1
|
Huang Z, Sun K, Luo Z, Zhang J, Zhou H, Yin H, Liang Z, You J. Spleen-targeted delivery systems and strategies for spleen-related diseases. J Control Release 2024; 370:773-797. [PMID: 38734313 DOI: 10.1016/j.jconrel.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The spleen, body's largest secondary lymphoid organ, is also a vital hematopoietic and immunological organ. It is regarded as one of the most significant organs in humans. As more researchers recognize the functions of the spleen, clinical methods for treating splenic diseases and spleen-targeted drug delivery systems to improve the efficacy of spleen-related therapies have gradually developed. Many modification strategies (size, charge, ligand, protein corona) and hitchhiking strategies (erythrocytes, neutrophils) of nanoparticles (NPs) have shown a significant increase in spleen targeting efficiency. However, most of the targeted drug therapy strategies for the spleen are to enhance or inhibit the immune function of the spleen to achieve therapeutic effects, and there are few studies on spleen-related diseases. In this review, we not only provide a detailed summary of the design rules for spleen-targeted drug delivery systems in recent years, but also introduce common spleen diseases (splenic tumors, splenic injuries, and splenomegaly) with the hopes of generating more ideas for future spleen research.
Collapse
Affiliation(s)
- Ziyao Huang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Kedong Sun
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhenyu Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Hang Yin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Zhile Liang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 LongMian road, NanJing, JiangSu 211198, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Zhang Y, Shan L, Tang W, Ge Y, Li C, Zhang J. Recent Discovery and Development of Inhibitors that Target CDK9 and Their Therapeutic Indications. J Med Chem 2024; 67:5185-5215. [PMID: 38564299 DOI: 10.1021/acs.jmedchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
CDK9 is a cyclin-dependent kinase that plays pivotal roles in multiple cellular functions including gene transcription, cell cycle regulation, DNA damage repair, and cellular differentiation. Targeting CDK9 is considered an attractive strategy for antitumor therapy, especially for leukemia and lymphoma. Several potent small molecule inhibitors, exemplified by TG02 (4), have progressed to clinical trials. However, many of them face challenges such as low clinical efficacy and multiple adverse reactions and may necessitate the exploration of novel strategies to lead to success in the clinic. In this perspective, we present a comprehensive overview of the structural characteristics, biological functions, and preclinical status of CDK9 inhibitors. Our focus extends to various types of inhibitors, including pan-inhibitors, selective inhibitors, dual-target inhibitors, degraders, PPI inhibitors, and natural products. The discussion encompasses chemical structures, structure-activity relationships (SARs), biological activities, selectivity, and therapeutic potential, providing detailed insight into the diverse landscape of CDK9 inhibitors.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
- West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031 Sichuan, China
| | - Wentao Tang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Yating Ge
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - ChengXian Li
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China
| |
Collapse
|
3
|
Mounika P, Gurupadayya B, Kumar HY, Namitha B. An Overview of CDK Enzyme Inhibitors in Cancer Therapy. Curr Cancer Drug Targets 2023; 23:603-619. [PMID: 36959160 DOI: 10.2174/1568009623666230320144713] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 03/25/2023]
Abstract
The ability to address the cell cycle in cancer therapy brings up new medication development possibilities. Cyclin-dependent kinases are a group of proteins that control the progression of the cell cycle. The CDK/cyclin complexes are activated when specific CDK sites are phosphorylated. Because of their non-selectivity and severe toxicity, most first-generation CDK inhibitors (also known as pan-CDK inhibitors) have not been authorized for clinical usage. Despite this, significant progress has been made in allowing pan-CDK inhibitors to be employed in clinical settings. Pan-CDK inhibitors' toxicity and side effects have been lowered in recent years because of the introduction of combination therapy techniques. As a result of this, pan-CDK inhibitors have regained a lot of clinical potential as a combination therapy approach. The CDK family members have been introduced in this overview, and their important roles in cell cycle control have been discussed. Then, we have described the current state of CDK inhibitor research, with a focus on inhibitors other than CDK4/6. We have mentioned first-generation pan-CDKIs, flavopiridol and roscovitine, as well as second-generation CDKIs, dinaciclib, P276-00, AT7519, TG02, roniciclib, and RGB-286638, based on their research phases, clinical trials, and cancer targeting. CDKIs are CDK4/6, CDK7, CDK9, and CDK12 inhibitors. Finally, we have looked into the efficacy of CDK inhibitors and PD1/PDL1 antibodies when used together, which could lead to the development of a viable cancer treatment strategy.
Collapse
Affiliation(s)
- Peddaguravagari Mounika
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Gurupadayya
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Honnavalli Yogish Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Bannimath Namitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| |
Collapse
|
4
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
5
|
Clinical Efficacy of Bendamustine Plus Rituximab (BR) for B-cell Relevant Indolent Non-Hodgkin’s Lymphoma and Role of β2-MG in Predicting the Efficacy of BR Regimen: A Real-World Retrospective Study in China. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1080879. [PMID: 35096126 PMCID: PMC8794694 DOI: 10.1155/2022/1080879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Background. Domestic bendamustine has been approved for appearing on the market in China in the past two years. The report on bendamustine plus rituximab (BR) in the treatment of Chinese B-cell-associated indolent non-Hodgkin’s lymphoma (iNHL) has not yet been published. This study probed into clinical efficacy of the BR regimen for B-cell-associated iNHL in China as well as the value of β2-microglobulin (β2-MG) as a prognostic factor. Methods. We retrospectively analyzed clinical data of 73 B-cell-associated iNHL patients who received BR treatment in The First Affiliated Hospital, College of Medicine, Zhejiang University from January 2020 to January 2021, including clinical characteristics, therapies, therapeutic efficacy, and prognosis-related factors. Thirty-three patients (45.2%) did not receive any other treatment before the BR regimen, and other patients received CHOP, R-CHOP, and other regimens in the past. The cutoff date for follow-up was May 2021. Clinical characteristics of patients were analyzed. The clinical efficacy of the BR regimen was evaluated. Differences of β2-MG expression before and after treatment were analyzed between the CR+PR group and the SD+PD group. Main outcomes were progression-free survival (PFS) and overall survival (OS). A multivariate Cox regression model was taken to analyze prognostic factors relative to survival rate of patients, and adverse events (AEs) during treatment. Results. The objective response rate (ORR) of B-cell-associated iNHL patients who received BR regimen as first-/multiline treatment was 79.5%, with complete response (CR) of 37.0%, partial response (PR) of 42.5%, median PFS of 12.1 months (95% confidence interval (CI): 10.9-13.2), and median OS of 15.5 months (95% CI: 14.8-16.1). Before treatment, there was no statistical significance in the β2-MG level between the CR+PR group and the SD+PD group (
). After treatment, the β2-MG level in the CR group was noticeably lower than that in the SD+PD group (
). The β2-MG level in the CR+PR group decreased conspicuously after treatment (
). The β2-MG level in the SD+PD group after treatment was not notably different from that before treatment (
). According to the median expression level of β2-MG before treatment, patients were divided into two groups. The average PFS of the low expression group was
months, which was longer than the high expression group (
months), but the difference between the groups was not statistically significant (
). Multivariate Cox regression analysis showed that B-cell-associated iNHL subtype was the independent prognostic marker most likely to affect PFS of patients (
). Incidence of any grade of AEs in all patients was 32.9% (24/73). Conclusion. B-cell-associated iNHL patients who received BR regimen had favorable clinical efficacy and were tolerable to AEs. Though the β2-MG level in this study could not be used to predict clinical outcome, a lower level before treatment seemed to be implicated in better survival outcomes of patients. Our research also unraveled that B-cell-associated iNHL subtype may be a key factor to patient’s prognosis. Overall, this study offers some important insights into clinical application of the BR regimen for Chinese B-cell-associated iNHL patients.
