1
|
Sciaccotta R, Gangemi S, Penna G, Giordano L, Pioggia G, Allegra A. Potential New Therapies "ROS-Based" in CLL: An Innovative Paradigm in the Induction of Tumor Cell Apoptosis. Antioxidants (Basel) 2024; 13:475. [PMID: 38671922 PMCID: PMC11047475 DOI: 10.3390/antiox13040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lymphocytic leukemia, in spite of recent advancements, is still an incurable disease; the majority of patients eventually acquire resistance to treatment through relapses. In all subtypes of chronic lymphocytic leukemia, the disruption of normal B-cell homeostasis is thought to be mostly caused by the absence of apoptosis. Consequently, apoptosis induction is crucial to the management of this illness. Damaged biological components can accumulate as a result of the oxidation of intracellular lipids, proteins, and DNA by reactive oxygen species. It is possible that cancer cells are more susceptible to apoptosis because of their increased production of reactive oxygen species. An excess of reactive oxygen species can lead to oxidative stress, which can harm biological elements like DNA and trigger apoptotic pathways that cause planned cell death. In order to upset the balance of oxidative stress in cells, recent therapeutic treatments in chronic lymphocytic leukemia have focused on either producing reactive oxygen species or inhibiting it. Examples include targets created in the field of nanomedicine, natural extracts and nutraceuticals, tailored therapy using biomarkers, and metabolic targets. Current developments in the complex connection between apoptosis, particularly ferroptosis and its involvement in epigenomics and alterations, have created a new paradigm.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Giuseppa Penna
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Laura Giordano
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (G.P.); (L.G.)
| |
Collapse
|
2
|
Koehrer S, Burger JA. Chronic Lymphocytic Leukemia: Disease Biology. Acta Haematol 2023; 147:8-21. [PMID: 37717577 DOI: 10.1159/000533610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/13/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND B-cell receptor (BCR) signaling is crucial for normal B-cell development and adaptive immunity. In chronic lymphocytic leukemia (CLL), the malignant B cells display many features of normal mature B lymphocytes, including the expression of functional B-cell receptors (BCRs). Cross talk between CLL cells and the microenvironment in secondary lymphatic organs results in BCR signaling and BCR-driven proliferation of the CLL cells. This critical pathomechanism can be targeted by blocking BCR-related kinases (BTK, PI3K, spleen tyrosine kinase) using small-molecule inhibitors. Among these targets, Bruton tyrosine kinase (BTK) inhibitors have the highest therapeutic efficacy; they effectively block leukemia cell proliferation and generally induce durable remissions in CLL patients, even in patients with high-risk disease. By disrupting tissue homing receptor (i.e., chemokine receptor and adhesion molecule) signaling, these kinase inhibitors also mobilize CLL cells from the lymphatic tissues into the peripheral blood (PB), causing a transient redistribution lymphocytosis, thereby depriving CLL cells from nurturing factors within the tissue niches. SUMMARY The clinical success of the BTK inhibitors in CLL underscores the central importance of the BCR in CLL pathogenesis. Here, we review CLL pathogenesis with a focus on the role of the BCR and other microenvironment cues. KEY MESSAGES (i) CLL cells rely on signals from their microenvironment for proliferation and survival. (ii) These signals are mediated by the BCR as well as chemokine and integrin receptors and their respective ligands. (iii) Targeting the CLL/microenvironment interaction with small-molecule inhibitors provides a highly effective treatment strategy, even in high-risk patients.
Collapse
Affiliation(s)
- Stefan Koehrer
- Department of Laboratory Medicine, Klinik Donaustadt, Vienna, Austria
- Labdia Labordiagnostik, Clinical Genetics, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Jan A Burger
- Department of Leukemia, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Santos AS, Andrade JPD, Freitas DA, Gonçalves ÉS, Borges DL, Carvalho LMDA, Noronha KVDS, Andrade MV. Cost-Effectiveness Analysis of Rituximab for Chronic Lymphocytic Leukemia Using A Semi-Markovian Model Approach in R. Value Health Reg Issues 2023; 36:10-17. [DOI: 10.1016/j.vhri.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/07/2022] [Accepted: 01/26/2023] [Indexed: 03/29/2023]
|
4
|
O’Donnell A, Pepper C, Mitchell S, Pepper A. NF-kB and the CLL microenvironment. Front Oncol 2023; 13:1169397. [PMID: 37064123 PMCID: PMC10098180 DOI: 10.3389/fonc.2023.1169397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent type of leukemia in the western world. Despite the positive clinical effects of new targeted therapies, CLL still remains an incurable and refractory disease and resistance to treatments are commonly encountered. The Nuclear Factor-Kappa B (NF-κB) transcription factor has been implicated in the pathology of CLL, with high levels of NF-κB associated with disease progression and drug resistance. This aberrant NF-κB activation can be caused by genetic mutations in the tumor cells and microenvironmental factors, which promote NF-κB signaling. Activation can be induced via two distinct pathways, the canonical and non-canonical pathway, which result in tumor cell proliferation, survival and drug resistance. Therefore, understanding how the CLL microenvironment drives NF-κB activation is important for deciphering how CLL cells evade treatment and may aid the development of novel targeting therapeutics. The CLL microenvironment is comprised of various cells, including nurse like cells, mesenchymal stromal cells, follicular dendritic cells and CD4+ T cells. By activating different receptors, including the B cell receptor and CD40, these cells cause overactivity of the canonical and non-canonical NF-κB pathways. Within this review, we will explore the different components of the CLL microenvironment that drive the NF-κB pathway, investigating how this knowledge is being translated in the development of new therapeutics.
Collapse
Affiliation(s)
- Alice O’Donnell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
- Royal Sussex County Hospital, University Hospitals Sussex, Brighton, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Andrea Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
5
|
Thavayogarajah T, Sinitski D, Bounkari OE, Torres-Garcia L, Lewinsky H, Harjung A, Chen HR, Panse J, Vankann L, Shachar I, Bernhagen J, Koschmieder S. CXCR4 and CD74 together enhance cell survival in response to macrophage migration-inhibitory factor in chronic lymphocytic leukemia. Exp Hematol 2022; 115:30-43. [PMID: 36096455 DOI: 10.1016/j.exphem.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of small, mature CD5+ B lymphocytes in the blood, marrow, and lymphoid organs. Cell survival depends on interaction with the leukemic microenvironment. However, the mechanisms controlling CLL cell survival are still incompletely understood. Macrophage migration-inhibitory factor (MIF), a pro-inflammatory and immunoregulatory chemokine-like cytokine, interacts with CXCR4, a major chemokine receptor, as well as with CD74/invariant chain, a single-pass type II receptor. In this study, we analyzed the roles of CXCR4, CD74, and MIF in CLL. Mononuclear cells from patients with hematological malignancies were analyzed for coexpression of CXCR4 and CD74 by flow cytometry. Strong co- and overexpression of CXCR4 and CD74 were observed on B cells of CLL patients (n = 10). Survival and chemotaxis assays indicated that CXCR4 and CD74 work together to enhance the survival and migration of malignant cells in CLL. Blockade of the receptors, either individually or in combination, promoted cell death and led to an abrogation of MIF-driven migration responses in murine and human CLL cells, suggesting that joint activation of both receptors is crucial for CLL cell survival and mobility. These findings indicate that the MIF/CXCR4/CD74 axis represents a novel therapeutic target in CLL.
Collapse
Affiliation(s)
- Tharshika Thavayogarajah
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany; Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany; Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dzmitry Sinitski
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Omar El Bounkari
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Laura Torres-Garcia
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Harjung
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Hong-Ru Chen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany
| | - Lucia Vankann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany
| | - Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jürgen Bernhagen
- Department of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany; SyNergy Excellence Cluster, Munich, Germany.
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, Rheinisch-Westfälische Technische (RWTH) Aachen University, Aachen, Germany.
| |
Collapse
|
6
|
CD4+ T cells sustain aggressive chronic lymphocytic leukemia in Eμ-TCL1 mice through a CD40L-independent mechanism. Blood Adv 2021; 5:2817-2828. [PMID: 34269799 DOI: 10.1182/bloodadvances.2020003795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is caused by the progressive accumulation of mature CD5+ B cells in secondary lymphoid organs. In vitro data suggest that CD4+ T lymphocytes also sustain survival and proliferation of CLL clones through CD40L/CD40 interactions. In vivo data in animal models are conflicting. To clarify this clinically relevant biological issue, we generated genetically modified Eμ-TCL1 mice lacking CD4+ T cells (TCL1+/+AB0), CD40 (TCL1+/+CD40-/-), or CD8+ T cells (TCL1+/+TAP-/-), and we monitored the appearance and progression of a disease that mimics aggressive human CLL by flow cytometry and immunohistochemical analyses. Findings were confirmed by adoptive transfer of leukemic cells into mice lacking CD4+ T cells or CD40L or mice treated with antibodies depleting CD4 T cells or blocking CD40L/CD40 interactions. CLL clones did not proliferate in mice lacking or depleted of CD4+ T cells, thus confirming that CD4+ T cells are essential for CLL development. By contrast, CD8+ T cells exerted an antitumor activity, as indicated by the accelerated disease progression in TCL1+/+TAP-/- mice. Antigen specificity of CD4+ T cells was marginal for CLL development, because CLL clones efficiently proliferated in transgenic mice whose CD4 T cells had a T-cell receptor with CLL-unrelated specificities. Leukemic clones also proliferated when transferred into wild-type mice treated with monoclonal antibodies blocking CD40 or into CD40L-/- mice, and TCL1+/+CD40-/- mice developed frank CLL. Our data demonstrate that CD8+ T cells restrain CLL progression, whereas CD4+ T cells support the growth of leukemic clones in TCL1 mice through CD40-independent and apparently noncognate mechanisms.
