1
|
Stitz R, Stoiber F, Silye R, Vlachos G, Andaloro S, Rebhan E, Dunzinger M, Pühringer F, Gallo C, El-Heliebi A, Heitzer E, Hauser-Kronberger C. Clinical Implementation of a Noninvasive, Multi-Analyte Droplet Digital PCR Test to Screen for Androgen Receptor Alterations. J Mol Diagn 2024; 26:467-478. [PMID: 38522838 DOI: 10.1016/j.jmoldx.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/14/2024] [Accepted: 02/13/2024] [Indexed: 03/26/2024] Open
Abstract
Alterations of the androgen receptor (AR) are associated with resistance to AR-directed therapy in prostate cancer. Thus, it is crucial to develop robust detection methods for AR alterations as predictive biomarkers to enable applicability in clinical practice. We designed and validated five multiplex droplet digital PCR assays for reliable detection of 12 AR targets including AR amplification, AR splice variant 7, and 10 AR hotspot mutations, as well as AR and KLK3 gene expression from plasma-derived cell-free DNA and cell-free RNA. The assays demonstrated excellent analytical sensitivity and specificity ranging from 95% to 100% (95% CI, 75% to 100%). Intrarun and interrun variation analyses revealed a high level of repeatability and reproducibility. The developed assays were applied further in peripheral blood samples from 77 patients with advanced prostate cancer to assess their feasibility in a real-world scenario. Optimizing the reverse transcription of RNA increased the yield of plasma-derived cell-free RNA by 30-fold. Among 23 patients with castration-resistant prostate cancer, 6 patients (26.1%) had one or a combination of several AR alterations, whereas only 2 of 54 patients (3.7%) in the hormone-sensitive stage showed AR alterations. These findings were consistent with other studies and suggest that implementation of comprehensive AR status detection in clinical practice is feasible and can support the treatment decision-making process.
Collapse
Affiliation(s)
- Regina Stitz
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Doctoral Program Medical Science, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Franz Stoiber
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Renè Silye
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Silvia Andaloro
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Elisabeth Rebhan
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Michael Dunzinger
- Department of Urology Medicine, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Franz Pühringer
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Caroline Gallo
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria
| | - Amin El-Heliebi
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Salzkammergutklinikum Vöcklabruck, Vöcklabruck, Austria; Department of Anatomy and Cell Biology, Paracelsus Medical University Salzburg, Salzburg, Austria.
| |
Collapse
|
2
|
Verma VK, Beevi SS, Nair RA, Kumar A, Kiran R, Alexander LE, Dinesh Kumar L. MicroRNA signatures differentiate types, grades, and stages of breast invasive ductal carcinoma (IDC): miRNA-target interacting signaling pathways. Cell Commun Signal 2024; 22:100. [PMID: 38326829 PMCID: PMC10851529 DOI: 10.1186/s12964-023-01452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Invasive ductal carcinoma (IDC) is the most common form of breast cancer which accounts for 85% of all breast cancer diagnoses. Non-invasive and early stages have a better prognosis than late-stage invasive cancer that has spread to lymph nodes. The involvement of microRNAs (miRNAs) in the initiation and progression of breast cancer holds great promise for the development of molecular tools for early diagnosis and prognosis. Therefore, developing a cost effective, quick and robust early detection protocol using miRNAs for breast cancer diagnosis is an imminent need that could strengthen the health care system to tackle this disease around the world. METHODS We have analyzed putative miRNAs signatures in 100 breast cancer samples using two independent high fidelity array systems. Unique and common miRNA signatures from both array systems were validated using stringent double-blind individual TaqMan assays and their expression pattern was confirmed with tissue microarrays and northern analysis. In silico analysis were carried out to find miRNA targets and were validated with q-PCR and immunoblotting. In addition, functional validation using antibody arrays was also carried out to confirm the oncotargets and their networking in different pathways. Similar profiling was carried out in Brca2/p53 double knock out mice models using rodent miRNA microarrays that revealed common signatures with human arrays which could be used for future in vivo functional validation. RESULTS Expression profile revealed 85% downregulated and 15% upregulated microRNAs in the patient samples of IDC. Among them, 439 miRNAs were associated with breast cancer, out of which 107 miRNAs qualified to be potential biomarkers for the stratification of different types, grades and stages of IDC after stringent validation. Functional validation of their putative targets revealed extensive miRNA network in different oncogenic pathways thus contributing to epithelial-mesenchymal transition (EMT) and cellular plasticity. CONCLUSION This study revealed potential biomarkers for the robust classification as well as rapid, cost effective and early detection of IDC of breast cancer. It not only confirmed the role of these miRNAs in cancer development but also revealed the oncogenic pathways involved in different progressive grades and stages thus suggesting a role in EMT and cellular plasticity during breast tumorigenesis per se and IDC in particular. Thus, our findings have provided newer insights into the miRNA signatures for the classification and early detection of IDC.