Collapse
|
6
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Han X, Song N, Saidahmatov A, Wang P, Wang Y, Hu X, Kan W, Zhu W, Gao L, Zeng M, Wang Y, Li C, Li J, Liu H, Zhou Y, Wang J. Rational Design and Development of Novel CDK9 Inhibitors for the Treatment of Acute Myeloid Leukemia. J Med Chem 2021; 64:14647-14663. [PMID: 34477384 DOI: 10.1021/acs.jmedchem.1c01148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CDK9 is an essential drug target correlated to the development of acute myeloid leukemia (AML). Starting from the hit compound 10, which was discovered through a screening of our in-house compound library, the structural modifications were carried out based on the bioisosterism and scaffold hopping strategies. Consequently, compound 37 displayed the optimal CDK9 inhibitory activity with an IC50 value of 5.41 nM, which was nearly 1500-fold higher than compound 10. In addition, compound 37 exhibited significant antiproliferative activity in broad cancer cell lines. Further investigation of in vivo properties demonstrated that compound 37 could be orally administrated with an acceptable bioavailability (F = 33.7%). In MV-4-11 subcutaneous xenograft mouse model, compound 37 (7.5 mg/kg) could significantly suppress the tumor progression with a T/C value of 27.80%. Compound 37 represents a promising lead compound for the development of a novel class of CDK9 inhibitors for the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ning Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Abdusaid Saidahmatov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Peipei Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Xiaobei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Mingjie Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yujie Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan 528400, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Izadi S, Nikkhoo A, Hojjat-Farsangi M, Namdar A, Azizi G, Mohammadi H, Yousefi M, Jadidi-Niaragh F. CDK1 in Breast Cancer: Implications for Theranostic Potential. Anticancer Agents Med Chem 2021; 20:758-767. [PMID: 32013835 DOI: 10.2174/1871520620666200203125712] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer has been identified as one of the main cancer-related deaths among women during some last decades. Recent advances in the introduction of novel potent anti-cancer therapeutics in association with early detection methods led to a decrease in the mortality rate of breast cancer. However, the scenario of breast cancer is yet going on and further improvements in the current anti-cancer therapeutic approaches are needed. Several factors are present in the tumor microenvironment which help to cancer progression and suppression of anti-tumor responses. Targeting these cancer-promoting factors in the tumor microenvironment has been suggested as a potent immunotherapeutic approach for cancer therapy. Among the various tumorsupporting factors, Cyclin-Dependent Kinases (CDKs) are proposed as a novel promising target for cancer therapy. These factors in association with cyclins play a key role in cell cycle progression. Dysregulation of CDKs which leads to increased cell proliferation has been identified in various cancers, such as breast cancer. Accordingly, the development and use of CDK-inhibitors have been associated with encouraging results in the treatment of breast cancer. However, it is unknown that the inhibition of which CDK is the most effective strategy for breast cancer therapy. Since the selective blockage of CDK1 alone or in combination with other therapeutics has been associated with potent anti-cancer outcomes, it is suggested that CDK1 may be considered as the best CDK target for breast cancer therapy. In this review, we will discuss the role of CDK1 in breast cancer progression and treatment.
Collapse
Affiliation(s)
- Sepideh Izadi
- 1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Nikkhoo
- 1Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Zhang M, Zhang L, Hei R, Li X, Cai H, Wu X, Zheng Q, Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res 2021; 11:1913-1935. [PMID: 34094661 PMCID: PMC8167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023] Open
Abstract
Dysregulated cell division, which leads to aberrant cell proliferation, is one of the key hallmarks of cancer. Therefore, therapeutic targets that block cell division would be effective for cancer treatment. Cell division is mainly controlled by a complex composed of cyclin and cyclin dependent kinases (CDKs). To date, the CDK inhibitors (CDKIs), specifically the ones that block the enzyme activity of CDK4 and CDK6 (CDK4/6), have been approved by FDA for the treatment of metastatic hormone receptor positive breast cancer. However, due to the non-selectivity and significant toxicity, most of the first generation CDK inhibitors (so called pan-CDK inhibitors that target several CDKs), have not been approved for clinical application. Despite this, great efforts and progress have been made to enable pan-CDK inhibitors application in the clinical setting. Notably, the development of combination therapy strategies in recent years has made it possible to reduce the toxicity and side effects of pan-CDK inhibitors. Thus, as a combination therapy approach, pan-CDK inhibitors regain great potential in clinical application. In this review, we introduced the CDK family members and discussed their major functions in cell cycle controlling. Then, we summarized the research progress regarding CDK inhibitors, especially those other than CDK4/6 inhibitors. We reviewed first-generation pan-CDKIs Flavopiridol and Roscovitine, and second-generation CDKIs Dinaciclib, P276-00, AT7519, TG02, Roniciclib, RGB-286638 by focusing on their developing stages, clinical trials and targeting cancers. The specific CDKIs, which targets to increase specificity and decrease the side effects, were also discussed. These CDKIs include CDK4/6, CDK7, CDK9, and CDK12/13 inhibitors. Finally, the efficacy and discrepancy of combination therapy with CDK inhibitors and PD1/PDL1 antibodies were analyzed, which might give insights into the development of promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Lingxian Zhang
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | - Ruoxuan Hei
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Xiao Li
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| | | | - Xuan Wu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, China
- Shenzhen Academy of Peptide Targeting Technology at Pingshan, and Shenzhen Tyercan Bio-pharm Co., Ltd.Shenzhen 518118, China
| | - Cheguo Cai
- Department of Orthopaedics, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan UniversityWuhan 430071, China
| |
Collapse
|
10
|
Yuan K, Wang X, Dong H, Min W, Hao H, Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm Sin B 2021; 11:30-54. [PMID: 33532179 PMCID: PMC7838032 DOI: 10.1016/j.apsb.2020.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/02/2023] Open
Abstract
The sustained cell proliferation resulting from dysregulation of the cell cycle and activation of cyclin-dependent kinases (CDKs) is a hallmark of cancer. The inhibition of CDKs is a highly promising and attractive strategy for the development of anticancer drugs. In particular, third-generation CDK inhibitors can selectively inhibit CDK4/6 and regulate the cell cycle by suppressing the G1 to S phase transition, exhibiting a perfect balance between anticancer efficacy and general toxicity. To date, three selective CDK4/6 inhibitors have received approval from the U.S. Food and Drug Administration (FDA), and 15 CDK4/6 inhibitors are in clinical trials for the treatment of cancers. In this perspective, we discuss the crucial roles of CDK4/6 in regulating the cell cycle and cancer cells, analyze the rationale for selectively inhibiting CDK4/6 for cancer treatment, review the latest advances in highly selective CDK4/6 inhibitors with different chemical scaffolds, explain the mechanisms associated with CDK4/6 inhibitor resistance and describe solutions to overcome this issue, and briefly introduce proteolysis targeting chimera (PROTAC), a new and revolutionary technique used to degrade CDK4/6.
Collapse
Key Words
- AKT, protein kinase B
- AML, acute myeloid leukemia
- CDK4/6
- CDKs, cyclin-dependent kinases
- CIP/KIP, cyclin-dependent kinase inhibitor 1/kinase inhibitory protein
- CKIs, cyclin-dependent kinase inhibitors
- CPU, China Pharmaceutical University
- CRPC, castration-resistant prostate cancer
- Cancer
- Cell cycle
- Drug resistance
- ER, estrogen receptor
- ERK, extracellular regulated protein kinases
- FDA, U.S. Food and Drug Administration
- FLT, fms-like tyrosine kinase
- HER2, human epidermal growth factor receptor 2
- INK4, inhibitors of CDK4
- JAK, janus kinase
- MCL, mantle cell lymphoma
- MM, multiple myeloma
- NSCLC, non-small cell lung cancer
- ORR, overall response rates
- PDK1, 3-phosphoinositide-dependent protein kinase 1
- PFS, progression-free survival
- PI3K, phosphatidylinositol 3-hydroxy kinase
- PR, progesterone receptor
- PROTAC
- PROTAC, proteolysis targeting chimera
- RB, retinoblastoma protein
- SPH, Shanghai Pharmaceuticals Holding Co., Ltd.
- STATs, signal transducers and activators of transcription
- Selectivity
- UNISA, University of South Australia
Collapse
Affiliation(s)
- Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haojie Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Chou J, Quigley DA, Robinson TM, Feng FY, Ashworth A. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy. Cancer Discov 2020; 10:351-370. [DOI: 10.1158/2159-8290.cd-19-0528] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/29/2019] [Accepted: 11/04/2019] [Indexed: 11/16/2022]
|
13
|
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy. Oncotarget 2019; 10:1250-1265. [PMID: 30815228 PMCID: PMC6383813 DOI: 10.18632/oncotarget.26579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, affecting approximately 21,000 people annually (nearly 11,000 deaths) in the United States. B-cell lymphoma 2 (BCL-2) family proteins, notably myeloid cell leukemia-1 (MCL-1), have been associated with both the development and persistence of AML. MCL-1 is one of the predominant BCL-2 family members expressed in samples from patients with untreated AML. MCL-1 is a critical cell survival factor for cancer and contributes to chemotherapy resistance by directly affecting cell death pathways. Here, we review the role of MCL-1 in AML and the mechanisms by which the potent cyclin-dependent kinase 9 inhibitor alvocidib, through regulation of MCL-1, may serve as a rational therapeutic approach against the disease.