Collapse
|
7
|
Sampietro M, Zamai M, Díaz Torres A, Labrador Cantarero V, Barbaglio F, Scarfò L, Scielzo C, Caiolfa VR. 3D-STED Super-Resolution Microscopy Reveals Distinct Nanoscale Organization of the Hematopoietic Cell-Specific Lyn Substrate-1 (HS1) in Normal and Leukemic B Cells. Front Cell Dev Biol 2021; 9:655773. [PMID: 34277604 PMCID: PMC8278786 DOI: 10.3389/fcell.2021.655773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
HS1, the hematopoietic homolog of cortactin, acts as a versatile actin-binding protein in leucocytes. After phosphorylation, it is involved in GTPase and integrin activation, and in BCR, TCR, and CXCR4 downstream signaling. In normal and leukemic B cells, HS1 is a central cytoskeletal interactor and its phosphorylation and expression are prognostic factors in chronic lymphocytic leukemia (CLL) patients. We here introduce for the first time a super-resolution imaging study based on single-cell 3D-STED microscopy optimized for revealing and comparing the nanoscale distribution of endogenous HS1 in healthy B and CLL primary cells. Our study reveals that the endogenous HS1 forms heterogeneous nanoclusters, similar to those of YFP-HS1 overexpressed in the leukemic MEC1 cell line. HS1 nanoclusters in healthy and leukemic B cells form bulky assemblies at the basal sides, suggesting the recruitment of HS1 for cell adhesion. This observation agrees with a phasor-FLIM-FRET and STED colocalization analyses of the endogenous MEC1-HS1, indicating an increased interaction with Vimentin at the cell adhesion sites. In CLL cells isolated from patients with poor prognosis, we observed a larger accumulation of HS1 at the basal region and a higher density of HS1 nanoclusters in the central regions of the cells if compared to good-prognosis CLL and healthy B cells, suggesting a different role for the protein in the cell types analyzed. Our 3D-STED approach lays the ground for revealing tiny differences of HS1 distribution, its functionally active forms, and colocalization with protein partners.
Collapse
Affiliation(s)
- Marta Sampietro
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,Nanomedicine Center NANOMIB, School of Medicine and Surgery, Università di Milano Bicocca, Milan, Italy.,Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Moreno Zamai
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Alfonsa Díaz Torres
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Veronica Labrador Cantarero
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Federica Barbaglio
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy.,School of Medicine, Università Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Scielzo
- Malignant B Cells Biology and 3D Modeling Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria R Caiolfa
- Unit of Microscopy and Dynamic Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Experimental Imaging Center, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
8
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
9
|
Corbingi A, Innocenti I, Tomasso A, Pasquale R, Visentin A, Varettoni M, Flospergher E, Autore F, Morelli F, Trentin L, Reda G, Efremov DG, Laurenti L. Monoclonal gammopathy and serum immunoglobulin levels as prognostic factors in chronic lymphocytic leukaemia. Br J Haematol 2020; 190:901-908. [PMID: 32712965 DOI: 10.1111/bjh.16975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
The relationship between chronic lymphocytic leukaemia (CLL) and qualitative/quantitative gammaglobulin abnormalities is well established. Nevertheless, in order to better understand this kind of connection, we examined 1505 patients with CLL and divided them into four subgroups on the basis of immunoglobulin (Ig) aberrations at diagnosis. A total of 73 (4·8%), 149 (10%), 200 (13·2%) and 1083 (72%) patients were identified with IgM monoclonal gammopathy (IgM/CLL), IgG monoclonal gammopathy (IgG/CLL), hypogammaglobulinaemia (hypo-γ) and normal Ig levels (γ-normal) respectively. IgM paraprotein was significantly associated with a more advanced Binet/Rai stage and del(17p)/TP53 mutation, while IgG abnormalities correlated with a higher occurrence of trisomy 12. Patients with any type of Ig abnormality had shorter treatment-free survival (TFS) but no significant impact affecting overall survival (OS) compared to those with normal Ig levels.
Collapse
Affiliation(s)
- Andrea Corbingi
- Department of Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Idanna Innocenti
- Department of Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annamaria Tomasso
- Department of Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaella Pasquale
- Department of Hematology, Fondazione IRCCS Ca'Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, Università degli Studi di Padova, Padova, Italy
| | - Marzia Varettoni
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Flospergher
- Department of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesco Autore
- Department of Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Francesca Morelli
- Department of Hematology, Università degli Studi di Firenze, Florence, Italy
| | - Livio Trentin
- Hematology and Clinical Immunology Unit, Department of Medicine, Università degli Studi di Padova, Padova, Italy
| | - Gianluigi Reda
- Department of Hematology, Fondazione IRCCS Ca'Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Dimitar G Efremov
- Molecular Haematology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Laurenti
- Department of Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Yang C, Mai H, Peng J, Zhou B, Hou J, Jiang D. STAT4: an immunoregulator contributing to diverse human diseases. Int J Biol Sci 2020; 16:1575-1585. [PMID: 32226303 PMCID: PMC7097918 DOI: 10.7150/ijbs.41852] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family and localizes to the cytoplasm. STAT4 is phosphorylated after a variety of cytokines bind to the membrane, and then dimerized STAT4 translocates to the nucleus to regulate gene expression. We reviewed the essential role played by STAT4 in a wide variety of cells and the pathogenesis of diverse human diseases, especially many kinds of autoimmune and inflammatory diseases, via activation by different cytokines through the Janus kinase (JAK)-STAT signaling pathway.
Collapse
Affiliation(s)
- Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinxin Peng
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| | - Deke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, GuangZhou, China
| |
Collapse
|
11
|
Eltrombopag for immune thrombocytopenia secondary to chronic lymphoproliferative disorders: a phase 2 multicenter study. Blood 2020; 134:1708-1711. [PMID: 31570488 DOI: 10.1182/blood.2019001617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Immune thrombocytopenia (ITP) secondary to chronic lymphoproliferative disorders (LPDs) is poorly responsive to conventional treatments. We conducted a multicenter phase 2 prospective 24-week study in 18 patients with ITP secondary to LPDs to assess the safety and efficacy of eltrombopag. Responsive patients entered an extension study for up to 5 years. For inclusion, patients should not require cytotoxic treatment and should have a platelet count <30 × 109/L or have symptoms of bleeding. Eltrombopag was initiated at 50 mg/day, with a maximum of 150 mg/day. The primary end point was platelet response after 4 weeks. Median age was 70 years (range, 43-83 years), and 14 patients had chronic lymphocytic leukemia, 2 had classic Hodgkin lymphoma, and 2 had Waldenström macroglobulinemia. All patients had received previous ITP treatments. Response rate at week 4 was 78% (95% confidence interval [CI], 58%-97%), with 50% of patients having a complete response (CR) (95% CI, 43%-57%); respective results at week 24 were 59% (95% CI, 36%-82%) with 30% reaching a CR (95% CI, 8%-52%). Median exposure to eltrombopag was 16 months; median dose at week 4 was 50 mg/day (range, 25-100 mg/day), and at week 24, it was 50 mg/day (range, 25-150 mg/day). No grade >2 adverse events were reported. Eltrombopag is active and well tolerated in ITP secondary to LPDs. This trial was registered at www.clinicaltrials.gov as #NCT01610180.
Collapse
|
12
|
Kikushige Y. Pathophysiology of chronic lymphocytic leukemia and human B1 cell development. Int J Hematol 2019; 111:634-641. [PMID: 31797231 DOI: 10.1007/s12185-019-02788-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL), the most frequent type of leukemia in adults, is a lymphoproliferative disease characterized by the clonal expansion of mature CD5+ B cells in peripheral blood, bone marrow, and secondary lymphoid tissues. Over the past decade, substantial advances have been made in understanding the pathogenesis of CLL, including the identification of recurrent mutations, and clarification of clonal architectures, transcriptome analyses, and the multistep leukemogenic process. The biology of CLL is now better understood. The present review focuses on recent insights into CLL leukemogenesis, emphasizing the role of genetic lesions, and the multistep process initiating from very immature hematopoietic stem cells. Finally, we also review progress in the study of human B1 B cells, the putative normal counterparts of CLL cells.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
13
|
Hanna BS, Öztürk S, Seiffert M. Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia. Mol Immunol 2019; 110:77-87. [DOI: 10.1016/j.molimm.2017.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/07/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022]
|
14
|
Capitani N, Lori G, Paoli P, Patrussi L, Troilo A, Baldari CT, Raugei G, D'Elios MM. LMW-PTP targeting potentiates the effects of drugs used in chronic lymphocytic leukemia therapy. Cancer Cell Int 2019; 19:67. [PMID: 30948927 PMCID: PMC6429822 DOI: 10.1186/s12935-019-0786-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/15/2019] [Indexed: 12/25/2022] Open
Abstract
Background Low molecular weight protein tyrosine phosphatase (LMW-PTP) is overexpressed in different cancer types and its expression is related to more aggressive disease, reduced survival rate and drug resistance. Morin is a natural polyphenol which negatively modulates, among others, the activity of LMW-PTP, leading to the potentiation of the effects of different antitumoral drugs, representing a potential beneficial treatment against cancer. Methods LMW-PTP levels were measured by immunoblot analysis both in CLL cells from patients and in chronic lymphocytic leukemia (CLL)-derived Mec-1 cells. Cell viability was assessed in Mec-1 cells treated with morin alone or in combination with either fludarabine or ibrutinib or following siRNA-mediated LMW-PTP knockdown. Furthermore, the expression levels of VLA-4 and CXCR4 were assessed by both qRT-PCR and flow cytometry and both adhesion to fibronectin-coated plates and migration toward CXCL12 were analyzed in Mec-1 cells treated with morin alone or in combination with fludarabine or ibrutinib. Results We observed that LMW-PTP is highly expressed in Mec-1 cells as well as in leukemic B lymphocytes purified from CLL patients compared to normal B lymphocytes. Morin treatment strongly decreased LMW-PTP expression levels in Mec-1 cells and potentiated the anticancer properties of both fludarabine and ibrutinib by increasing their apoptotic effects on leukemic cells. Moreover, morin negatively regulates adhesion and CXCL12-dependent migration of Mec-1 cells by affecting VLA-4 integrin expression and CXCR4 receptor recycling. Conclusions Morin treatment in CLL-derived Mec-1 cell line synergizes with conventional anticancer drugs currently used in CLL therapy by affecting leukemic cell viability and trafficking. Electronic supplementary material The online version of this article (10.1186/s12935-019-0786-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nagaja Capitani
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,3Department of Life Sciences, University of Siena, Siena, Italy
| | - Giulia Lori
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Paolo Paoli
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Laura Patrussi
- 3Department of Life Sciences, University of Siena, Siena, Italy
| | - Arianna Troilo
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Giovanni Raugei
- 2Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Milco D'Elios
- 1Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Ying X, Zhang W, Fang M, Zhang W, Wang C, Han L. miR-345-5p regulates proliferation, cell cycle, and apoptosis of acute myeloid leukemia cells by targeting AKT2. J Cell Biochem 2019; 120:1620-1629. [PMID: 30278103 DOI: 10.1002/jcb.27461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 01/24/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease, which is caused by hematopoietic stem cell abnormalities. Epigenetic regulation, especially of microRNAs (miRNAs), mostly results from external or environmental effects and is critical to AML. In this study, for the first time, we report that decreased expression of miR-345-5p facilitates the proliferation of leukemia cells in AML. Further study demonstrated that AKT1/2 was the target of miR-345-5p and was responsible for the dysregulation of leukemia cell proliferation and apoptosis. Inhibition of AKT1/2 ameliorated this malignant effect, which provides new insight into AML diagnosis, treatment, prognosis, and next-step translational investigations.