Collapse
Affiliation(s)
- Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Rekha A Nair
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Aviral Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Ravi Kiran
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India
| | - Liza Esther Alexander
- Department of Pathology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CSIR-CCMB) Uppal Road, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
3
|
Zhang Q, Kong D, Yang Z, Li G, Cheng S, Feng L, Zhang K, Zhang W. Prognostic value of stem-like circulating tumor cells in patients with cancer: a systematic review and meta-analysis. Clin Exp Med 2023; 23:1933-1944. [PMID: 36735207 DOI: 10.1007/s10238-023-01009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Despite increasing interest in the study of circulating tumor cells (CTC) subsets, especially epithelial-mesenchymal transition (EMT) and stem cells subsets of CTC that play a key role in tumor recurrence and metastasis, there is no evidence from meta-analyses that shows the correlation between stem-like CTCs and prognosis in cancer patients. Thus, we performed a meta-analysis to assess its prognostic value. Sixteen articles were screened by searching the PubMed, Embase, Cochrane, China National Knowledge Internet (CNKI) and Wanfang databases. The hazard ratio (HR) and 95% confidence interval (95% CI) extracted from each article were summarized. Patients with positive stem-like CTCs in peripheral blood had significantly shorter overall survival (OS, HR: 2.58, 95% CI 1.76-3.79, P < 0.00001), progression-free survival (PFS, HR: 2.21, 95% CI 1.26-3.89, P = 0.006) and disease-free survival (DFS, HR: 2.53, 95% CI: 1.12-5.70, P = 0.03). This study provides the first meta-analysis evidence for the prognostic value of stem-like CTCs, demonstrating that these cells are associated with poor prognosis in cancer patients.Systematic review registrationCRD42022322062.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Defeng Kong
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guoliang Li
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Chen J, Xie T, Yang J, Lin X, Huang L, Su S, Deng J. Feasibility study of expressing epcam + /vimentin + CTC in prostate cancer diagnosis. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04819-7. [PMID: 37127827 DOI: 10.1007/s00432-023-04819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Prostate cancer (PCa) is one of the most common malignancies in men and one of the leading causes of cancer-related deaths; circulating tumor cells (CTC) are malignant cells that have broken off from original tumor or metastatic sites and extravasated into the blood vessels either naturally or maybe as a consequence of surgical procedures. This study aims to explore the feasibility of liquid biopsy technique to diagnose prostate cancer. METHOD We constructed an assay platform integrating magnetic separation and fluorescence in situ hybridization (FISH) to effectively capture prostate cancer CTCs and evaluate the distribution between healthy volunteers and prostate cancer patients, respectively. RESULTS There was a significant difference in the number of CTCs between the healthy population and prostate cancer patients (P < 0.001). The results of the study showed that the CTCs capture identification system has good sensitivity and specificity in identifying prostate cancer patients. CONCLUSION The CTCs test allows us to accurately identify patients who are at high risk for prostate cancer, allowing for early intervention and treating patients effectively.
