglass
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Wendy M Harriss-Phillips
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Department of Medical Physics, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Eva Bezak
- Department of Physics, University of Adelaide, North Terrace, Adelaide, South Australia, 5005, Australia.,Sansom Institute for Health Research and the School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
46
|
cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells. J Control Release 2017; 261:275-286. [PMID: 28666729 DOI: 10.1016/j.jconrel.2017.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/13/2017] [Accepted: 06/22/2017] [Indexed: 01/09/2023]
Abstract
Recalcitrant head and neck squamous cell carcinoma (HNSCC) usually relapses after therapy due to the enrichment of drug resistant cancer stem-like cells (CSCs). Nanomedicines have shown potential for eradicating both cancer cells and CSCs by effective intratumoral navigation for reaching particular cell populations and controlling drug delivery. The installation of ligands on nanomedicines is an attractive approach for improving the delivery to CSCs within tumors, though the development of CSC-selective ligand-receptor systems has been challenging. Herein, we found that the CSC subpopulation in HNSCC cells overexpresses αvβ5 integrins, which is preferentially expressed in tumor neovasculature and cancer cells, and can be effectively targeted by using cyclic Arg-Gly-Asp (cRGD) peptide. Thus, in this study, we propose installing cRGD peptide on micellar nanomedicines incorporating cisplatin for improving their activity against CSCs and enhancing survival. Both cisplatin-loaded micelles (CDDP/m) and cRGD-installed CDDP/m (cRGD-CDDP/m) were effective against HNSCC SAS-L1-Luc cells in vitro, though cRGD-installed CDDP/m was more potent than CDDP/m against the CSC fraction. In vivo, the cRGD-CDDP/m also showed significant antitumor activity against HNSCC orthotopic tumors, i.e. SAS-L1 and HSC-2. Moreover, cRGD-CDDP/m rapidly accumulated into the lymph node metastasis of SAS-L1 tumors, effectively inhibiting their growth, and prolonging mice survival. These findings indicate cRGD-installed nanomedicines as an advantageous strategy for targeting CSCs in HNSCC, and particularly, cRGD-CDDP/m as a significant therapeutic strategy against regionally advanced HNSCC.
Collapse
|
47
|
CD24+ tumor-initiating cells from oral squamous cell carcinoma induce initial angiogenesis in vivo. Microvasc Res 2017; 112:101-108. [PMID: 28344048 DOI: 10.1016/j.mvr.2017.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND In oral squamous cell carcinoma (OSCC), a minor subset of cancer stem cells has been identified using the surface marker CD24. The CD24+ cell population is involved in initiating, maintaining, and expanding tumor growth, but has not been reported to be involved in angiogenesis to date. METHODS NOD/SCID mice were equipped with dorsal skinfold chambers and gelatin sponges seeded with CD24+, CD24-, and unsorted cancer cells suspended in Matrigel® were implanted. Following intravital fluorescence microscopy, specimens were examined by immunohistology. RESULTS Sponges seeded with CD24+ cells showed a significantly higher functional capillary density than those seeded with CD24- cells. The presence of endothelial cells was confirmed by immunohistochemistry for CD31. CONCLUSION For the first time, CD24+ tumorigenic cells with angiogenic potential, which were isolated from OSCC, were characterized. Our findings provide a promising in vivo model to facilitate the development of therapeutic agents against cancer stem cells and their angiogenic pathways.
Collapse
|
48
|
Iser IC, Pereira MB, Lenz G, Wink MR. The Epithelial-to-Mesenchymal Transition-Like Process in Glioblastoma: An Updated Systematic Review and In Silico Investigation. Med Res Rev 2017; 37:271-313. [PMID: 27617697 DOI: 10.1002/med.21408] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/31/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2025]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer due to its highly invasive nature that impedes the surgical removal of all tumor cells, making relapse inevitable. However, the mechanisms used by glioma cells to invade the surrounding tissue are still unclear. In this context, epithelial-to-mesenchymal transition (EMT) has emerged as a key regulator of this invasive state and although the real relevance of this program in malignant glioma is still controversial, it has been strongly associated with GBM malignancy. EMT is a very complex process regulated by several families of transcriptional factors through many signaling pathways that form a network that allows cancer cells to acquire invasive properties and penetrate the neighboring stroma, resulting in the formation of an advantageous microenvironment for cancer progression and metastasis. In this systematic review, we focus on the molecular mechanisms of EMT including EMT-factors, drug resistance, miRNA, and new therapeutic strategies. In addition, we address controversial questions about mesenchymal shift in GBMs with a bioinformatics analysis to show that in terms of epithelial and mesenchymal phenotype, the majority of GBMs samples analyzed have a profile more mesenchymal than epithelial. If induced, this phenotype can be shifted toward an even more mesenchymal phenotype in an EMT-like process in glioma cells. A better understanding of the molecular regulation of the EMT during tumor spreading will help to provide potential therapeutic interventions to target this program when treating GBM.
Collapse
Affiliation(s)
- Isabele C Iser
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| | - Mariana B Pereira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guido Lenz
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Ketkaew Y, Osathanon T, Pavasant P, Sooampon S. Apigenin inhibited hypoxia induced stem cell marker expression in a head and neck squamous cell carcinoma cell line. Arch Oral Biol 2017; 74:69-74. [DOI: 10.1016/j.archoralbio.2016.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023]
|
50
|
Suresh A, Kuriakose MA, Mohanta S, Siddappa G. Carcinogenesis and Field Cancerization in Oral Squamous Cell Carcinoma. CONTEMPORARY ORAL ONCOLOGY 2017:1-30. [DOI: 10.1007/978-3-319-14911-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|