Collapse
Affiliation(s)
| | | | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Abstract
Inhibition of CDKs is an attractive approach to cancer therapy due to their vital role in cell growth and transcription. Pan-CDK inhibitors have shown some clinical benefit, and trials are ongoing. Selective CDK4 and CDK6 inhibitors have been licensed for the treatment of hormone responsive, RB-positive breast cancer in combination with antihormonal agents. Selective inhibitors of CDKs 5, 7, 8, 9 and 12 have been identified across a range of chemotypes.
Collapse
|
15
|
Ahmed M, Zhang L, Nomie K, Lam L, Wang M. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget 2018; 7:58638-58648. [PMID: 27449094 PMCID: PMC5295458 DOI: 10.18632/oncotarget.10716] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/01/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations and epigenetic alterations are key events in transforming normal cells to cancer cells. Mantle cell lymphoma (MCL), a non-Hodgkin's lymphoma of the B-cell, is an aggressive malignancy with poor prognosis especially for those patients who are resistant to the frontline drugs. There is a great need to describe the molecular basis and mechanism of drug resistance in MCL to develop new strategies for treatment. We reviewed frequent somatic mutations and mutations involving the B-cell pathways in MCL and discussed clinical trials that attempted to disrupt these gene pathways and/or epigenetic events. Recurrent gene mutations were discussed in the light of prognostic and therapeutic opportunity and also the challenges of targeting these lesions. Mutations in the ATM, CCND1, TP53, MLL2, TRAF2 and NOTCH1 were most frequently encountered in mantle cell lymphoma. Translational models should be built that would assess mutations longitudinally to identify important compensatory, pro-survival and anti-apoptic pathways and actionable genetic targets.
Collapse
Affiliation(s)
- Makhdum Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Health Science Centre, Houston, Texas, USA
| | - Leo Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Lam
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Inamdar AA, Goy A, Ayoub NM, Attia C, Oton L, Taruvai V, Costales M, Lin YT, Pecora A, Suh KS. Mantle cell lymphoma in the era of precision medicine-diagnosis, biomarkers and therapeutic agents. Oncotarget 2018; 7:48692-48731. [PMID: 27119356 PMCID: PMC5217048 DOI: 10.18632/oncotarget.8961] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/10/2016] [Indexed: 12/15/2022] Open
Abstract
Despite advances in the development of clinical agents for treating Mantle Cell Lymphoma (MCL), treatment of MCL remains a challenge due to complexity and frequent relapse associated with MCL. The incorporation of conventional and novel diagnostic approaches such as genomic sequencing have helped improve understanding of the pathogenesis of MCL, and have led to development of specific agents targeting signaling pathways that have recently been shown to be involved in MCL. In this review, we first provide a general overview of MCL and then discuss about the role of biomarkers in the pathogenesis, diagnosis, prognosis, and treatment for MCL. We attempt to discuss major biomarkers for MCL and highlight published and ongoing clinical trials in an effort to evaluate the dominant signaling pathways as drugable targets for treating MCL so as to determine the potential combination of drugs for both untreated and relapse/refractory cases. Our analysis indicates that incorporation of biomarkers is crucial for patient stratification and improve diagnosis and predictability of disease outcome thus help us in designing future precision therapies. The evidence indicates that a combination of conventional chemotherapeutic agents and novel drugs designed to target specific dysregulated signaling pathways can provide the effective therapeutic options for both untreated and relapse/refractory MCL.
Collapse
Affiliation(s)
- Arati A Inamdar
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Christen Attia
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Lucia Oton
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Varun Taruvai
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Mark Costales
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Yu-Ting Lin
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andrew Pecora
- Clinical Divisions, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
17
|
Dreyling M, Aurer I, Cortelazzo S, Hermine O, Hess G, Jerkeman M, Le Gouill S, Ribrag V, Trněný M, Visco C, Walewski J, Zaja F, Zinzani PL. Treatment for patients with relapsed/refractory mantle cell lymphoma: European-based recommendations. Leuk Lymphoma 2017; 59:1814-1828. [DOI: 10.1080/10428194.2017.1403602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Dreyling
- Medizinische Klinik und Poliklinik III, Klinikum der Universität München, LMU München, Germany
| | - Igor Aurer
- Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Olivier Hermine
- Department of Adult Haematology, Paris Descartes University, Paris, France
| | - Georg Hess
- University Medical School of the Johannes Gutenberg-University, Mainz, Germany
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | | | | | - Marek Trněný
- General Hospital, Charles University, Praha, Czech Republic
| | | | - Jan Walewski
- Maria Sklodowska-Curie Institute Oncology Centre, Warszawa, Poland
| | - Francesco Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari “Carlo Melzi,” University of Udine, Udine, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology “Seràgnoli,” University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
McBride A, Trifilio S, Baxter N, Gregory TK, Howard SC. Managing Tumor Lysis Syndrome in the Era of Novel Cancer Therapies. J Adv Pract Oncol 2017; 8:705-720. [PMID: 30333933 PMCID: PMC6188097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract Tumor lysis syndrome (TLS) is a potentially life-threatening emergency that can develop rapidly after the release of intracellular contents from lysed malignant cells. The advent of novel and targeted therapies that have improved tumor-killing efficacy has the potential to increase the risk of TLS when used as part of front-line therapy. A recent review of TLS risk in patients with hematologic malignancies treated with newer targeted agents highlighted the need to revisit TLS risk stratification and to describe the practical challenges of TLS prevention, treatment, and monitoring. Although this era of rapid development of novel cancer therapies provides new hope for patients with hematologic malignancies, it is essential to be prepared for TLS because monitoring and prophylaxis can almost always prevent severe and life-threatening consequences. Heightened awareness of the development of TLS with novel and targeted agents, accompanied by aggressive hydration and rational, risk-appropriate management, are the keys to successful outcomes.
Collapse
Affiliation(s)
- Ali McBride
- The University of Arizona Cancer Center, Tucson, Arizona
| | | | - Nadine Baxter
- University of Arkansas for Medical Sciences, Myeloma Institute for Research and Therapy, Little Rock, Arkansas
| | - Tara K Gregory
- Colorado Blood Cancer Institute at Presbyterian St. Luke's Medical Center, Denver, Colorado
| | - Scott C Howard
- University of Memphis, School of Health Studies, Memphis, Tennessee
| |
Collapse
|
19
|
Cheson BD, Heitner Enschede S, Cerri E, Desai M, Potluri J, Lamanna N, Tam C. Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia with Novel Targeted Agents. Oncologist 2017; 22:1283-1291. [PMID: 28851760 PMCID: PMC5679833 DOI: 10.1634/theoncologist.2017-0055] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Tumor lysis syndrome (TLS) is an uncommon but potentially life-threatening complication associated with the treatment of some cancers. If left untreated, TLS may result in acute renal failure, cardiac dysrhythmia, neurologic complications, seizures, or death. Tumor lysis syndrome is most commonly observed in patients with hematologic malignancies with a high proliferation rate undergoing treatment with very effective therapies. In chronic lymphocytic leukemia (CLL), historically, TLS has been observed less often, owing to a low proliferation rate and slow response to chemotherapy. New targeted therapies have recently been approved in the treatment of CLL, including the oral kinase inhibitors, idelalisib and ibrutinib, and the B-cell lymphoma-2 protein inhibitor, venetoclax. Several others are also under development, and combination strategies of these agents are being explored. This review examines the diagnosis, prevention, and management of TLS and summarizes the TLS experience in CLL clinical trials with newer targeted agents. Overall, the risk of TLS is small, but the consequences may be fatal; therefore, patients should be monitored carefully. Therapies capable of eliciting rapid response and combination regimens are increasingly being evaluated for treatment of CLL, which may pose a higher risk of TLS. For optimal management, patients at risk for TLS require prophylaxis and close monitoring with appropriate tests and appropriate management to correct laboratory abnormalities, which allows for safe and effective disease control. IMPLICATIONS FOR PRACTICE Tumor lysis syndrome (TLS) is a potentially fatal condition observed with hematologic malignancies, caused by release of cellular components in the bloodstream from rapidly dying tumor cells. The frequency and severity of TLS is partly dependent upon the biology of the disease and type of therapy administered. Novel targeted agents highly effective at inducing rapid cell death in chronic lymphocytic leukemia (CLL) may pose a risk for TLS in patients with tumors characterized by rapid growth, high tumor burden, and/or high sensitivity to treatment. In this review, prevention strategies and management of patients with CLL who develop TLS are described.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Disease Management
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/complications
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/prevention & control
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Purines/therapeutic use
- Quinazolinones/therapeutic use
- Risk Factors
- Sulfonamides/therapeutic use
- Tumor Burden
- Tumor Lysis Syndrome/complications
- Tumor Lysis Syndrome/diagnosis
- Tumor Lysis Syndrome/drug therapy
- Tumor Lysis Syndrome/prevention & control
Collapse
Affiliation(s)
- Bruce D Cheson
- Georgetown University Hospital, Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | | | | | | | | | - Nicole Lamanna
- Columbia University Medical Center, New York, New York, USA
| | - Constantine Tam
- St Vincent's Hospital, Melbourne, Australia
- Peter MacCallum Cancer Centre, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| |
Collapse
|
20
|
Cai Z, Liu Q. Cell Cycle Regulation in Treatment of Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:251-270. [PMID: 29282688 DOI: 10.1007/978-981-10-6020-5_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell cycle progression and cell proliferation are under precise and orchestrated control in normal cells. However, uncontrolled cell proliferation caused by aberrant cell cycle progression is a crucial characteristic of cancer. Understanding cell cycle progression and its regulation sheds light on cancer treatment. Agents targeting cell cycle regulators (such as CDKs) have been considered as promising candidates in cancer treatment. Although the first-generation pan-CDK inhibitors failed in clinical trials because of their adverse events and low efficacy, new selective CDK 4/6 inhibitors showed potent efficacy with tolerable safety in preclinical and clinical studies. Here we will review the mechanisms of cell cycle regulation and targeting key cell cycle regulators (such as CDKs) in breast cancer treatment. Particularly, we will discuss the mechanism of CDK inhibitors in disrupting cell cycle progression, the use of selective CDK4/6 inhibitors in treatment of advanced, hormone receptor (HR)-positive postmenopausal breast cancer patients, and other clinical trials that aim to extend the utilization of these agents.