Collapse
Affiliation(s)
- Xiaoyang Ying
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, China.,Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Wanggang Zhang
- Department of Clinical Hematology, Affiliated No. 2 Hospital School of Medicine, Xi'an Jiaotong University, China
| | - Meiyun Fang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Weijun Zhang
- Department of Laboratory, Affiliated Zhongshan Hospital of Dalian University, China
| | - Chenchen Wang
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| | - Li Han
- Department of Hematology, Affiliated Zhongshan Hospital of Dalian University, China
| |
Collapse
|
16
|
Wang HQ, Jia L, Li YT, Farren T, Agrawal SG, Liu FT. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia. J Cell Physiol 2019; 234:13994-14006. [PMID: 30623437 PMCID: PMC6590298 DOI: 10.1002/jcp.28086] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/07/2018] [Indexed: 12/25/2022]
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable with current standard therapy. We have previously reported that an increased expression of interleukin‐6 (IL‐6) receptor CD126 leads to resistance of CLL cells to chemotherapy and worse prognosis for patients with CLL. In this study, we determine whether autocrine IL‐6 production by CLL B cells is associated with poor clinical outcome and explore IL‐6‐mediated survival mechanism in primary CLL cells. Our results demonstrate that higher levels of autocrine IL‐6 are significantly associated with shorter absolute lymphocyte doubling time, patients received treatment, without complete remission, advanced Binet stages, 17p/11q deletion, and shorter time to first time treatment and progression‐free survival. IL‐6 activated both STAT3 and nuclear factor kappa B (NF‐κB) in primary CLL cells. Blocking IL‐6 receptor and JAK2 inhibited IL‐6‐mediated activation of STAT3 and NF‐κB. Our study demonstrates that an increased autocrine IL‐6 production by CLL B‐cells are associated with worse clinical outcome for patients with CLL. IL‐6 promotes CLL cell survival by activating both STAT3 and NF‐κB through diverse signaling cascades. Neutralizing IL‐6 or blocking IL‐6 receptor might contribute overcoming the resistance of CLL cells to chemotherapy. We propose that the measurement of autocrine IL‐6 could be a useful approach to predict clinical outcome.
Collapse
Affiliation(s)
- Hua-Qing Wang
- Department of Hematology and Oncology, Tianjin Union Medial Center of Nankai University, Tianjin, China
| | - Li Jia
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yu-Ting Li
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Timothy Farren
- Pathology Group, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Samir G Agrawal
- Division of Haemato-Oncology, St Bartholomew's Hospital, Barts Health NHS Trust and Queen Mary University of London, London, United Kingdom
| | - Feng-Ting Liu
- Department of Hematology and Oncology, Tianjin Union Medial Center of Nankai University, Tianjin, China.,Division of Haemato-Oncology, St Bartholomew's Hospital, Barts Health NHS Trust and Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Shachar I, Barak A, Lewinsky H, Sever L, Radomir L. SLAMF receptors on normal and malignant B cells. Clin Immunol 2018; 204:23-30. [PMID: 30448442 DOI: 10.1016/j.clim.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
The Signaling Lymphocyte Activation Molecule family (SLAMF) is a collection of nine surface receptors expressed mainly on hematopoietic cells, and was found to modulate the behavior of immune cells. SLAMF receptors are expressed on B cells in health and disease. Each SLAM receptor has a unique differential expression pattern during the development and activation of B cells. Furthermore, recent findings have revealed a principal role for this family of receptors in B cell malignancies, emphasizing their importance in the control of malignant cell survival, cell to cell communication within the tumor microenvironment, retention in the supporting niches and regulation of T cell anti-tumor response. This review summarizes the latest studies regarding SLAMF expression and behavior in B cells and in B cell pathologies, and discusses the therapeutic potential of these receptors.
Collapse
Affiliation(s)
- Idit Shachar
- Department of Immunology, Weizmann Institute of Science, Israel.
| | - Avital Barak
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Hadas Lewinsky
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Lital Sever
- Department of Immunology, Weizmann Institute of Science, Israel
| | - Lihi Radomir
- Department of Immunology, Weizmann Institute of Science, Israel
| |
Collapse
|
18
|
Primo D, Scarfò L, Xochelli A, Mattsson M, Ranghetti P, Espinosa AB, Robles A, Gorrochategui J, Martínez-López J, de la Serna J, González M, Gil AC, Anguita E, Iraheta S, Munugalavadla V, Quéva C, Tannheimer S, Rosenquist R, Stamatopoulos K, Ballesteros J, Ghia P. A novel ex vivo high-throughput assay reveals antiproliferative effects of idelalisib and ibrutinib in chronic lymphocytic leukemia. Oncotarget 2018; 9:26019-26031. [PMID: 29899839 PMCID: PMC5995261 DOI: 10.18632/oncotarget.25419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 04/28/2018] [Indexed: 12/21/2022] Open
Abstract
PI3Kδ (idelalisib) and BTK (ibrutinib) inhibitors have demonstrated significant clinical activity in chronic lymphocytic leukemia (CLL) interfering with the cross-talk between CLL cells and the lymph node microenviroment, yet their mechanism of action remains to be fully elucidated. Here, we developed an ex vivo model with the aim of reproducing the effects of the microenvironment that would help shed light on the in vivo mechanism of action of idelalisib and ibrutinib and predict their clinical efficacy in individual patients. First we explored the effects of various cell-extrinsic elements on CLL apoptosis and proliferation and found that the combination of CpG+IL2+HS5 stromal cell line + human serum +CLL plasma and erythrocyte fractions represented the best co-culture conditions to test the effects of the novel inhibitors. Then, using this assay, we investigated the impact of idelalisib and ibrutinib on both survival and proliferation in 30 CLL patients. While both drugs had a limited direct pro-apoptotic activity, a potent inhibition of proliferation was achieved at clinically achievable concentrations. Notably, up to 10% of CLL cells still proliferated even at the highest concentrations, likely mirroring the known difficulty to achieve complete responses in vivo. Altogether, this novel assay represents an appropriate ex vivo drug testing system to potentially predict the clinical response to novel inhibitors in particular by quantifying the antiproliferative effect.
Collapse
Affiliation(s)
| | - Lydia Scarfò
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | - Aliki Xochelli
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pamela Ranghetti
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| | | | | | | | | | - Javier de la Serna
- Department of Hematology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Marcos González
- Hematology Service, IBSAL-Hospital Universitario, Centro de Investigación del Cáncer (CIC)- IBMCC, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Universidad de Salamanca, Salamanca, Spain
| | - Alberto Chaparro Gil
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Eduardo Anguita
- Department of Hematology, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sandra Iraheta
- Department of Hematology and Hemotherapy, Hospital Universitario de Canarias, La Laguna, Spain
| | | | | | | | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Paolo Ghia
- Strategic Research Program on CLL and B Cell Neoplasia Unit, Università Vita-Salute San Raffaele and IRCCS Istituto Scientifico San Raffaele, Milan, Italy
| |
Collapse
|
19
|
Vaisitti T, Arruga F, Deaglio S. Targeting the Adenosinergic Axis in Chronic Lymphocytic Leukemia: A Way to Disrupt the Tumor Niche? Int J Mol Sci 2018; 19:ijms19041167. [PMID: 29649100 PMCID: PMC5979564 DOI: 10.3390/ijms19041167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Targeting adenosine triphosphate (ATP) metabolism and adenosinergic signaling in cancer is gaining momentum, as increasing evidence is showing their relevance in tumor immunology and biology. Chronic lymphocytic leukemia (CLL) results from the expansion of a population of mature B cells that progressively occupies the bone marrow (BM), the blood, and peripheral lymphoid organs. Notwithstanding significant progress in the treatment of these patients, the cure remains an unmet clinical need, suggesting that novel drugs or drug combinations are needed. A unique feature of CLL is its reliance on micro-environmental signals for proliferation and cell survival. We and others have shown that the lymphoid niche, an area of intense interactions between leukemic and bystander non-tumor cells, is a typically hypoxic environment. Here adenosine is generated by leukemic cells, as well as by cells of myeloid origin, acting through autocrine and paracrine mechanisms, ultimately affecting tumor growth, limiting drug responses, and skewing the immune cells towards a tolerant phenotype. Hence, understanding the mechanisms through which this complex network of enzymes, receptors, and metabolites functions in CLL, will pave the way to the use of pharmacological agents targeting the system, which, in combination with drugs targeting leukemic cells, may get us one step closer to curing these patients.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine Triphosphate/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Gene Regulatory Networks/drug effects
- Humans
- Hypoxia
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Molecular Targeted Therapy/methods
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin School of Medicine & Italian Institute for Genomic Medicine (IIGM), via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
20
|
Protein kinase D-dependent CXCR4 down-regulation upon BCR triggering is linked to lymphadenopathy in chronic lymphocytic leukaemia. Oncotarget 2018; 7:41031-41046. [PMID: 27127886 PMCID: PMC5173040 DOI: 10.18632/oncotarget.9031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/16/2016] [Indexed: 02/07/2023] Open
Abstract
In Chronic Lymphocytic Leukemia (CLL), infiltration of lymph nodes by leukemic cells is observed in patients with progressive disease and adverse outcome. We have previously demonstrated that B-cell receptor (BCR) engagement resulted in CXCR4 down-regulation in CLL cells, correlating with a shorter progression-free survival in patients. In this study, we show a simultaneous down-regulation of CXCR4, CXCR5 and CD62L upon BCR triggering. While concomitant CXCR4 and CXCR5 down-regulation involves PKDs, CD62L release relies on PKC activation. BCR engagement induces PI3K-δ-dependent phosphorylation of PKD2 and 3, which in turn phosphorylate CXCR4 Ser324/325. Moreover, upon BCR triggering, PKD phosphorylation levels correlate with the extent of membrane CXCR4 decrease. Inhibition of PKD activity restores membrane expression of CXCR4 and migration towards CXCL12 in BCR-responsive cells in vitro. In terms of pathophysiology, BCR-dependent CXCR4 down-regulation is observed in leukemic cells from patients with enlarged lymph nodes, irrespective of their IGHV mutational status. Taken together, our results demonstrate that PKD-mediated CXCR4 internalization induced by BCR engagement in B-CLL is associated with lymph node enlargement and suggest PKD as a potential druggable target for CLL therapeutics.