Collapse
Affiliation(s)
- Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Tao Xie
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Jing Yang
- Department of Pathology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, 519000, China
| | - Xuehua Lin
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China
| | - Long Huang
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| | - Shiya Su
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 79 Kangning Rd., Zhuhai, 519000, China.
| |
Collapse
|
5
|
Kurniali PC, Storandt MH, Jin Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J Pers Med 2023; 13:jpm13040694. [PMID: 37109080 PMCID: PMC10145886 DOI: 10.3390/jpm13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells shed from the primary tumor into circulation, with clusters of CTCs responsible for cancer metastases. CTC detection and isolation from the bloodstream are based on properties distinguishing CTCs from normal blood cells. Current CTC detection techniques can be divided into two main categories: label dependent, which depends upon antibodies that selectively bind cell surface antigens present on CTCs, or label-independent detection, which is detection based on the size, deformability, and biophysical properties of CTCs. CTCs may play significant roles in cancer screening, diagnosis, treatment navigation, including prognostication and precision medicine, and surveillance. In cancer screening, capturing and evaluating CTCs from peripheral blood could be a strategy to detect cancer at its earliest stage. Cancer diagnosis using liquid biopsy could also have tremendous benefits. Full utilization of CTCs in the clinical management of malignancies may be feasible in the near future; however, several challenges still exist. CTC assays currently lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers of detectable CTCs. As assays improve and more trials evaluate the clinical utility of CTC detection in guiding therapies, we anticipate increased use in cancer management.
Collapse
Affiliation(s)
- Peter C Kurniali
- Sanford Cancer Center, 701 E Rosser Ave, Bismarck, ND 58501, USA
- Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
6
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Liu J, Enloe C, Li-Oakey KD, Oakey J. Optimizing Immunofunctionalization and Cell Capture on Micromolded Hydrogels via Controlled Oxygen-Inhibited Photopolymerization. ACS APPLIED BIO MATERIALS 2022; 5:5004-5013. [PMID: 36174120 DOI: 10.1021/acsabm.2c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With circulating tumor cells (CTCs) playing a critical role in cancer metastasis, the quantitation and characterization of CTCs promise to provide precise diagnostic and prognostic information in service of personalized therapies. However, as CTCs are extremely rare, high yield, high purity strategies are required to target and isolate CTCs from patient samples. Recently, we demonstrated the selective capture of CTCs upon antibody-functionalized polyethylene glycol diacrylate (PEGDA) hydrogels photopolymerized within polydimethylsiloxane (PDMS) microfluidic molds. Isolated CTC purity was subsequently enriched by selectively releasing desired cells from photodegradable hydrogel capture surfaces. However, the fabrication of these acrylate-based hydrogels by photopolymerization is subject to oxygen inhibition, which dramatically affects the physical and chemical properties of hydrogel interfaces formed in proximity to PDMS boundaries. To evaluate how antibody conjugation density and cell capture is impacted by fabrication parameters affected by oxygen inhibition, PEGDA hydrogel features were polymerized within PDMS micromolds under different UV exposure conditions and linker (acrylate-PEG-biotin) concentrations. Predictions of acrylate conversion throughout the hydrogel feature were performed using a 1D reaction-diffusion model that describes oxygen-inhibited photopolymerization. The functional consequences of photopolymerization parameters and solution stoichiometry on CTC capture were experimentally quantified and evaluated. Results show that hydrogel surfaces polymerized under shorter exposure times and with higher linker concentrations display superior functionalization and higher CTC capture efficiency. Conversely, highly cross-linked hydrogel surfaces polymerized under longer exposure times are insensitive to functionalization and display poor capture, regardless of linker concentration. By highlighting the importance of oxygen-inhibited photopolymerization, these findings provide guidelines to design micromolded hydrogels with controlled ligand expression. In addition to enhancing the selective cell capture capacity of immunofunctional hydrogels, the ability to quantifiably design hydrogel interfaces described here will improve the sensitivity of hydrogel biosensors, provide a platform to finely screen cell-matrix interactions, and generally enhance the fidelity of micromolded hydrogel features.