Collapse
Affiliation(s)
- Zijie Cai
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Qiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
21
|
Mohanty S, Mohanty A, Sandoval N, Tran T, Bedell V, Wu J, Scuto A, Murata-Collins J, Weisenburger DD, Ngo VN. Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines. Leuk Lymphoma 2016; 58:676-688. [PMID: 27338091 DOI: 10.1080/10428194.2016.1198958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Elevated cyclin D1 (CCND1) expression levels in mantle cell lymphoma (MCL) are associated with aggressive clinical manifestations related to chemoresistance, but little is known about how this important proto-oncogene contributes to the resistance of MCL. Here, we showed that RNA interference-mediated depletion of CCND1 increased caspase-3 activities and induced apoptosis in the human MCL lines UPN-1 and JEKO-1. In vitro and xenotransplant studies revealed that the toxic effect of CCND1 depletion in MCL cells was likely due to increase in histone H2AX phosphorylation, a DNA damage marker. DNA fiber analysis suggested deregulated replication initiation after CCND1 depletion as a potential cause of DNA damage. Finally, in contrast to depletion or inhibition of cyclin-dependent kinase 4, CCND1 depletion increased chemosensitivity of MCL cells to replication inhibitors hydroxyurea and cytarabine. Our findings have an important implication for CCND1 as a potential therapeutic target in MCL patients who are refractory to standard chemotherapy.
Collapse
Affiliation(s)
- Suchismita Mohanty
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Atish Mohanty
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Natalie Sandoval
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| | - Thai Tran
- b Irell & Manella Graduate School of Biological Sciences , Duarte , CA , USA
| | - Victoria Bedell
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Jun Wu
- d Animal Resource Center , Beckman Research Institute of City of Hope , Duarte , CA , USA
| | - Anna Scuto
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Joyce Murata-Collins
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Dennis D Weisenburger
- c Department of Pathology , City of Hope National Medical Center , Duarte , CA , USA
| | - Vu N Ngo
- a Division of Hematopoietic Stem Cell and Leukemia Research , Beckman Research Institute , Duarte , CA , USA
| |
Collapse
|
22
|
Abstract
Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma, comprising approximately 6-8% of all non-Hodgkin lymphomas. MCL is biologically and clinically heterogeneous, and there is no standard treatment for MCL. Although untreated MCL often responds well to frontline combination chemotherapy, relapsed, refractory MCL can be challenging to treat and traditional cytotoxic chemotherapy is typically not highly effective. In recent years, increased insight into the molecular and genomic diversity of MCL and the pathogenesis of the disease has given rise to the development of many new biologically targeted therapies. Ibrutinib was recently FDA approved for relapsed, refractory MCL and will likely have a significant impact on treatment paradigms for MCL. In addition to ibrutinib, there are many classes of novel agents that are currently in development. This review focuses on recent developments in the management of relapsed, refractory MCL, describing the growing armamentarium of novel agents available to combat this disease.
Collapse
|
23
|
Dreyling M, Ferrero S. The role of targeted treatment in mantle cell lymphoma: is transplant dead or alive? Haematologica 2016; 101:104-14. [PMID: 26830211 PMCID: PMC4938333 DOI: 10.3324/haematol.2014.119115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/17/2015] [Indexed: 12/16/2022] Open
Abstract
Based on the profound biological insights of the last years into the molecular pathogenesis of mantle cell lymphoma and the clinical introduction of new targeted drugs, with high efficacy and a good safety profile, the therapeutic scenario for this tumor has been shown to be thoroughly favourable. No longer characterized by a uniformly dismal prognosis, mantle cell lymphoma has been revealed as a spectrum of different diseases, ranging from very indolent cases to highly aggressive and refractory ones. Thus, there is an urgent need to adapt therapy to accommodate the diverse presentations of the disease. High-dose chemotherapy, followed by autologous stem cell transplantation is the current standard of care for younger patients, generally providing high responses and long survival rates, but hampered by acute and long-term toxicity. In addition, some patients may be overtreated, while others could benefit from targeted approaches, based on the new, molecular-directed compounds. Such a personalized treatment based on the specific characteristics of individual patients may be guided by validated prognostic tools, such as the Mantle Cell Lymphoma International Prognostic Index and the Ki-67 Proliferative Index, as well as by early predictors of treatment response, like minimal residual disease analysis. Moreover, mutation screening of distinctive genomic alterations may provide new, predictive biomarkers, with an additional impact on clinical practice. Only after tailoring treatment according to the clinical and biological heterogeneity of the disease the role of transplantation and modern therapeutic options will be redefined in mantle cell lymphoma.
Collapse
Affiliation(s)
- Martin Dreyling
- Department of Medicine III, Hospital of the University LMU München, Germany
| | - Simone Ferrero
- Division of Hematology, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| |
Collapse
|
24
|
Tumor lysis syndrome in the era of novel and targeted agents in patients with hematologic malignancies: a systematic review. Ann Hematol 2016; 95:563-73. [PMID: 26758269 DOI: 10.1007/s00277-015-2585-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/19/2015] [Indexed: 01/14/2023]
Abstract
Effective new treatments are now available for patients with hematologic malignancies. However, their propensity to cause tumor lysis syndrome (TLS) has not been systematically examined. A literature search identified published Phase I-III clinical trials of monoclonal antibodies (otlertuzumab, brentuximab, obinutuzumab, ibritumomab, ofatumumab); tyrosine kinase inhibitors (alvocidib [flavopiridol], dinaciclib, ibrutinib, nilotinib, dasatinib, idelalisib, venetoclax [ABT-199]); proteasome inhibitors (oprozomib, carfilzomib); chimeric antigen receptor (CAR) T cells; and the proapoptotic agent lenalidomide. Abstracts from major congresses were also reviewed. Idelalisib and ofatumumab had no reported TLS. TLS incidence was ≤5 % with brentuximab vedotin (for anaplastic large-cell lymphoma), carfilzomib and lenalidomide (for multiple myeloma), dasatinib (for acute lymphoblastic leukemia), and oprozomib (for various hematologic malignancies). TLS incidences were 8.3 and 8.9 % in two trials of venetoclax (for chronic lymphocytic leukemia [CLL]) and 10 % in trials of CAR T cells (for B-cell malignancies) and obinutuzumab (for non-Hodgkin lymphoma). TLS rates of 15 % with dinaciclib and 42 and 53 % with alvocidib (with sequential cytarabine and mitoxantrone) were seen in trials of acute leukemias. TLS mitigation was employed routinely in clinical trials of alvocidib and lenalidomide. However, TLS mitigation strategies were not mentioned or stated only in general terms for many studies of other agents. The risk of TLS persists in the current era of novel and targeted therapy for hematologic malignancies and was seen to some extent with most agents. Our findings underscore the importance of continued awareness, risk assessment, and prevention to reduce this serious potential complication of effective anticancer therapy.