Collapse
|
21
|
Liu FT, Jia L, Wang P, Wang H, Farren TW, Agrawal SG. STAT3 and NF-κB cooperatively control in vitro spontaneous apoptosis and poor chemo-responsiveness in patients with chronic lymphocytic leukemia. Oncotarget 2017; 7:32031-45. [PMID: 27074565 PMCID: PMC5077994 DOI: 10.18632/oncotarget.8672] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an adult disease characterized by in vivo accumulation of mature CD5/CD19/CD23 triple positive B cells and is currently incurable. CLL cells undergo spontaneous apoptosis in response to in vitro cell culture condition but the underlying mechanism is unclear. We hypothesize that the sensitivity of CLL cells to spontaneous apoptosis may be associated with the constitutive activities of transcription factors STAT3 and/or NF-κB. We now show that the sensitivity of fresh CLL cells to spontaneous apoptosis is highly variable among different patients during 48 hours’ cell culture and inversely correlated with in vivo constitutively activated STAT3 and NF-κB (p < 0.001). Both activated STAT3 and NF-κB maintain the levels of anti-apoptotic protein Mcl-1/Bcl-xL and autocrine IL-6 production. CLL cells with higher susceptibility to in vitro spontaneous apoptosis show the greatest chemosensitivity (p < 0.001), which is reflected clinically as achieving a complete response (CR) (p < 0.001), longer lymphocyte doubling times (p < 0.01), time to first treatment (p < 0.01), and progression free survival (p < 0.05). Our data suggest that the sensitivity of CLL cells to in vitro spontaneous apoptosis is co-regulated by constitutively activated STAT3 and NF-κB and reflects the in vivo chemo-responsiveness and clinical outcomes.
Collapse
Affiliation(s)
- Feng-Ting Liu
- Department of Radiobiology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Li Jia
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Ping Wang
- Department of Radiobiology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huaqing Wang
- Department of Medical Oncology, Tianjin Union Medicine Center, Tianjin, China
| | - Timothy W Farren
- Pathology Group, Blizard Institute, Queen Mary University of London, London, UK
| | - Samir G Agrawal
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
22
|
Lipoprotein Lipase Expression in Chronic Lymphocytic Leukemia: New Insights into Leukemic Progression. Molecules 2017; 22:molecules22122083. [PMID: 29206143 PMCID: PMC6149886 DOI: 10.3390/molecules22122083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 11/21/2022] Open
Abstract
Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. Due to its catalytic activity, LPL is involved in metabolic pathways exploited by various solid and hematologic malignancies to provide an extra energy source to the tumor cell. We and others described a link between the expression of LPL in the tumor cell and a poor clinical outcome of patients suffering Chronic Lymphocytic Leukemia (CLL). This leukemia is characterized by a slow accumulation of mainly quiescent clonal CD5 positive B cells that infiltrates secondary lymphoid organs, bone marrow and peripheral blood. Despite LPL being found to be a reliable molecular marker for CLL prognosis, its functional role and the molecular mechanisms regulating its expression are still matter of debate. Herein we address some of these questions reviewing the current state of the art of LPL research in CLL and providing some insights into where currently unexplored questions may lead to.
Collapse
|
23
|
Ghia P, Nadel B, Sander B, Stamatopoulos K, Stevenson FK. Early stages in the ontogeny of small B-cell lymphomas: genetics and microenvironment. J Intern Med 2017; 282:395-414. [PMID: 28393412 DOI: 10.1111/joim.12608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this review, we focus on the mechanisms underlying lymphomagenesis in chronic lymphocytic leukaemia, follicular lymphoma, mantle cell lymphoma and splenic marginal zone lymphoma. The cells of origin of these small B-cell lymphomas are distinct, as are the characteristic chromosomal lesions and clinical courses. One shared feature is retention of expression of surface immunoglobulin. Analysis of this critical receptor reveals the point of differentiation reached by the cell of origin. Additionally, the sequence patterns of the immunoglobulin-variable domains can indicate a role for stimulants of the B-cell receptor before, during and after malignant transformation. The pathways driven via the B-cell receptor are now being targeted by specific kinase inhibitors with exciting clinical effects. To consider routes to pathogenesis, potentially offering earlier intervention, or to identify causative factors, genetic tools are being used to track pretransformation events and the early phases in lymphomagenesis. These methods are revealing that chromosomal changes are only one of the many steps involved, and that the influence of surrounding cells, probably multiple and variable according to tissue location, is required, both to establish tumours and to maintain growth and survival. Similarly, the influence of the tumour microenvironment may protect malignant cells from eradication by treatment, and the resulting minimal residual disease will eventually give rise to relapse. The common and different features of the four lymphomas will be summarized to show how normal B lymphocytes can be subverted to generate tumours, how these tumours evolve and how their weaknesses can be attacked by targeted therapies.
Collapse
Affiliation(s)
- P Ghia
- Division of Experimental Oncology, Università Vita-Salute San Raffaele and IRCCS San Raffaele Scientific Institute Milan, Milan, Italy
| | - B Nadel
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | - B Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - K Stamatopoulos
- Institute of Applied Biosciences, Center for Research and Technology Hellas, Thessaloniki, Greece.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - F K Stevenson
- Cancer Research UK Centre, Cancer Sciences Unit, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
| |
Collapse
|
24
|
Purroy N, Wu CJ. Coevolution of Leukemia and Host Immune Cells in Chronic Lymphocytic Leukemia. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026740. [PMID: 28096240 DOI: 10.1101/cshperspect.a026740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cumulative studies on the dissection of changes in driver genetic lesions in cancer across the course of the disease have provided powerful insights into the adaptive mechanisms of tumors in response to the selective pressures of therapy and environmental changes. In particular, the advent of next-generation-sequencing (NGS)-based technologies and its implementation for the large-scale comprehensive analyses of cancers have greatly advanced our understanding of cancer as a complex dynamic system wherein genetically distinct subclones interact and compete during tumor evolution. Aside from genetic evolution arising from interactions intrinsic to the cell subpopulations within tumors, it is increasingly appreciated that reciprocal interactions between the tumor cell and cellular constituents of the microenvironment further exert selective pressures on specific clones that can impact the balance between tumor immunity and immunologic evasion and escape. Herein, we review the evidence supporting these concepts, with a particular focus on chronic lymphocytic leukemia (CLL), a disease that has been highly amenable to genomic interrogation and studies of clonal heterogeneity and evolution. Better knowledge of the basis for immune escape has an important clinical impact on prognostic stratification and on the pursuit of new therapeutic opportunities.
Collapse
Affiliation(s)
- Noelia Purroy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Medical School, Boston, Massachusetts 02115
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142.,Harvard Medical School, Boston, Massachusetts 02115.,Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
25
|
Adan Gökbulut A, Yaşar M, Baran Y. A Novel Natural Product, KL-21, Inhibits Proliferation and Induces Apoptosis in Chronic Lymphocytic Leukemia Cells. Turk J Haematol 2017; 32:118-26. [PMID: 26316479 PMCID: PMC4451479 DOI: 10.4274/tjh.2013.0381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Objective: The aims of this study were to examine the cytotoxic and apoptotic effects of KL-21, a novel plant product (produced by Naturin Natural Products, İzmir, Turkey), on 232B4 chronic lymphocytic leukemia (CLL) cells and to determine the cytotoxic effects on healthy BEAS-2B human bronchial epithelial cells. Materials and Methods: The cytotoxic effect of KL-21 was determined by MTT cell proliferation assay. Changes in caspase-3 enzyme activity were measured using the caspase-3 colorimetric assay. Changes in mitochondrial membrane potential were determined using the JC-1 dye-based method. Annexin V-FITC/PI double staining was performed to measure the apoptotic cell population. Effects of KL-21 on cell cycle profiles of CLL cells were investigated by flow cytometry. Results: We detected time- and concentration-dependent increases in the cytotoxic effect of KL-21 on 232B4 CLL cells. However, we also showed that, especially at higher concentrations, KL-21 was less cytotoxic towards BEAS-2B healthy cells than towards CLL cells. Annexin-V/PI double staining results showed that the apoptotic cell population increased in 232B4 cells. Increasing concentrations of KL-21 increased caspase-3 enzyme activity and induced loss of mitochondrial membrane potential. KL-21 administration resulted in small increases in the percentage of the cells in the G0/G1 phase while it decreased the S phase cell population up to 1 mg/mL. At the highest concentration, most of the cells accumulated in the G0/G1 phase. Conclusion: KL-21 has a growth-inhibitory effect on 232B4 CLL cells. KL-21 causes apoptosis and cell cycle arrest at G0/G1.
Collapse
Affiliation(s)
| | | | - Yusuf Baran
- İzmir Institute of Technology Faculty of Science, Department of Molecular Biology and Genetics, İzmir, Turkey Phone: +90 232 750 73 15 E-mail:
| |
Collapse
|
26
|
Identifying High-Risk Chronic Lymphocytic Leukemia: A Pathogenesis-Oriented Appraisal of Prognostic and Predictive Factors in Patients Treated with Chemotherapy with or without Immunotherapy. Mediterr J Hematol Infect Dis 2016; 8:e2016047. [PMID: 27872727 PMCID: PMC5111525 DOI: 10.4084/mjhid.2016.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 09/16/2016] [Indexed: 11/21/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) displays an extremely variable clinical behaviour. Accurate prognostication and prediction of response to treatment are important in an era of effective first-line regimens and novel molecules for high risk patients. Because a plethora of prognostic biomarkers were identified, but few of them were validated by multivariable analysis in comprehensive prospective studies, we applied in this survey stringent criteria to select papers from the literature in order to identify the most reproducible prognostic/predictive markers. Each biomarker was analysed in terms of reproducibility across the different studies with respect to its impact on time to first treatment (TTFT), progression free survival (PFS), overall survival (OS) and response to treatment. We were able to identify the following biomarkers as the most reliable in guiding risk stratification in the daily clinical practice: 17p-/TP53 mutations, IGHV unmutated configuration, short telomeres and 11q-. However, the method for measuring telomere length was not validated yet and 11q- was predictive of inferior OS only in those patients who did not receive FCR-like combinations. Stage and lymphocytosis were predictive of shorter TTFT and age, high serum thymidine kinase levels and poor performance status were predictive of shorter OS. Using our criteria no parameter was found to independently predict for inferior response to treatment.