Collapse
Affiliation(s)
- Jing Liu
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Cassidy Enloe
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie D Li-Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
8
|
Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA. Chemokines in Triple-Negative Breast Cancer Heterogeneity: New Challenges for Clinical Implications. Semin Cancer Biol 2022; 86:769-783. [PMID: 35278636 DOI: 10.1016/j.semcancer.2022.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the door for developing difficult-to-treat TNBC treatment options.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Umer Mushtaq
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Manzoor A Mir
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Afnan Saleem
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology Awantipora, Jammu & Kashmir, India
| | - Mohammad Nadeem Lone
- Department of Chemistry, School of Physical & Chemical Sciences, Central University of Kashmir, Ganderbal J & K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
9
|
Sung HW, Choi SE, Chu CH, Ouyang M, Kalyan S, Scott N, Hur SC. Sensitizing drug-resistant cancer cells from blood using microfluidic electroporator. PLoS One 2022; 17:e0264907. [PMID: 35259174 PMCID: PMC8903260 DOI: 10.1371/journal.pone.0264907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Direct assessment of patient samples holds unprecedented potential in the treatment of cancer. Circulating tumor cells (CTCs) in liquid biopsies are a rapidly evolving source of primary cells in the clinic and are ideal candidates for functional assays to uncover real-time tumor information in real-time. However, a lack of routines allowing direct and active interrogation of CTCs directly from liquid biopsy samples represents a bottleneck for the translational use of liquid biopsies in clinical settings. To address this, we present a workflow for using a microfluidic vortex-assisted electroporation system designed for the functional assessment of CTCs purified from blood. Validation of this approach was assessed through drug response assays on wild-type (HCC827 wt) and gefitinib-resistant (HCC827 GR6) non-small cell lung cancer (NSCLC) cells. HCC827 cells trapped within microscale vortices were electroporated to sequentially deliver drug agents into the cytosol. Electroporation conditions facilitating multi-agent delivery were characterized for both cell lines using an automatic single-cell image fluorescence intensity algorithm. HCC827 GR6 cells spiked into the blood to emulate drug-resistant CTCs were able to be collected with high purity, demonstrating the ability of the device to minimize background cell impact for downstream sensitive cell assays. Using our proposed workflow, drug agent combinations to restore gefitinib sensitivity reflected the anticipated cytotoxic response. Taken together, these results represent a microfluidics multi-drug screening panel workflow that can enable functional interrogation of patient CTCs in situ, thereby accelerating the clinical standardization of liquid biopsies.
Collapse
Affiliation(s)
- Hyun Woo Sung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chris H. Chu
- Department of Internal Medicine, Virginia Mason Medical Center, Seattle, Washington, United States of America
| | - Mengxing Ouyang
- Department of Bioengineering, University of California, Los Angeles, California, United States of America
| | - Srivathsan Kalyan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Nathan Scott
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
- Institute of NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
10
|
Carneiro A, Piairo P, Teixeira A, Ferreira D, Cotton S, Rodrigues C, Chícharo A, Abalde-Cela S, Santos LL, Lima L, Diéguez L. Discriminating Epithelial to Mesenchymal Transition Phenotypes in Circulating Tumor Cells Isolated from Advanced Gastrointestinal Cancer Patients. Cells 2022; 11:cells11030376. [PMID: 35159186 PMCID: PMC8834092 DOI: 10.3390/cells11030376] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Gastrointestinal (GI) cancers constitute a group of highest morbidity worldwide, with colorectal cancer (CRC) and gastric cancer being among the most frequently diagnosed. The majority of gastrointestinal cancer patients already present metastasis by the time of diagnosis, which is widely associated with cancer-related death. Accumulating evidence suggests that epithelial-to-mesenchymal transition (EMT) in cancer promotes circulating tumor cell (CTCs) formation, which ultimately drives metastasis development. These cells have emerged as a fundamental tool for cancer diagnosis and monitoring, as they reflect tumor heterogeneity and the clonal evolution of cancer in real-time. In particular, EMT phenotypes are commonly associated with therapy resistance. Thus, capturing these CTCs is expected to reveal important clinical information. However, currently available CTC isolation approaches are suboptimal and are often targeted to capture epithelial CTCs, leading to the loss of EMT or mesenchymal CTCs. Here, we describe size-based CTCs isolation using the RUBYchip™, a label-free microfluidic device, aiming to detect EMT biomarkers in CTCs from whole blood samples of GI cancer patients. We found that, for most cases, the mesenchymal phenotype was predominant, and in fact a considerable fraction of isolated CTCs did not express epithelial markers. The RUBYchip™ can overcome the limitations of label-dependent technologies and improve the identification of CTC subpopulations that may be related to different clinical outcomes.