Collapse
|
25
|
Phillips DC, Xiao Y, Lam LT, Litvinovich E, Roberts-Rapp L, Souers AJ, Leverson JD. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J 2015; 5:e368. [PMID: 26565405 PMCID: PMC4670945 DOI: 10.1038/bcj.2015.88] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023] Open
Abstract
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.
Collapse
Affiliation(s)
- D C Phillips
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | - Y Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | - L T Lam
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | | | | | - A J Souers
- Oncology Development, AbbVie Inc., North Chicago, IL, USA
| | - J D Leverson
- Oncology Development, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|
26
|
Bachegowda LS, Barta SK. Genetic and molecular targets in lymphoma: implications for prognosis and treatment. Future Oncol 2015; 10:2509-28. [PMID: 25525858 DOI: 10.2217/fon.14.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lymphomas are the most common hematologic malignancies with approximately 79,000 new cases estimated for 2013 in the USA. Despite improved outcomes, relapse or recurrence remains a common problem with conventional cytotoxic therapy. Recently, many genetic and molecular mechanisms that drive various cellular events like apoptosis, angiogenesis and cell motility have been more clearly delineated. These new findings, coupled with the advent of high-throughput screening technology have led to the discovery of many compounds that can target specific mutations and/or influence deregulated transcription. In this review, we intend to provide a concise overview of genetic and molecular events that drive cellular processes in lymphomas and represent potential therapeutic targets. Additionally, we briefly discuss the prognostic significance of select biological markers.
Collapse
Affiliation(s)
- Lohith S Bachegowda
- Department of Oncology, Montefiore Medical Center, 110, E 210 Street, Bronx, NY 10467, USA
| | | |
Collapse
|
27
|
Lorkova L, Scigelova M, Arrey TN, Vit O, Pospisilova J, Doktorova E, Klanova M, Alam M, Vockova P, Maswabi B, Klener P, Petrak J. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS One 2015; 10:e0135314. [PMID: 26285204 PMCID: PMC4540412 DOI: 10.1371/journal.pone.0135314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/20/2015] [Indexed: 11/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies.
Collapse
Affiliation(s)
- Lucie Lorkova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | - Ondrej Vit
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Pospisilova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Eliska Doktorova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Magdalena Klanova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Mahmudul Alam
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Petra Vockova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Bokang Maswabi
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- First Department of Medicine—Department of Hematology, General University Hospital and Charles University in Prague, Prague, Czech Republic
| | - Jiri Petrak
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
28
|
A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:392-7. [PMID: 25816934 DOI: 10.1016/j.clml.2015.02.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Overexpression of cyclin D1 is a hallmark feature of mantle cell lymphoma (MCL). Many of the oncogenic effects of cyclin D1 are mediated through cyclin-dependent kinases (CDKs). P276-00 is a potent small molecule inhibitor of CDK4-D1, CDK1-B, and CDK9-T, with promising activity in preclinical models. In phase I studies of P276-00 in patients with refractory solid neoplasms, it was well-tolerated with a mild trend toward single-agent efficacy. PATIENTS AND METHODS A phase II study of P276-00 was conducted in patients with relapsed or refractory MCL at the recommended dose of 185 mg/m(2)/day from days 1 to 5 of a 21-day cycle. Thirteen patients were enrolled in the present study. RESULTS Of the 13 patients, 11 experienced disease progression, 1 patient was withdrawn because of an adverse event (AE), and 1 patient died. Also, 11 patients (84.6%) experienced a treatment-emergent AE deemed related to P276-00. Of the 13 patients, 9 (69.2%) received ≥ 2 cycles of treatment, which was the predefined threshold to be evaluable for efficacy. Treatment was discontinued early in 2 patients because of AEs (1 of which was attributed to P276-00 administration) and in 2 patients because of disease progression. Finally, 2 patients experienced stable disease for an estimated median duration of 60.5 days (range, 58-63 days). The estimated median time to progression for the predefined efficacy population was 43 days (range, 38-58 days). CONCLUSION Given the results observed in the present study, if evaluation of CDK inhibition in MCL continues, it should be considered earlier in the disease course or as a part of combination strategies for relapsed or refractory disease.
Collapse
|
29
|
Cannon AC, Loberiza FR. Review of Antibody-Based Immunotherapy in the Treatment of Non-Hodgkin Lymphoma and Patterns of Use. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2015; 15:129-38. [DOI: 10.1016/j.clml.2014.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/22/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023]
|
30
|
Final results of EFC6663: a multicenter, international, phase 2 study of alvocidib for patients with fludarabine-refractory chronic lymphocytic leukemia. Leuk Res 2015; 39:495-500. [PMID: 25804339 DOI: 10.1016/j.leukres.2015.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
Early phase studies of alvocidib showed activity in relapsed CLL including patients with high risk genomic features and those refractory to fludarabine. A multi-center, international, phase II study of alvocidib in fludarabine refractory CLL was undertaken to validate these early results. Patients with fludarabine refractory CLL or prolymphocytic leukemia arising from CLL were treated with single agent alvocidib. The primary outcome measure was overall response rate, with secondary outcomes including survival, toxicity, and response duration. One hundred and sixty five patients were enrolled and 159 patients were treated. The median age was 61 years, the median number of prior therapies was 4, and 96% of patients were fludarabine refractory. The investigator-assessed overall response rate was 25%; the majority of responses were partial. Response rates were lower among patients with del(17p) (14%), but equivalent in patients with del(11q) or bulky lymphadenopathy. Median progression free and overall survival were 7.6 and 14.6 months, respectively. Tumor lysis occurred in 39 patients (25%), and 13 received hemodialysis. Diarrhea, fatigue, and hematologic toxicities were common. Alvocidib has clinical activity in patients with advanced, fludarabine refractory CLL. Future studies should focus on discovery of biomarkers of clinical response and tumor lysis, and enhanced supportive care measures.
Collapse
|
31
|
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14:130-46. [PMID: 25633797 PMCID: PMC4480421 DOI: 10.1038/nrd4504] [Citation(s) in RCA: 1229] [Impact Index Per Article: 136.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer represents a pathological manifestation of uncontrolled cell division; therefore, it has long been anticipated that our understanding of the basic principles of cell cycle control would result in effective cancer therapies. In particular, cyclin-dependent kinases (CDKs) that promote transition through the cell cycle were expected to be key therapeutic targets because many tumorigenic events ultimately drive proliferation by impinging on CDK4 or CDK6 complexes in the G1 phase of the cell cycle. Moreover, perturbations in chromosomal stability and aspects of S phase and G2/M control mediated by CDK2 and CDK1 are pivotal tumorigenic events. Translating this knowledge into successful clinical development of CDK inhibitors has historically been challenging, and numerous CDK inhibitors have demonstrated disappointing results in clinical trials. Here, we review the biology of CDKs, the rationale for therapeutically targeting discrete kinase complexes and historical clinical results of CDK inhibitors. We also discuss how CDK inhibitors with high selectivity (particularly for both CDK4 and CDK6), in combination with patient stratification, have resulted in more substantial clinical activity.
Collapse
Affiliation(s)
- Uzma Asghar
- Breakthrough Breast Cancer Research Centre, Chester Beatty Laboratories, Institute of Cancer Research, London, SW3 6JB, UK
| | - Agnieszka K Witkiewicz
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| | - Nicholas C Turner
- Institute of Cancer Research and Royal Marsden NHS Foundation Trust Breast Cancer Unit, London, SW3 6JJ, UK
| | - Erik S Knudsen
- Simmons Cancer Center and Department of Pathology, University of Texas Southwestern, Dallas, USA
| |
Collapse
|
32
|
Liu X, Ye F, Wu J, How B, Li W, Zhang DY. Signaling proteins and pathways affected by flavonoids in leukemia cells. Nutr Cancer 2015; 67:238-49. [PMID: 25588108 DOI: 10.1080/01635581.2015.989372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Flavonoids are a class of plant secondary metabolites that are found ubiquitously in plants and in the human diet. Our objective is to investigate the antiproliferative effects of flavonoids (baicalein, luteolin, genistein, apigenin, scutellarin, galangin, chrysin, and naringenin) toward leukemia cells (HL-60, NB4, U937, K562, Jurkat) as well as the relationship between their antileukemic potencies and molecular structures. At the proteomic level, we evaluate the effects of different flavonoids on the expression levels of various proteins using Protein Pathway Array (PPA) technology. Our results showed a dose-dependent cytotoxicity of flavonoids toward various types of leukemia cells. The results of PPA illustrated that flavonoids, such as baicalein, genistein, and scutellarin affected different proteins in different leukemia cell lines. Cell cycle regulatory proteins, such as CDK4, CDK6, Cyclin D1, Cyclin B1, p-CDC2, and p-RB were affected in different leukemia cells. Furthermore, we found that baicalein suppresses CDK4 and activates p-ERK in most leukemia cells; genistein mainly affects CDK4, p-ERK, p-CDC2, while scutellarin dysregulated the proteins, cell division control protein 42, Notch4, and XIAP. Collectively, a wide variety of dysregulation of key signaling proteins related to apoptosis and cell-cycle regulation contributes to the antileukemic properties of these flavonoids.