Collapse
|
27
|
Samuel J, Jayne S, Chen Y, Majid A, Wignall A, Wormull T, Najeeb H, Luo JL, Jones GDD, Macip S, Dyer MJS. Posttranscriptional Upregulation of p53 by Reactive Oxygen Species in Chronic Lymphocytic Leukemia. Cancer Res 2016; 76:6311-6319. [PMID: 27634759 DOI: 10.1158/0008-5472.can-16-0843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells multiply and become more resistant to immunochemotherapy in "proliferation centers" within tissues, whereas apoptosis occurs in the periphery. Various models recapitulate these microenvironments in vitro, such as stimulation with CD154 and IL4. Using this system, we observed a 30- to 40-fold induction of wild-type p53 protein in 50 distinct human CLL specimens tested, without the induction of either cell-cycle arrest or apoptosis. In contrast, the mRNA levels for p53 did not increase, indicating that its elevation occurred posttranscriptionally. Mechanistic investigations revealed that under the conditions studied, p53 was phosphorylated on residues associated with p53 activation and increased half-life. However, p53 protein induced in this manner could transcriptionally activate only a subset of target genes. The addition of a DNA-damaging agent further upregulated p53 protein levels, which led to apoptosis. p53 induction relied on the increase in intracellular reactive oxygen species observed after CD154 and IL4 stimulation. We propose that chronic oxidative stress is a characteristic of the microenvironment in B-cell "proliferation centers" in CLL that are capable of elevating the basal expression of p53, but to levels below the threshold needed to induce arrest or apoptosis. Our findings suggest that reactivation of the full transcriptional activities of p53 in proliferating CLL cells may offer a possible therapeutic strategy. Cancer Res; 76(21); 6311-9. ©2016 AACR.
Collapse
Affiliation(s)
- Jesvin Samuel
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | - Yixiang Chen
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | | | - Alice Wignall
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Timothy Wormull
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Hishyar Najeeb
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom.,Department of Clinical Biochemistry, College of Medicine, University of Duhok, Kurdistan Regional Government, Iraq
| | - Jin-Li Luo
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - George D D Jones
- CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| | - Salvador Macip
- Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom. .,Mechanisms of Cancer and Ageing Lab, University of Leicester, Leicester, United Kingdom.,Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom
| | - Martin J S Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester, United Kingdom.,CRUK Leicester Centre, University of Leicester, Leicester, United Kingdom.,Department of Cancer Studies, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
28
|
Gätjen M, Brand F, Grau M, Gerlach K, Kettritz R, Westermann J, Anagnostopoulos I, Lenz P, Lenz G, Höpken UE, Rehm A. Splenic Marginal Zone Granulocytes Acquire an Accentuated Neutrophil B-Cell Helper Phenotype in Chronic Lymphocytic Leukemia. Cancer Res 2016; 76:5253-65. [PMID: 27488528 DOI: 10.1158/0008-5472.can-15-3486] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Recruitment of tumor-associated macrophages and neutrophils (TAM and TAN) to solid tumors contributes to immunosuppression in the tumor microenvironment; however, their contributions to lymphoid neoplasms are less clear. In human chronic lymphocytic leukemia (CLL), tumor B cells lodge in lymph nodes where interactions with the microenvironment occur. Tumor cell homing stimulates proliferation, such that engagement of the B-cell receptor is important for malignant progression. In the Eμ-Tcl1 murine model of CLL, we identified gene expression signatures indicative of a skewed polarization in the phenotype of monocytes and neutrophils. Selective ablation of either of these cell populations in mice delayed leukemia growth. Despite tumor infiltration of these immune cells, a systemic inflammation was not detected. Notably, in progressive CLL, splenic neutrophils were observed to differentiate toward a B-cell helper phenotype, a process promoted by the induction of leukemia-associated IL10 and TGFβ. Our results suggest that targeting aberrant neutrophil differentiation and restoring myeloid cell homeostasis could limit the formation of survival niches for CLL cells. Cancer Res; 76(18); 5253-65. ©2016 AACR.
Collapse
Affiliation(s)
- Marcel Gätjen
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Franziska Brand
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Michael Grau
- Department of Physics, Philipps-University Marburg, Marburg, Germany. Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany
| | - Kerstin Gerlach
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Intensive Care Medicine, Experimental and Clinical Research Center, Charité-University Medicine Berlin, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Peter Lenz
- Department of Physics, Philipps-University Marburg, Marburg, Germany
| | - Georg Lenz
- Cluster of Excellence EXC 1003, Cells in Motion, Münster, Germany. Translational Oncology, Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Uta E Höpken
- Department of Tumor Genetics and Immunogenetics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - Armin Rehm
- Department of Hematology, Oncology and Tumorimmunology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany. Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Ganghammer S, Hutterer E, Hinterseer E, Brachtl G, Asslaber D, Krenn PW, Girbl T, Berghammer P, Geisberger R, Egle A, Zucchetto A, Kruschinski A, Gattei V, Chigaev A, Greil R, Hartmann TN. CXCL12-induced VLA-4 activation is impaired in trisomy 12 chronic lymphocytic leukemia cells: a role for CCL21. Oncotarget 2016; 6:12048-60. [PMID: 25895128 PMCID: PMC4494922 DOI: 10.18632/oncotarget.3660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022] Open
Abstract
Homing to distinct lymphoid organs enables chronic lymphocytic leukemia (CLL) cells to receive pro-survival and proliferative signals. Cytogenetic aberrations can significantly affect CLL cell compartmentalization. Trisomy 12 (tri12) defines a CLL subgroup with specific clinical features and increased levels of the negative prognostic marker CD49d, the α4-subunit of the integrin VLA-4, which is a key regulator of CLL cell homing to bone marrow (BM). Chemokine-induced inside-out VLA-4 activation, particularly via the CXCL12-CXCR4 axis, increases the arrest of various cell types on VCAM-1 presenting endothelium. Here, we demonstrate that high CD49d expression in tri12 CLL is accompanied by decreased CXCR4 expression. Dissecting functional consequences of these alterations, we observed that tri12 CLL cell homing to murine BM is not affected by CXCR4-CXCL12 blockage using AMD3100 or olaptesed pegol/NOX-A12. In line, CCL21-CCR7 rather than CXCL12-CXCR4 interactions triggered VLA-4-mediated arrests of tri12 CLL cells to VCAM-1 under blood flow conditions. Concordantly, in real-time kinetic analyses we found CCL21 but not CXCL12 being capable to induce inside-out VLA-4 conformational changes in this CLL subgroup. Our results provide novel insights into the peculiar clinico-biological behaviour of tri12 CLL and emphasize its specific chemokine and integrin utilization during pathophysiologically and therapeutically relevant interactions with the microenvironment.
Collapse
Affiliation(s)
- Sylvia Ganghammer
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Evelyn Hutterer
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Elisabeth Hinterseer
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Gabriele Brachtl
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Daniela Asslaber
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Peter William Krenn
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Tamara Girbl
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Petra Berghammer
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | | | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, Aviano, Italy
| | - Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Richard Greil
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Tanja Nicole Hartmann
- Laboratory for Immunological and Molecular Cancer Research, 3rd Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases and Rheumatology, Oncologic Center, Paracelsus Medical University Salzburg, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| |
Collapse
|
30
|
Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D, Cittaro D, Simonetti G, Ranghetti P, Scarfò L, Ponzoni M, Rocchi M, Corti A, Anselmo A, van Rooijen N, Klein C, Ries CH, Ghia P, De Palma M, Caligaris-Cappio F, Bertilaccio MTS. Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Rep 2016; 14:1748-1760. [PMID: 26876171 DOI: 10.1016/j.celrep.2016.01.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/08/2015] [Accepted: 01/09/2016] [Indexed: 01/30/2023] Open
Abstract
The role of monocytes/macrophages in the development and progression of chronic lymphocytic leukemia (CLL) is poorly understood. Transcriptomic analyses show that monocytes/macrophages and leukemic cells cross talk during CLL progression. Macrophage depletion impairs CLL engraftment, drastically reduces leukemic growth, and favorably impacts mouse survival. Targeting of macrophages by either CSF1R signaling blockade or clodrolip-mediated cell killing has marked inhibitory effects on established leukemia also. Macrophage killing induces leukemic cell death mainly via the TNF pathway and reprograms the tumor microenvironment toward an antitumoral phenotype. CSF1R inhibition reduces leukemic cell load, especially in the bone marrow, and increases circulating CD20(+) leukemic cells. Accordingly, co-targeting TAMs and CD20-expressing leukemic cells provides a survival benefit in the mice. These results establish the important role of macrophages in CLL and suggest therapeutic strategies based on interfering with leukemia-macrophage interactions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Apoptosis/drug effects
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Communication/drug effects
- Cell Line, Tumor
- Clodronic Acid/pharmacology
- Disease Progression
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Liposomes/pharmacology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/pathology
- Mice
- Mice, Transgenic
- Neoplasm Transplantation
- Primary Cell Culture
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Signal Transduction
- Survival Analysis
- Transplantation, Heterologous
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
- Giovanni Galletti
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Cristina Scielzo
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Barbaglio
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tania Véliz Rodriguez
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Michela Riba
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Dejan Lazarevic
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology "L. e A. Seràgnoli," Università di Bologna, 40138 Bologna, Italy
| | - Pamela Ranghetti
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Lydia Scarfò
- Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Maurilio Ponzoni
- Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Hospital, Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Martina Rocchi
- Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Hospital, Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Achille Anselmo
- Humanitas Clinical and Research Center, 20089 Rozzano, Milan, Italy
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije University Medical Center, 1081 BT Amsterdam, the Netherlands
| | - Christian Klein
- Roche Pharma Research and Early Development, Oncology Discovery, Roche Innovation Center Zurich, 8952 Zurich, Switzerland
| | - Carola H Ries
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg, Oncology Discovery, 82377 Penzberg, Germany
| | - Paolo Ghia
- Vita-Salute San Raffaele University, 20132 Milan, Italy; Unit of B Cell Neoplasia, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Michele De Palma
- The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; Division of Regenerative Medicine, Stem Cells and Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico Caligaris-Cappio
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Unit of Lymphoid Malignancies, Department of Onco-Hematology, IRCCS San Raffaele Hospital, Milan, Italy.
| | - Maria Teresa Sabrina Bertilaccio
- Unit of Lymphoid Malignancies, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
31
|
Herman SEM, Wiestner A. Preclinical modeling of novel therapeutics in chronic lymphocytic leukemia: the tools of the trade. Semin Oncol 2016; 43:222-32. [PMID: 27040700 DOI: 10.1053/j.seminoncol.2016.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the last decade our understanding of chronic lymphocytic leukemia (CLL) biology and pathogenesis has increased substantially. These insights have led to the development of several new agents with novel mechanisms of action prompting a change in therapeutic approaches from chemotherapy-based treatments to targeted therapies. Multiple preclinical models for drug development in CLL are available; however, with the advent of these targeted agents, it is becoming clear that not all models and surrogate readouts of efficacy are appropriate for all drugs. In this review we discuss in vitro and in vivo preclinical models, with a particular focus on the benefits and possible pitfalls of different model systems in the evaluation of novel therapeutics for the treatment of CLL.