Collapse
Affiliation(s)
- Adriana Carneiro
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (D.F.); (S.C.); (L.L.S.); (L.L.)
| | - Paulina Piairo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
- Correspondence: (P.P.); (L.D.)
| | - Alexandra Teixeira
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
| | - Dylan Ferreira
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (D.F.); (S.C.); (L.L.S.); (L.L.)
| | - Sofia Cotton
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (D.F.); (S.C.); (L.L.S.); (L.L.)
| | - Carolina Rodrigues
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
| | - Alexandre Chícharo
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
| | - Lúcio Lara Santos
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (D.F.); (S.C.); (L.L.S.); (L.L.)
- Department of Surgical Oncology, Portuguese Institute of Oncology (IPO Porto), 4200-072 Porto, Portugal
| | - Luís Lima
- IPO Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (D.F.); (S.C.); (L.L.S.); (L.L.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, 4715-330 Braga, Portugal; (A.C.); (A.T.); (C.R.); (A.C.); (S.A.-C.)
- Correspondence: (P.P.); (L.D.)
| |
Collapse
|
11
|
Del Re M, Conteduca V, Crucitta S, Gurioli G, Casadei C, Restante G, Schepisi G, Lolli C, Cucchiara F, Danesi R, De Giorgi U. Androgen receptor gain in circulating free DNA and splicing variant 7 in exosomes predict clinical outcome in CRPC patients treated with abiraterone and enzalutamide. Prostate Cancer Prostatic Dis 2021; 24:524-531. [PMID: 33500577 PMCID: PMC8134038 DOI: 10.1038/s41391-020-00309-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/06/2020] [Accepted: 12/04/2020] [Indexed: 12/04/2022]
Abstract
BACKGROUND Androgen receptor (AR) signaling inhibitors represent the standard treatment in metastatic castration resistance prostate cancer (mCRPC) patients. However, some patients display a primary resistance, and several studies investigated the role of the AR as a predictive biomarker of response to treatment. This study is aimed to evaluate the role of AR in liquid biopsy to predict clinical outcome to AR signaling inhibitors in mCRPC patients. METHODS Six milliliters of plasma samples were collected before first-line treatment with abiraterone or enzalutamide. Circulating free DNA (cfDNA) and exosome-RNA were isolated for analysis of AR gain and AR splice variant 7 (AR-V7), respectively, by digital droplet PCR. RESULTS Eighty-four mCRPC patients received abiraterone (n = 40) or enzalutamide (n = 44) as first-line therapy. Twelve patients (14.3%) presented AR gain and 30 (35.7%) AR-V7+ at baseline. Median progression-free survival (PFS) and overall survival (OS) were significantly longer in AR-V7- vs AR-V7+ patients (24.3 vs 5.4 months, p < 0.0001; not reached vs 16.2 months, p = 0.0001, respectively). Patients carrying the AR gain had a median PFS of 4.8 vs 24.3 months for AR normal patients (p < 0.0001). Median OS was significantly longer in AR normal vs patients with AR gain (not reached vs 8.17 months, p < 0.0001). A significant correlation between AR-V7 and AR gain was observed (r = 0.28; p = 0.01). The AR gain/AR-V7 combined analysis confirmed a strong predictive effect for biomarkers combination vs patients without any AR aberration (PFS 3.8 vs 28 month, respectively; OS 6.1 vs not reached, respectively; p < 0.0001). CONCLUSIONS The present study demonstrates that cfDNA and exosome-RNA are both a reliable source of AR variants and their combined detection in liquid biopsy predicts resistance to AR signaling inhibitors.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alternative Splicing
- Androstenes/therapeutic use
- Benzamides/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Cell-Free Nucleic Acids/genetics
- Drug Resistance, Neoplasm
- Exosomes/genetics
- Follow-Up Studies
- Humans
- Male
- Middle Aged
- Nitriles/therapeutic use
- Phenylthiohydantoin/therapeutic use
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/blood
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/blood
- Receptors, Androgen/genetics
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
- M Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - V Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - S Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - G Gurioli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - C Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - G Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - G Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - C Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - F Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - U De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
12
|