Collapse
Affiliation(s)
- Xiaoliang Liu
- a Department of Hematology and Oncology , First Hospital, Jilin University , Changchun , China
| | | | | | | | | | | |
Collapse
|
33
|
Holkova B, Kmieciak M, Perkins EB, Bose P, Baz RC, Roodman GD, Stuart RK, Ramakrishnan V, Wan W, Peer CJ, Dawson J, Kang L, Honeycutt C, Tombes MB, Shrader E, Weir-Wiggins C, Wellons M, Sankala H, Hogan KT, Colevas AD, Doyle LA, Figg WD, Coppola D, Roberts JD, Sullivan D, Grant S. Phase I trial of bortezomib (PS-341; NSC 681239) and "nonhybrid" (bolus) infusion schedule of alvocidib (flavopiridol; NSC 649890) in patients with recurrent or refractory indolent B-cell neoplasms. Clin Cancer Res 2014; 20:5652-62. [PMID: 25248382 PMCID: PMC4233160 DOI: 10.1158/1078-0432.ccr-14-0805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study was conducted to determine the dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) for the combination of bortezomib and alvocidib in patients with B-cell malignancies (multiple myeloma, indolent lymphoma, Waldenstrom macroglobulinemia, and mantle cell lymphoma). EXPERIMENTAL DESIGN Patients received bortezomib (intravenous push), followed by alvocidib (1-hour infusion), on days 1, 4, 8, and 11 of a 21-day treatment cycle. Patients experiencing responses or stable disease continued on treatment at the investigator's discretion. A standard 3+3 dose-escalation design was used to identify the MTD based on DLTs, and pharmacokinetic and pharmacodynamic studies were conducted. RESULTS A total of 44 patients were enrolled, with 39 patients assessed for response. The MTD was established as 1.3 mg/m(2) for bortezomib and 40 mg/m(2) for alvocidib. The most common hematologic toxicities included leukopenia, lymphopenia, neutropenia, and thrombocytopenia. The most common nonhematologic toxicities included diarrhea, fatigue, and sensory neuropathy. Three complete remissions (8%) and 10 partial remissions (26%) were observed for a total response rate of 33%. Pharmacokinetic findings with the current dosing regimen were consistent with the comparable literature and the hybrid dosing regimen. Pharmacodynamic study results did not correlate with clinical responses. CONCLUSIONS The combination of bortezomib and alvocidib is tolerable, and an MTD has been established for this schedule. The regimen appears to be efficacious in patients with relapsed/refractory multiple myeloma or indolent non-Hodgkin lymphoma. As the nonhybrid regimen is less cumbersome than the previous hybrid dosing schedule regimen, the current schedule is recommended for successor studies.
Collapse
Affiliation(s)
- Beata Holkova
- Massey Cancer Center and Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | | | - E Brent Perkins
- Massey Cancer Center and Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Prithviraj Bose
- Massey Cancer Center and Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rachid C Baz
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - G David Roodman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert K Stuart
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | | | - Wen Wan
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Cody J Peer
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Jana Dawson
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | | | | | | | | | | | | | - A Dimitrios Colevas
- Cancer Therapy Evaluation Program, NCI, NIH, Bethesda, Maryland. Departments of
| | - L Austin Doyle
- Cancer Therapy Evaluation Program, NCI, NIH, Bethesda, Maryland. Departments of
| | - William D Figg
- Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Domenico Coppola
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John D Roberts
- Massey Cancer Center and Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Sullivan
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Steven Grant
- Massey Cancer Center and Massey Cancer Center and Massey Cancer Center and Massey Cancer Center and Massey Cancer Center and
| |
Collapse
|
34
|
How to manage mantle cell lymphoma. Leukemia 2014; 28:2117-30. [DOI: 10.1038/leu.2014.171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/28/2014] [Accepted: 05/19/2014] [Indexed: 12/30/2022]
|
35
|
Yin T, Lallena MJ, Kreklau EL, Fales KR, Carballares S, Torrres R, Wishart GN, Ajamie RT, Cronier DM, Iversen PW, Meier TI, Foreman RT, Zeckner D, Sissons SE, Halstead BW, Lin AB, Donoho GP, Qian Y, Li S, Wu S, Aggarwal A, Ye XS, Starling JJ, Gaynor RB, de Dios A, Du J. A novel CDK9 inhibitor shows potent antitumor efficacy in preclinical hematologic tumor models. Mol Cancer Ther 2014; 13:1442-56. [PMID: 24688048 DOI: 10.1158/1535-7163.mct-13-0849] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA-dependent RNA polymerase II (RNAP II) largest subunit RPB1 C-terminal domain (CTD) kinases, including CDK9, are serine/threonine kinases known to regulate transcriptional initiation and elongation by phosphorylating Ser 2, 5, and 7 residues on CTD. Given the reported dysregulation of these kinases in some cancers, we asked whether inhibiting CDK9 may induce stress response and preferentially kill tumor cells. Herein, we describe a potent CDK9 inhibitor, LY2857785, that significantly reduces RNAP II CTD phosphorylation and dramatically decreases MCL1 protein levels to result in apoptosis in a variety of leukemia and solid tumor cell lines. This molecule inhibits the growth of a broad panel of cancer cell lines, and is particularly efficacious in leukemia cells, including orthotopic leukemia preclinical models as well as in ex vivo acute myeloid leukemia and chronic lymphocytic leukemia patient tumor samples. Thus, inhibition of CDK9 may represent an interesting approach as a cancer therapeutic target, especially in hematologic malignancies.
Collapse
Affiliation(s)
- Tinggui Yin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Maria J Lallena
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Emiko L Kreklau
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Kevin R Fales
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Santiago Carballares
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Raquel Torrres
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Graham N Wishart
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Rose T Ajamie
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Damien M Cronier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Phillip W Iversen
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Timothy I Meier
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Robert T Foreman
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Douglas Zeckner
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Sean E Sissons
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Bart W Halstead
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Aimee B Lin
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Gregory P Donoho
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Yuewei Qian
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Shuyu Li
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Song Wu
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Amit Aggarwal
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Xiang S Ye
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - James J Starling
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Richard B Gaynor
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Alfonso de Dios
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| | - Jian Du
- Authors' Affiliations: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana; Eli Lilly and Company, Alcobendas, Madrid, Spain; and Eli Lilly and Company, Windlesham, United Kingdom
| |
Collapse
|
36
|
Camara-Clayette V, Hermine O, Ribrag V. Emerging agents for the treatment of mantle cell lymphoma. Expert Rev Anticancer Ther 2014; 12:1205-15. [DOI: 10.1586/era.12.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Jones JA, Rupert AS, Poi M, Phelps MA, Andritsos L, Baiocchi R, Benson DM, Blum KA, Christian B, Flynn J, Penza S, Porcu P, Grever MR, Byrd JC. Flavopiridol can be safely administered using a pharmacologically derived schedule and demonstrates activity in relapsed and refractory non-Hodgkin's lymphoma. Am J Hematol 2014; 89:19-24. [PMID: 23959599 PMCID: PMC4150545 DOI: 10.1002/ajh.23568] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 07/07/2013] [Accepted: 08/06/2013] [Indexed: 01/14/2023]
Abstract
Flavopiridol is a broad cyclin-dependent kinase inhibitor (CDKI) that induces apoptosis of malignant lymphocytes in vitro and in murine lymphoma models. We conducted a Phase I dose-escalation study to determine the maximum tolerated dose (MTD) for single-agent flavopiridol administered on a pharmacokinetically derived hybrid dosing schedule to patients with relapsed and refractory non-Hodgkin's lymphoma. Dose was escalated independently in one of four cohorts: indolent B-cell (Cohort 1), mantle cell (Cohort 2), intermediate-grade B-cell including transformed lymphoma (Cohort 3), and T-/NK-cell excluding primary cutaneous disease (Cohort 4). Forty-six patients were accrued. Grade 3 or 4 leukopenia was observed in the majority of patients (60%), but infection was infrequent. Common nonhematologic toxicities included diarrhea and fatigue. Biochemical tumor lysis was observed in only two patients, and no patients required hemodialysis for its management. Dose escalation was completed in two cohorts (indolent and aggressive B-cell). Dose-limiting toxicities were not observed, and the MTD was not reached in either cohort at the highest dose tested (50 mg/m(2) bolus + 50 mg/m(2) continuous infusion weekly for 4 consecutive weeks of a 6-week cycle). Clinical benefit was observed in 26% of 43 patients evaluable for response, including 14% with partial responses (two mantle cells, three indolent B-cells, and one diffuse large B-cell). The single-agent activity of this first-generation CDKI suggests that other agents in this class merit further study in lymphoid malignancies, both alone and in combination.