Collapse
Affiliation(s)
- Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
32
|
FU CHUNLING, GONG YANQING, SHI XUANXUAN, SHI HENGLIANG, WAN YAN, WU QINGYUN, XU KAILIN. Expression and regulation of COP1 in chronic lymphocytic leukemia cells for promotion of cell proliferation and tumorigenicity. Oncol Rep 2015; 35:1493-500. [DOI: 10.3892/or.2015.4526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 11/18/2015] [Indexed: 11/06/2022] Open
|
33
|
Del Giudice I, Marinelli M, Wang J, Bonina S, Messina M, Chiaretti S, Ilari C, Cafforio L, Raponi S, Mauro FR, Di Maio V, De Propris MS, Nanni M, Ciardullo C, Rossi D, Gaidano G, Guarini A, Rabadan R, Foà R. Inter- and intra-patient clonal and subclonal heterogeneity of chronic lymphocytic leukaemia: evidences from circulating and lymph nodal compartments. Br J Haematol 2015; 172:371-383. [PMID: 26597680 DOI: 10.1111/bjh.13859] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/22/2015] [Indexed: 02/02/2023]
Abstract
Whole exome sequencing and copy number aberration (CNA) analysis were performed on cells taken from peripheral blood (PB) and lymph nodes (LN) of patients with chronic lymphocytic leukaemia (CLL). Of 64 non-silent somatic mutations, 54 (84·4%) were clonal in both compartments, 3 (4·7%) were PB-specific and 7 (10·9%) were LN-specific. Most of the LN- or PB-specific mutations were subclonal in the other corresponding compartment (variant frequency 0·5-5·3%). Of 41 CNAs, 27 (65·8%) were shared by both compartments and 7 (17·1%) were LN- or PB-specific. Overall, 6 of 9 cases (66·7%) showed genomic differences between the compartments. At subsequent relapse, Case 10, with 6 LN-specific lesions, and Case 100, with 6 LN-specific and 8 PB-specific lesions, showed, in the PB, the clonal expansion of LN-derived lesions with an adverse impact: SF3B1 mutation, BIRC3 deletion, del8(p23·3-p11·1), del9(p24·3-p13·1) and gain 2(p25·3-p14). CLL shows an intra-patient clonal heterogeneity according to the disease compartment, with both LN and PB-specific mutations/CNAs. The LN microenvironment might contribute to the clonal selection of unfavourable lesions, as LN-derived mutations/CNAs can appear in the PB at relapse.
Collapse
Affiliation(s)
- Ilaria Del Giudice
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Marilisa Marinelli
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Jiguang Wang
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, US
| | - Silvia Bonina
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Monica Messina
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Sabina Chiaretti
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Caterina Ilari
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Luciana Cafforio
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Sara Raponi
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Francesca Romana Mauro
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Valeria Di Maio
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Maria Stefania De Propris
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Mauro Nanni
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Carmela Ciardullo
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Anna Guarini
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | - Raul Rabadan
- Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, US
| | - Robin Foà
- Division of Haematology, Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| |
Collapse
|
34
|
Hartmann EM, Rudelius M, Burger JA, Rosenwald A. CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates. Leuk Lymphoma 2015; 57:563-71. [PMID: 26458057 PMCID: PMC6699159 DOI: 10.3109/10428194.2015.1068308] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous experiments demonstrated that survival and proliferation of chronic lymphocytic leukemia (CLL) cells depends upon complex cross-talk between CLL cells and accessory cells in the tissue microenvironment. To further dissect these interactions in situ, we analyzed lymph nodes from 43 different patients infiltrated by CLL cells for expression of the chemokine CCL3, Ki-67, macrophages, and T cell subsets by immunohistochemistry. CCL3 expression was detected in 24 of 43 cases (56%), particularly in prolymphocytes and paraimmunoblasts within the proliferation centers. Significantly higher numbers of CD3+ T cells and CD57+ cells were noticed in CCL3 positive cases. Furthermore, denser infiltration of CLL lymph node tissues by CD57+ cells correlated with higher proliferation rates of the CLL cells. In conclusion, we demonstrate an association of CCL3 expression by CLL cells with increased numbers of CD3+ T cells and CD57+ cells in the lymph node microenvironment, which may promote CLL cell survival and proliferation.
Collapse
Affiliation(s)
- Elena M. Hartmann
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| | - Martina Rudelius
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| | - Jan A. Burger
- Department of Leukemia, MD Anderson Cancer Center, Houston, Texas, USA
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Germany
| |
Collapse
|
35
|
Bresin A, Callegari E, D'Abundo L, Cattani C, Bassi C, Zagatti B, Narducci MG, Caprini E, Pekarsky Y, Croce CM, Sabbioni S, Russo G, Negrini M. miR-181b as a therapeutic agent for chronic lymphocytic leukemia in the Eµ-TCL1 mouse model. Oncotarget 2015; 6:19807-18. [PMID: 26090867 PMCID: PMC4637322 DOI: 10.18632/oncotarget.4415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/29/2015] [Indexed: 12/05/2022] Open
Abstract
The involvement of microRNAs (miRNAs) in chronic lymphocytic leukemia (CLL) pathogenesis suggests the possibility of anti-CLL therapeutic approaches based on miRNAs. Here, we used the Eµ-TCL1 transgenic mouse model, which reproduces leukemia with a similar course and distinct immunophenotype as human B-CLL, to test miR-181b as a therapeutic agent.In vitro enforced expression of miR-181b mimics induced significant apoptotic effects in human B-cell lines (RAJI, EHEB), as well as in mouse Eµ-TCL1 leukemic splenocytes. Molecular analyses revealed that miR-181b not only affected the expression of TCL1, Bcl2 and Mcl1 anti-apoptotic proteins, but also reduced the levels of Akt and phospho-Erk1/2. Notably, a siRNA anti-TCL1 could similarly down-modulate TCL1, but exhibited a reduced or absent activity in other relevant proteins, as well as a reduced effect on cell apoptosis and viability. In vivo studies demonstrated the capability of miR-181b to reduce leukemic cell expansion and to increase survival of treated mice.These data indicate that miR-181b exerts a broad range of actions, affecting proliferative, survival and apoptotic pathways, both in mice and human cells, and can potentially be used to reduce expansion of B-CLL leukemic cells.
Collapse
MESH Headings
- Animals
- Apoptosis
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Mice, Transgenic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- RNA Interference
- Signal Transduction
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Antonella Bresin
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Elisa Callegari
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Lucilla D'Abundo
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Caterina Cattani
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Cristian Bassi
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - Barbara Zagatti
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| | - M. Grazia Narducci
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Elisabetta Caprini
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Yuri Pekarsky
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - Carlo M. Croce
- Human Cancer Genetics Program and Department of Molecular Virology, Immunology and Medical Genetics, OSU School of Medicine, Ohio State University, Columbus, OH, USA
| | - Silvia Sabbioni
- Università di Ferrara, Dipartimento di Scienze della Vita e Biotecnologie, Ferrara, Italy
| | - Giandomenico Russo
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Laboratorio di Oncologia Molecolare, Rome, Italy
| | - Massimo Negrini
- Università di Ferrara, Dipartimento di Morfologia, Chirurgia e Medicina Sperimentale, Ferrara, Italy
| |
Collapse
|
36
|
Herman SEM, Mustafa RZ, Jones J, Wong DH, Farooqui M, Wiestner A. Treatment with Ibrutinib Inhibits BTK- and VLA-4-Dependent Adhesion of Chronic Lymphocytic Leukemia Cells In Vivo. Clin Cancer Res 2015; 21:4642-51. [PMID: 26089373 DOI: 10.1158/1078-0432.ccr-15-0781] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/01/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE Ibrutinib leads to a transient lymphocytosis in patients with chronic lymphocytic leukemia (CLL) that develops within hours of starting drug and is due to the efflux of cells from lymphoid tissues into the blood. We therefore sought to investigate the in vivo effect of ibrutinib on migration and adhesion of CLL cells. EXPERIMENTAL DESIGN Patients received single-agent ibrutinib (420 mg daily) on an investigator-initiated phase II trial. Serial blood samples were collected pretreatment and during treatment for ex vivo functional assays. RESULTS Adhesion of CLL cells to fibronectin was rapidly (within hours) and almost completely inhibited (median reduction 98% on day 28, P < 0.001), while the effect on migration to chemokines was more moderate (median reduction 64%, P = 0.008) and less uniform. Although cell surface expression of key adhesion molecules such as CD49d, CD29, and CD44 were modestly reduced, this was only apparent after weeks of treatment. Stimulation of CLL cells from patients on ibrutinib with PMA, which activates PKC independent of BTK, restored the ability of the cells to adhere to fibronectin in a VLA-4-dependent manner. Finally, the addition of ibrutinib to CLL cells adhered to fibronectin in vitro caused the detachment of 17% of the cells, on average; consisten t with in vivo observations of an increasing lymphocytosis within 4 hours of starting ibrutinib. CONCLUSIONS Inhibition of BTK and VLA-4-dependent adhesion of CLL cells to stroma and stromal components provides a mechanistic explanation for the treatment-induced lymphocytosis and may reduce CD49d-dependent prosurvival signals in the tissue microenvironment.
Collapse
Affiliation(s)
- Sarah E M Herman
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Rashida Z Mustafa
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Jade Jones
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland. Medical Research Scholars Program, NIH, Bethesda, Maryland
| | - Deanna H Wong
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Mohammed Farooqui
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
37
|
Lyn sustains oncogenic signaling in chronic lymphocytic leukemia by strengthening SET-mediated inhibition of PP2A. Blood 2015; 125:3747-55. [DOI: 10.1182/blood-2014-12-619155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/21/2015] [Indexed: 01/12/2023] Open
Abstract
Key Points
Cytosolic HSP90-bound Lyn mediates resistance to apoptosis by strengthening PP2A/SET interaction in CLL cells. FTY720-analogues antagonizing the PP2A/SET interaction and Lyn inhibitors may provide a therapeutic approach of CLL.
Collapse
|
38
|
Kikushige Y, Miyamoto T. Pre-malignant lymphoid cells arise from hematopoietic stem/progenitor cells in chronic lymphocytic leukemia. Int J Hematol 2015; 102:528-35. [PMID: 25644149 DOI: 10.1007/s12185-015-1740-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/08/2015] [Accepted: 01/15/2015] [Indexed: 02/04/2023]
Abstract
Human malignancies progress through a multistep process that includes the development of critical somatic mutations over the clinical course. Recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations in hematological malignancies and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are thought to originate directly from differentiated mature lymphocytes; however, recent compelling data have shown that primitive HSCs and hematopoietic progenitor cells contribute to the pathogenesis of mature lymphoid malignancies. Several representative mutations of hematological malignancies have been identified within the HSCs of CLL and lymphoma patients, indicating that the self-renewing long-lived fraction of HSCs can serve as a reservoir for the development of oncogenic events. Novel mice models have been established as human mature lymphoma models, in which specific oncogenic events target the HSCs and immature progenitor cells. These data collectively suggest that HSCs can be the cellular target involved in the accumulation of oncogenic events in the pathogenesis of mature lymphoid and myeloid malignancies.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Toshihiro Miyamoto
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
39
|
Kostopoulos IV, Paterakis G, Papadimitriou K, Pavlidis D, Tsitsilonis OE, Papadhimitriou SI. Immunophenotypic analysis reveals heterogeneity and common biologic aspects in monoclonal B-cell lymphocytosis. Genes Chromosomes Cancer 2014; 54:210-21. [PMID: 25533355 DOI: 10.1002/gcc.22234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/28/2014] [Indexed: 02/02/2023] Open
Abstract
Monoclonal B-cell lymphocytosis (MBL) is the presence of small B-cell clones in the peripheral blood of healthy subjects. Most MBL have the characteristic phenotype of chronic lymphocyte leukemia (chronic lymphocytic leukemia (CLL)-like MBL), and depending on the number of monoclonal B-cells, may characterize a preclinical stage of the CLL. However, there are also MBL with an atypical (CD5(+) CD20(+/bright) CD23(dim/-) ) or a CD5(neg) phenotype, which remain largely unexplored. We performed an extended immunophenotypic, cytogenetic, and hematologic analysis in 75 CLL-like, 39 atypical, 50 CD5(neg) , and 7 biphenotypic MBL cases to detect differences or similarities among the MBL subsets. The phenotypic analysis showed expression variations in many surface markers and a wide spectrum of disease-specific phenotypes within each MBL subtype. Interphase fluorescent in situ hybridization analysis showed a different panel of aberrations according to the phenotype. Overall, del(13q14) and +12 were the most common abnormalities (39%), whereas del(11q13), del(17p13), and del(6q23) were detected only in 3, 1, and 0 cases, respectively. A comparison of MBL with overt chronic lymphoproliferations revealed common aspects in the preclinical state, regarding both the kind of cytogenetic aberrations detected and the lymphocyte composition. Our findings highlight not only the heterogeneity among MBL subsets but also indicate common biologic features which differentiate MBL from clinical disease.
Collapse
Affiliation(s)
- Ioannis V Kostopoulos
- Haematology Laboratory, "G. Gennimatas" Athens Regional General Hospital, Athens, Greece; Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
40
|
Apollonio B, Bertilaccio MTS, Restuccia U, Ranghetti P, Barbaglio F, Ghia P, Caligaris-Cappio F, Scielzo C. From a 2DE-gel spot to protein function: lesson learned from HS1 in chronic lymphocytic leukemia. J Vis Exp 2014:e51942. [PMID: 25350848 DOI: 10.3791/51942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The identification of molecules involved in tumor initiation and progression is fundamental for understanding disease's biology and, as a consequence, for the clinical management of patients. In the present work we will describe an optimized proteomic approach for the identification of molecules involved in the progression of Chronic Lymphocytic Leukemia (CLL). In detail, leukemic cell lysates are resolved by 2-dimensional Electrophoresis (2DE) and visualized as "spots" on the 2DE gels. Comparative analysis of proteomic maps allows the identification of differentially expressed proteins (in terms of abundance and post-translational modifications) that are picked, isolated and identified by Mass Spectrometry (MS). The biological function of the identified candidates can be tested by different assays (i.e. migration, adhesion and F-actin polymerization), that we have optimized for primary leukemic cells.
Collapse
Affiliation(s)
- Benedetta Apollonio
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute; Department of Haemato-Oncology, King's College London
| | | | | | - Pamela Ranghetti
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute
| | - Federica Barbaglio
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute
| | - Paolo Ghia
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute; Università Vita-Salute San Raffaele
| | - Federico Caligaris-Cappio
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute; Università Vita-Salute San Raffaele
| | - Cristina Scielzo
- Division of Molecular Oncology, IRCCS, San Raffaele Scientific Institute;
| |
Collapse
|
41
|
Mele S, Devereux S, Ridley AJ. Rho and Rap guanosine triphosphatase signaling in B cells and chronic lymphocytic leukemia. Leuk Lymphoma 2014; 55:1993-2001. [PMID: 24237579 DOI: 10.3109/10428194.2013.866666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chronic lymphocytic leukemia (CLL) cells proliferate predominantly in niches in the lymph nodes, where signaling from the B cell receptor (BCR) and the surrounding microenvironment are critical for disease progression. In addition, leukemic cells traffic constantly from the bloodstream into the lymph nodes, migrate within lymphatic tissues and egress back to the bloodstream. These processes are driven by chemokines and their receptors, and depend on changes in cell migration and integrin-mediated adhesion. Here we describe how Rho and Rap guanosine triphosphatases (GTPases) contribute to both BCR signaling and chemokine receptor signaling, particularly by regulating cytoskeletal dynamics and integrin activity. We propose that new inhibitors of BCR-activated kinases are likely to affect CLL cell trafficking via Rho and Rap GTPases, and that upstream regulators or downstream effectors could be good targets for therapeutic intervention in CLL.
Collapse
Affiliation(s)
- Silvia Mele
- Randall Division of Cell and Molecular Biophysics, King's College London , London , UK
| | | | | |
Collapse
|
42
|
Hematopoietic stem cell aging and chronic lymphocytic leukemia pathogenesis. Int J Hematol 2014; 100:335-40. [PMID: 25100497 DOI: 10.1007/s12185-014-1651-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 01/15/2023]
Abstract
Human malignancies develop through the multistep acquisition of critical somatic mutations during the clinical course. Regarding hematological malignancies, recent novel findings have indicated that hematopoietic stem cells (HSCs), which have the potential to self-renew and differentiate into multilineage hematopoietic cells, are an important cellular target for the accumulation of critical somatic mutations and play a central role in myeloid malignancy development. In contrast to myeloid malignancies, mature lymphoid malignancies, such as chronic lymphocytic leukemia (CLL), are considered to directly originate from differentiated mature lymphocytes; however, we previously reported that the propensity to generate clonal B cells had already been acquired at the HSC stage in CLL patients. Similarly, HSC involvement has been reported in the pathogenesis of mature T cell lymphomas. These studies indicate that, in mature lymphoid, if not all, malignancies, HSCs should be considered as the critical cellular target in the oncogenic process. The prevalence of these hematological malignancies dramatically increases with age, and the effect of aging HSCs should thus be taken into account when investigating the stepwise malignant transformation process of these age-associated malignancies.
Collapse
|
43
|
Correia RP, Silva FAM, Bacal NS, Campregher PV, Hamerschlak N, Amarante-Mendes GP. [Not Available]. Rev Bras Hematol Hemoter 2014; 36:60-4. [PMID: 24624038 PMCID: PMC3948668 DOI: 10.5581/1516-8484.20140015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/16/2013] [Indexed: 12/03/2022] Open
Abstract
The role of T-cells in the pathogenesis of chronic lymphocytic leukemia has recently gained much attention due to the importance of the constant interaction between neoplastic B-cells with microenvironment substratum and T-cells. It is believed that these interactions modulate the clinical course of the disease, mainly through the regulation of the expansion, differentiation, and survival of chronic lymphocytic leukemia B-cells. Importantly, this crosstalk may also change the number, function, and memory phenotype of normal T-cells, thereby altering the amplitude and/or efficiency of adaptive immunity in chronic lymphocytic leukemia patients. The present study presents an overview on important aspects of this immunological crosstalk, particularly on the abnormalities of chronic lymphocytic leukemia B-cells and the alterations in normal T-cells, with focus on the CD4 memory T-cell compartment that could offer survival signals to chronic lymphocytic leukemia B-cell clone(s) and contribute to the establishment and progression of the disease. The authors believe that understanding the biological consequences of the interaction between normal T- and neoplastic B-cells in chronic lymphocytic leukemia may allow for improvements in the prognostic information and therapeutic approaches for this disease. © 2014 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. All rights reserved.
Collapse
Affiliation(s)
- Rodolfo Patussi Correia
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Hospital Israelita Albert Einstein (HIAE), São Paulo, SP, Brazil.