Collapse
Affiliation(s)
- Jeffrey A. Jones
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Amy S. Rupert
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Ming Poi
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Mitch A. Phelps
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| | - Leslie Andritsos
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Robert Baiocchi
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Don M. Benson
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Kristie A. Blum
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Beth Christian
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Joseph Flynn
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Sam Penza
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Pierluigi Porcu
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - Michael R. Grever
- Division of Hematology, The Ohio State University, Columbus, OH 43210
| | - John C. Byrd
- Division of Hematology, The Ohio State University, Columbus, OH 43210
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
38
|
Are we a step forward with targeted agents in resolving the enigma of mantle cell lymphoma? Contemp Oncol (Pozn) 2014; 18:377-83. [PMID: 25784834 PMCID: PMC4355653 DOI: 10.5114/wo.2014.45111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/18/2014] [Accepted: 07/23/2014] [Indexed: 11/17/2022] Open
Abstract
Mantle cell lymphoma has been recognized as a distinct entity from the other non-Hodgkin lymphomas in middle 1990's. It carries a worst prognosis among all mature B-cell malignancies. Cyclin D1 and recently SOX11 are the hallmarks for this disease. Even if it is highly responsive to induction treatment, it remains incurable, since it inevitably relapses. Highly aggressive approaches with stem cell transplantation can shift the survival curve for a bit, but even so the overall survival is not significantly improved in most of the cases. Small portion of patients with this heterogeneous disease have an indolent course with long-term survival. Conventional immunochemotherapy has reached its maximal possibilities, so novel target agents are absolutely warranted. The large number of ongoing early phase trials demonstrated promising results, especially emphasizing agents that target B-cell receptor. They are mostly investigated in relapsed/refractory disease, while front-line approaches with those agents need to be explored in future times.
Collapse
|
39
|
Goy A. Mantle cell lymphoma: continuously improving the odds! Expert Opin Orphan Drugs 2013. [DOI: 10.1517/21678707.2013.854700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
|
41
|
Zaja F, Federico M, Vitolo U, Zinzani PL. Management of relapsed/refractory mantle cell lymphoma: a review of current therapeutic strategies. Leuk Lymphoma 2013; 55:988-98. [PMID: 23865835 DOI: 10.3109/10428194.2013.825903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract Despite recent advances in therapeutic strategies, a large proportion of patients with mantle cell lymphoma (MCL) experience progression after first-line treatment. Several attempts have been made to assess the role of different therapies for the treatment of patients with relapsed/refractory mantle cell lymphoma; however, a consensus on the optimal therapeutic strategy for each individual patient has not been reached. Overall, clinical evidence from phase II studies shows that high-dose cytarabine containing regimens, stem cell transplant and different biological agents all have promising activity with acceptable safety profiles. Therefore, these therapies can represent suitable treatment options for patients with relapsed/refractory MCL. Among different biological agents, at present only temsirolimus has been tested in a phase III study. This review considers available evidence on the management of relapsed/refractory MCL as discussed during a consensus meeting on the current treatment strategies for MCL.
Collapse
Affiliation(s)
- Francesco Zaja
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi", DISM, Azienda Ospedaliero Universitaria S. M. Misericordia , Udine , Italy
| | | | | | | |
Collapse
|
42
|
Abstract
Abstract As the rational application of targeted therapies in cancer supplants traditional cytotoxic chemotherapy, there is an ever-greater need for a thorough understanding of the complex machinery of the cell and an application of this knowledge to the development of novel therapeutics and combinations of agents. Here, we review the current state of knowledge of the class of targeted agents known as cyclin-dependent kinase (CDK) inhibitors, with a focus on chronic lymphocytic leukemia (CLL). Flavopiridol (alvocidib) is the best studied of the CDK inhibitors, producing a dramatic cytotoxic effect in vitro and in vivo, with the principal limiting factor of acute tumor lysis. Unfortunately, flavopiridol has a narrow therapeutic window and is relatively non-selective with several off-target (i.e. non-CDK) effects, which prompted development of the second-generation CDK inhibitor dinaciclib. Dinaciclib appears to be both more potent and selective than flavopiridol, with at least an order of magnitude greater therapeutic index, and is currently in phase III clinical trials. In additional to flavopiridol and dinaciclib, we also review the current status of other members of this class, and provide commentary as to the future direction of combination therapy including CDK inhibitors.
Collapse
|
43
|
Bose P, Simmons GL, Grant S. Cyclin-dependent kinase inhibitor therapy for hematologic malignancies. Expert Opin Investig Drugs 2013; 22:723-38. [PMID: 23647051 PMCID: PMC4039040 DOI: 10.1517/13543784.2013.789859] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cyclin-dependent kinases (CDKs) regulate cell cycle progression. Certain CDKs (e.g., CDK7, CDK9) also control cellular transcription. Consequently, CDKs represent attractive targets for anticancer drug development, as their aberrant expression is common in diverse malignancies, and CDK inhibition can trigger apoptosis. CDK inhibition may be particularly successful in hematologic malignancies, which are more sensitive to inhibition of cell cycling and apoptosis induction. AREAS COVERED A number of CDK inhibitors, ranging from pan-CDK inhibitors such as flavopiridol (alvocidib) to highly selective inhibitors of specific CDKs (e.g., CDK4/6), such as PD0332991, that are currently in various phases of development, are profiled in this review. Flavopiridol induces cell cycle arrest, and globally represses transcription via CDK9 inhibition. The latter may represent its major mechanism of action via down-regulation of multiple short-lived proteins. In early phase trials, flavopiridol has shown encouraging efficacy across a wide spectrum of hematologic malignancies. Early results with dinaciclib and PD0332991 also appear promising. EXPERT OPINION In general, the antitumor efficacy of CDK inhibitor monotherapy is modest, and rational combinations are being explored, including those involving other targeted agents. While selective CDK4/6 inhibition might be effective against certain malignancies, broad-spectrum CDK inhibition will likely be required for most cancers.
Collapse
Affiliation(s)
- Prithviraj Bose
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| | - Gary L Simmons
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| | - Steven Grant
- Virginia Commonwealth University, Internal Medicine, 1101 E Marshall
St, Sanger Hall, Richmond, VA 23298, USA
| |
Collapse
|
44
|
Abstract
Mantle cell lymphoma is a well-recognized distinct clinicopathologic subtype of B-cell non-Hodgkin lymphoma. The current World Health Organization (WHO) classification subdivides this entity into aggressive and other variants. The disease has a predilection for older males, and patients typically present at an advanced stage with frequent splenomegaly and extranodal involvement including bone marrow, peripheral blood, gastrointestinal, and occasional central nervous system involvement. Early studies of therapy outcomes in this disease revealed that while response rates where high, relapse was expected after a limited period of time. Prolonged survival was uncommon, with initial median survival rates typically in the 3-4-year range. Those with a high proliferative rate, blastoid morphology, and selected clinical features were recognized as having a worse prognosis. Therapeutic approaches have diverged into aggressive therapies with high response rates and promising progression free survival rates, which may be applied to younger healthy patients, and less aggressive approaches. Aggressive therapies include intensive chemotherapy alone or chemotherapy followed by autologous stem cell transplant, which has been shown to be most effective when applied in first remission. Whether these more intense therapies result in improved survival as compared with less aggressive therapies is not well established. Allogeneic transplant has also been investigated, although high treatment-related mortality and the risk of chronic graft versus host disease and the relatively advanced age of this patient population have tempered enthusiasm for this approach. A number of less aggressive therapies have been shown to produce promising results. Consolidation and maintenance strategies are an active area of investigation. A number of newer agents have shown promising activity in relapsed disease, and are being investigated in the front-line setting. Overall survival rates are improving in this disease, with current studies suggesting a median survival of 5 or more years.