| | | | - Nydia Strachman Bacal
- Hospital Israelita Albert Einstein (HIAE), São Paulo, SP, Brazil; Centro de Hematologia de São Paulo (CHSP), São Paulo, SP, Brazil
| | | | | | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT), Brazil
| |
Collapse
|
44
|
Caraballo JM, Acosta JC, Cortés MA, Albajar M, Gómez-Casares MT, Batlle-López A, Cuadrado MA, Onaindia A, Bretones G, Llorca J, Piris MA, Colomer D, León J. High p27 protein levels in chronic lymphocytic leukemia are associated to low Myc and Skp2 expression, confer resistance to apoptosis and antagonize Myc effects on cell cycle. Oncotarget 2014; 5:4694-708. [PMID: 25051361 PMCID: PMC4148092 DOI: 10.18632/oncotarget.2100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/09/2014] [Indexed: 12/29/2022] Open
Abstract
Myc (c-Myc) counteracts p27 effects, and low p27 usually correlates with high Myc expression in human cancer. However there is no information on the co-expression of both genes in chronic lymphocytic leukemia (CLL). We found a lack of correlation between RNA and protein levels of p27 and Myc in CLL cells, so we determined the protein levels by immunoblot in 107 cases of CLL. We observed a high p27 protein expression in CLL compared to normal B cells. Ectopic p27 expression in a CLL-derived cell line resulted in cell death resistance. Surprisingly, Myc expression was very low or undetectable in most CLL cases analyzed, with a clear correlation between high p27 and low Myc protein levels. This was associated with low Skp2 expression, which is consistent with the Skp2 role in p27 degradation and with SKP2 being a Myc target gene. High Myc expression did not correlate with leukemia progression, despite that cell cycle-related Myc target genes were upregulated. However, biochemical analysis showed that the high p27 levels inhibited cyclin-Cdk complexes even in Myc expressing CLL cells. Our data suggest that the combination of high p27 and low Myc is a marker of CLL cells which is mediated by Skp2.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Apoptosis/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle/genetics
- Cell Line, Tumor
- Cyclin-Dependent Kinase Inhibitor p27/genetics
- Cyclin-Dependent Kinase Inhibitor p27/metabolism
- Cyclins/genetics
- Cyclins/metabolism
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Immunoblotting
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Microscopy, Fluorescence
- Middle Aged
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- S-Phase Kinase-Associated Proteins/genetics
- S-Phase Kinase-Associated Proteins/metabolism
Collapse
Affiliation(s)
- Juan M. Caraballo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-Sodercan, and Dpt. of. Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Juan C. Acosta
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-Sodercan, and Dpt. of. Biología Molecular, Universidad de Cantabria, Santander, Spain
- Present address: Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, UK
| | | | - Marta Albajar
- Servicio de Hematologia, Hospital Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | | | - Ana Batlle-López
- Servicio de Hematologia, Hospital Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - M. Angeles Cuadrado
- Servicio de Hematologia, Hospital Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Arantza Onaindia
- Servicio de Anatomía Patológica, Hospital Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Gabriel Bretones
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-Sodercan, and Dpt. of. Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Javier Llorca
- Group of Epidemiology and Computational Biology, Universidad de Cantabria-IDIVAL, Santander, Spain and CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Miguel A. Piris
- Servicio de Anatomía Patológica, Hospital Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-Sodercan, and Dpt. of. Biología Molecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
45
|
PKC-β as a therapeutic target in CLL: PKC inhibitor AEB071 demonstrates preclinical activity in CLL. Blood 2014; 124:1481-91. [PMID: 25001469 DOI: 10.1182/blood-2014-05-574830] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeting B-cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL) has been successful with durable remissions observed with several targeted therapeutics. Protein kinase C-β (PKC-β) is immediately downstream of BCR and has been shown to be essential to CLL cell survival and proliferation in vivo. We therefore evaluated sotrastaurin (AEB071), an orally administered potent PKC inhibitor, on CLL cell survival both in vitro and in vivo. AEB071 shows selective cytotoxicity against B-CLL cells in a dose-dependent manner. Additionally, AEB071 attenuates BCR-mediated survival pathways, inhibits CpG-induced survival and proliferation of CLL cells in vitro, and effectively blocks microenvironment-mediated survival signaling pathways in primary CLL cells. Furthermore, AEB071 alters β-catenin expression, resulting in decreased downstream transcriptional genes as c-Myc, Cyclin D1, and CD44. Lastly, our preliminary in vivo studies indicate beneficial antitumor properties of AEB071 in CLL. Taken together, our results indicate that targeting PKC-β has the potential to disrupt signaling from the microenvironment contributing to CLL cell survival and potentially drug resistance. Future efforts targeting PKC with the PKC inhibitor AEB071 as monotherapy in clinical trials of relapsed and refractory CLL patients are warranted.
Collapse
|
46
|
Bhattacharya N, Reichenzeller M, Caudron-Herger M, Haebe S, Brady N, Diener S, Nothing M, Döhner H, Stilgenbauer S, Rippe K, Mertens D. Loss of cooperativity of secreted CD40L and increased dose-response to IL4 on CLL cell viability correlates with enhanced activation of NF-kB and STAT6. Int J Cancer 2014; 136:65-73. [PMID: 24828787 DOI: 10.1002/ijc.28974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 04/17/2014] [Indexed: 02/02/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells fail to enter apoptosis in vivo as opposed to their non-malignant B-lymphocyte counterparts. The ability of CLL cells to escape apoptosis is highly dependent on their microenvironment. Compared to non-malignant B cells, CLL cells are more responsive to complex stimuli that can be reproduced in vitro by the addition of cytokines. To understand the molecular mechanism of the environment-dependent anti-apoptotic signaling circuitry of CLL cells, we quantified the effect of the SDF-1, BAFF, APRIL, anti-IgM, interleukin-4 (IL4) and secreted CD40L (sCD40L) on the survival of in vitro cultured CLL cells and found IL4 and sCD40L to be most efficient in rescuing CLL cells from apoptosis. In quantitative dose-response experiments using cell survival as readout, the binding affinity of IL4 to its receptor was similar between malignant and non-malignant cells. However, the downstream signaling in terms of the amount of STAT6 and its degree of phosphorylation was highly stimulated in CLL cells. In contrast, the response to sCD40L showed a loss of cooperative binding in CLL cells but displayed a largely increased ligand binding affinity. Although a high-throughput microscopy analysis did not reveal a significant difference in the spatial CD40 receptor organization, the downstream signaling showed an enhanced activation of the NF-kB pathway in the malignant cells. Thus, we propose that the anti-apoptotic phenotype of CLL involves a sensitized response for IL4 dependent STAT6 phosphorylation, and an activation of NF-kB signaling due to an increased affinity of sCD40L to its receptor.
Collapse
Affiliation(s)
- Nupur Bhattacharya
- Cooperation Unit, "Mechanisms of Leukemogenesis", University of Ulm, Ulm, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hill RJ, Lou Y, Tan SL. B-cell antigen receptor signaling in chronic lymphocytic leukemia: therapeutic targets and translational opportunities. Int Rev Immunol 2014; 32:377-96. [PMID: 23886341 DOI: 10.3109/08830185.2013.818141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
B-cell chronic lymphocytic leukemia (CLL) is characterized by clonally expanded and molecularly heterogeneous populations of B lymphocytes with impaired apoptotic mechanisms. This occurs as a result of multiple genetic and epigenetic abnormalities, including chromosomal aberrations and enhancer region hypomethylation, often impinging on intracellular signaling pathways that are essential to normal B-cell activation, proliferation, and survival. The B-cell antigen receptor (BCR) signaling is one such pathway usurped by malignant B cells, as exemplified by the early phase clinical success achieved by small-molecule agents targeting key players involved in the pathway. Such new targeted agents, including those that inhibit the function of Spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), phosphatidylinositol 3-kinases (PI3K), and B-cell lymphoma 2 (BCL-2), along with the current standard therapy comprising chemo-immunotherapies with or without B-cell depleting biologic agent rituximab (anti-CD20 monoclonal antibody), should expand the armamentarium for CLL therapy. We review the therapeutic agents currently in clinical development which target different effectors of the malignant BCR signaling, and discuss their overlapping and discriminating translational opportunities in the context of CLL treatment.
Collapse
Affiliation(s)
- Ronald J Hill
- Principia Biopharma, South San Francisco, CA 94080, USA.
| | | | | |
Collapse
|
48
|
Caligaris-Cappio F, Bertilaccio MT, Scielzo C. How the microenvironment wires the natural history of chronic lymphocytic leukemia. Semin Cancer Biol 2014; 24:43-8. [DOI: 10.1016/j.semcancer.2013.06.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/16/2022]
|
49
|
The CD37-targeted antibody-drug conjugate IMGN529 is highly active against human CLL and in a novel CD37 transgenic murine leukemia model. Leukemia 2014; 28:1501-10. [PMID: 24445867 PMCID: PMC4090271 DOI: 10.1038/leu.2014.32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/27/2013] [Accepted: 01/08/2014] [Indexed: 12/18/2022]
Abstract
Therapeutic regimens for chronic lymphocytic leukemia (CLL) have increasingly utilized monoclonal antibodies since the chimeric anti-CD20 antibody rituximab was introduced. Despite improved clinical outcomes, current CLL therapies are not curative. Therefore, antibodies with greater efficacy and novel targets are desirable. One promising target is CD37, a tetraspanin protein highly expressed on malignant B-cells in CLL and non-Hodgkin lymphoma. Although several novel CD37-directed therapeutics are emerging, detailed preclinical evaluation of these agents is limited by lack of appropriate animal models with spontaneous leukemia expressing the human CD37 (hCD37) target. To address this, we generated a murine CLL model that develops transplantable hCD37+ leukemia. Subsequently, we engrafted healthy mice with this leukemia to evaluate IMGN529, a novel hCD37-targeting antibody-drug conjugate. IMGN529 rapidly eliminated peripheral blood leukemia and improved overall survival. In contrast, the antibody component of IMGN529 could not alter disease course despite exhibiting substantial in vitro cytotoxicity. Furthermore, IMGN529 is directly cytotoxic to human CLL in vitro, depletes B-cells in patient whole blood and promotes killing by macrophages and natural killer cells. Our results demonstrate the utility of a novel mouse model for evaluating anti-human CD37 therapeutics and highlight the potential of IMGN529 for treatment of CLL and other CD37-positive B-cell malignancies.
Collapse
|
50
|
Hsa-miR-15a and Hsa-miR-16-1 expression is not related to proliferation centers abundance and other prognostic factors in chronic lymphocytic leukemia. BIOMED RESEARCH INTERNATIONAL 2013; 2013:715391. [PMID: 24392455 PMCID: PMC3874364 DOI: 10.1155/2013/715391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/04/2013] [Indexed: 12/04/2022]
Abstract
Chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) is the commonest leukemia in adults. Here, we aimed to evaluate hsa-miR-15a/hsa-miR-16-1 expression in CLL tissues by qPCR and correlate it with the other clinicopathological features and clinical outcome. 40 formalin-fixed paraffin-embedded (FFPE) lymph node samples obtained from CLL/SLL patients were classified into two categories, “PCs rich” and “typical.” We found a significant common expression level of 4 miRNAs; however, we did not find any significant relationship between PCs presence and miRNAs expression. Moreover, neither the presence of 13q deletion nor the percentage of cells carrying the deletion strictly correlated with miRNAs expression levels, although a significant number of patients with 13q deletion presented hsa-miR-16-1-3p levels below the median value in normal samples (P < 0.05). Finally, although no correlation was found between the expression of each miRNA and other clinicopathological features (Ki67, CD38, ZAP70, and IGVH@ hypermutations), the OS curves showed a positive trend in patients with miRNAs downregulation, though not statistically significant. In conclusion, we showed for the first time that all miRNAs can be successfully studied in FFPE CLL tissues and that del13q and PCs richness do not strictly correspond to miRNAs downregulation; therefore, a specific evaluation may be envisaged at least in patients enrolled in clinical trials.
Collapse
|