Collapse
|
45
|
Humala K, Younes A. Current and emerging new treatment strategies for mantle cell lymphoma. Leuk Lymphoma 2013; 54:912-21. [DOI: 10.3109/10428194.2012.726719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Vazana-Barad L, Granot G, Mor-Tzuntz R, Levi I, Dreyling M, Nathan I, Shpilberg O. Mechanism of the antitumoral activity of deferasirox, an iron chelation agent, on mantle cell lymphoma. Leuk Lymphoma 2013; 54:851-9. [PMID: 23020673 DOI: 10.3109/10428194.2012.734614] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mantle cell lymphoma (MCL) characterized by the t(11;14)(q13;q32) translocation, resulting in cyclin D1 overexpression, is one of the most challenging lymphomas to treat. Iron chelators, such as deferasirox, have previously been shown to exhibit anti-proliferative properties; however, their effect on MCL cells has never been investigated. We showed that deferasirox exhibited antitumoral activity against the MCL cell lines HBL-2, Granta-519 and Jeko-1, with 50% inhibitory concentration (IC(50)) values of 7.99 ± 2.46 μM, 8.93 ± 2.25 μM and 31.86 ± 7.26 μM, respectively. Deferasirox induced apoptosis mediated through caspase-3 activation and decreased cyclin D1 protein levels resulting from increased proteasomal degradation. We also demonstrated down-regulation of phosphor-RB (Ser780) expression, which resulted in increasing levels of the E2F/RB complex and G(1)/S arrest. Finally, we showed that deferasirox activity was dependent on its iron chelating ability. The present data indicate that deferasirox, by down-regulating cyclin D1 and inhibiting its related signals, may constitute a promising adjuvant therapeutic molecule in the strategy for MCL treatment.
Collapse
Affiliation(s)
- Liat Vazana-Barad
- Department of Clinical Biochemistry, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Mantle cell lymphoma (MCL) is a type of non-Hodgkin's lymphoma (NHL) with treatment outcomes that have historically been poorer than those observed with other NHL subtypes. Patients typically present with advanced-stage disease and frequent extranodal involvement; the median age at diagnosis is >60 years. Recent improvements in progression-free and overall survival have been observed with more dose-intensive strategies, although at least half of patients diagnosed with MCL are not eligible for such treatment approaches based on age and co-morbidities. In addition, therapy options for relapsed MCL are limited. Only bortezomib is approved for treatment of relapsed MCL in the US. Development of targeted therapy approaches to minimize toxicities while preserving anti-neoplastic properties is of particular importance in MCL. Multiple ongoing studies are attempting to build on the known efficacy of bortezomib by evaluating combination regimens with other targeted agents or cytotoxic chemotherapy. The mammalian target of rapamycin (mTOR) inhibitor temsirolimus has known activity in MCL, making this an attractive class of agents for further investigation in combination regimens. Rituximab and other monoclonal antibodies are being evaluated for novel roles in MCL treatment, including as maintenance therapy. Other classes of drugs being investigated in MCL are immunomodulatory agents, inhibitors of the phosphoinositide 3-kinase/Akt and B-cell receptor signalling pathways, and inhibitors of bcl-2 and histone deacetylase. Although many of the agents appear to have modest single-agent activity, the favourable toxicity profile of many agents will make them best suited for incorporation into combination regimens.
Collapse
Affiliation(s)
- Julie E Chang
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | | |
Collapse
|
48
|
Bose P, Perkins EB, Honeycut C, Wellons MD, Stefan T, Jacobberger JW, Kontopodis E, Beumer JH, Egorin MJ, Imamura CK, Figg WD, Karp JE, Koc ON, Cooper BW, Luger SM, Colevas AD, Roberts JD, Grant S. Phase I trial of the combination of flavopiridol and imatinib mesylate in patients with Bcr-Abl+ hematological malignancies. Cancer Chemother Pharmacol 2012; 69:1657-67. [PMID: 22349810 PMCID: PMC3365614 DOI: 10.1007/s00280-012-1839-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022]
Abstract
PURPOSE Imatinib is an inhibitor of the Bcr-Abl tyrosine kinase; however, resistance is common. Flavopiridol, a cyclin-dependent kinase (CDK) inhibitor, down-regulates short-lived anti-apoptotic proteins via inhibition of transcription. In preclinical studies, flavopiridol synergizes with imatinib to induce apoptosis. We investigated this novel combination regimen in patients with Bcr-Abl(+) malignancies. METHODS In a phase I dose-escalation study, imatinib was administered orally daily, and flavopiridol by 1 h intravenous infusion weekly for 3 weeks every 4 weeks. Adults with chronic myelogenous leukemia or Philadelphia chromosome-positive acute leukemia were eligible. Patients were divided into two strata based on peripheral blood and bone marrow blast counts. The primary objective was to identify the recommended phase II doses for the combination. Correlative pharmacokinetic and pharmacodynamic studies were also performed. RESULTS A total of 21 patients received study treatment. Four dose levels were evaluated before the study was closed following the approval of the second-generation Bcr-Abl tyrosine kinase inhibitors (TKIs). Five patients responded, including four sustained responses. Four patients had stable disease. All but one responder, and all patients with stable disease had previously been treated with imatinib. One patient had a complete response sustained for 30 months. Changes in expression of phospho-Bcr/Abl, -Stat5, and Mcl-1 were monitored. No major pharmacokinetic interaction was observed. CONCLUSIONS This is the first study to evaluate the combination of a CDK inhibitor and a TKI in humans. The combination of flavopiridol and imatinib is tolerable and produces encouraging responses, including in some patients with imatinib-resistant disease.
Collapse
Affiliation(s)
- Prithviraj Bose
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Edward B Perkins
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Connie Honeycut
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Martha D Wellons
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Tammy Stefan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - James W Jacobberger
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Emmanouil Kontopodis
- Department of Medical Oncology, University Hospital of Heraklion, Greece
- Molecular Therapeutics/Drug Discovery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | - Jan H Beumer
- Molecular Therapeutics/Drug Discovery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Melanoma Programs, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA
| | - Merrill J Egorin
- Molecular Therapeutics/Drug Discovery, University of Pittsburgh Cancer Institute, Pittsburgh, PA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chiyo K Imamura
- Department of Clinical Pharmacokinetics and Pharmacodynamics, School of Medicine, Keio University, Tokyo, Japan
| | - W Douglas Figg
- Molecular Pharmacology Section and Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD
| | - Judith E Karp
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Omer N Koc
- Department of Regional Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH
| | - Brenda W Cooper
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| | - Selina M Luger
- Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - John D Roberts
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA
- The Institute for Molecular Medicine, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
49
|
Xia B, Liu X, Zhou Q, Feng Q, Li Y, Liu W, Liu Z. Disposition of orally administered a promising chemotherapeutic agent flavopiridol in the intestine. Drug Dev Ind Pharm 2012; 39:845-53. [DOI: 10.3109/03639045.2012.682224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Abstract
Mantle cell lymphoma is a mature B cell neoplasm constituting 5-7% of all non-Hodgkin lymphoma. Overall prognosis with current therapeutics remains poor, thus numerous novel agents are currently under investigation. In this review we focus on early phase trials that have demonstrated promise in mantle cell. Constitutive activation of signaling components downstream of the B cell receptor play an important role in the pathobiology of mantle cell lymphoma. Targeting of this signaling pathway has become a focus with specific agents under development including inhibitors of spleen tyrosine kinase, phosphoinositide 3-kinase and Bruton's tyrosine kinase. Promising data also supports further development of BH-3 mimetics, a crucial component of anti-apoptotic signaling. Histone deacetylase inhibitors have an established role in cutaneous T-cell lymphoma and are now under investigation in mantle cell lymphoma as well. With further understanding of cellular signaling, the armamentarium of treatment options will be enhanced, with the hope of improving the prognosis of this disease.
Collapse
Affiliation(s)
- Marcus S Noel
- University of Rochester Medical Center, James P. Wilmot Cancer Center, 601 Elmwood Avenue, Box 704, Rochester, NY 14642, USA.
| | | | | |
Collapse
|