Wan L, Liu Q, Liang D, Guo Y, Liu G, Ren J, He Y, Shan B. Circulating Tumor Cell and Metabolites as Novel Biomarkers for Early-Stage Lung Cancer Diagnosis. Front Oncol 2021; 11:630672. [PMID: 34136379 PMCID: PMC8202280 DOI: 10.3389/fonc.2021.630672] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Lung cancer is a malignant tumor that has the highest morbidity and mortality rate among all cancers. Early diagnosis of lung cancer is a key factor in reducing mortality and improving prognosis. Methods In this study, we performed CTC next-generation sequencing (NGS) in early-stage lung cancer patients to identify lung cancer-related gene mutations. Meanwhile, a serum liquid chromatography-tandem mass spectrometry (LC-MS) untargeted metabolomics analysis was performed in the CTC-positive patients. To screen potential diagnostic markers for early lung cancer. Results 62.5% (30/48) of lung cancer patients had ≥1 CTC. By CTC NGS, we found that > 50% of patients had 4 commonly mutated genes, namely, NOTCH1, IGF2, EGFR, and PTCH1. 47.37% (9/19) patients had ARIDH1 mutations. Additionally, 30 CTC-positive patients and 30 healthy volunteers were subjected to LC-MS untargeted metabolomics analysis. We found 100 different metabolites, and 10 different metabolites were identified through analysis, which may have potential clinical application value in the diagnosis of CTC-positive early-stage lung cancer (AUC >0.9). Conclusions Our results indicate that NGS of CTC and metabolomics may provide new tumor markers for the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Lingling Wan
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yongdong Guo
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Jinxia Ren
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yutong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Baoen Shan
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
13
|
In Vivo Lymphatic Circulating Tumor Cells and Progression of Metastatic Disease. Cancers (Basel) 2020; 12:cancers12102866. [PMID: 33028044 PMCID: PMC7650582 DOI: 10.3390/cancers12102866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Deadly metastases occur when tumor cells are shed from primary tumor into lymph and blood that circulate in distinct networks of vessels and disseminate circulating tumor cells (CTCs) through the body. Therefore, detection of CTCs at potentially treatable early disease stage might improve patient survival. However, most efforts have been made to test CTCs in blood only. Here, we explored the clinically relevant photoacoustic and fluorescent flow cytometry for early in vivo detection of lymphatic CTCs using metastatic melanoma and breast cancer mouse models. We demonstrated the presence of detectable lymphatic CTCs at pre-metastatic disease, estimated correlation between CTCs, primary tumor, and metastasis, and observed parallel CTC dissemination by blood and lymph. Our findings suggest the use of lymphatic CTC testing in vivo as a new indicator of metastasis initiation, and combined assessment of two body fluids as a more promising diagnostic platform compared to existing mono-detection of blood CTCs. Abstract The dissemination of circulating tumor cells (CTCs) by lymph fluid is one of the key events in the development of tumor metastasis. However, little progress has been made in studying lymphatic CTCs (L-CTCs). Here, we demonstrate the detection of L-CTCs in preclinical mouse models of melanoma and breast cancer using in vivo high-sensitivity photoacoustic and fluorescent flow cytometry. We discovered that L-CTCs are be detected in pre-metastatic disease stage. The smallest primary tumor that shed L-CTCs was measured as 0.094mm×0.094mm, its volume was calculated as 0.0004 mm3; and its productivity was estimated as 1 L-CTC per 30 minutes. As the disease progressed, primary tumors continued releasing L-CTCs with certain individual dynamics. The integrated assessment of lymph and blood underlined the parallel dissemination of CTCs at all disease stages. However, the analysis of links between L-CTC counts, blood CTC (B-CTC) counts, primary tumor size and metastasis did not reveal statistically significant correlations, likely due to L-CTC heterogeneity. Altogether, our results showed the feasibility of our diagnostic platform using photoacoustic flow cytometry for preclinical L-CTC research with translational potential. Our findings also demonstrated new insights into lymphatic system involvement in CTC dissemination. They help to lay the scientific foundation for the consideration of L-CTCs as prognostic markers of metastasis and to emphasize the integrative assessment of lymph and blood.
Collapse
|
14
|
Tian C, Xu X, Wang Y, Li D, Lu H, Yang Z. Development and Clinical Prospects of Techniques to Separate Circulating Tumor Cells from Peripheral Blood. Cancer Manag Res 2020; 12:7263-7275. [PMID: 32884342 PMCID: PMC7434565 DOI: 10.2147/cmar.s248380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Detection of circulating tumor cells (CTC) is an important liquid biopsy technique that has advanced considerably in recent years. To further advance the development of technology for curing cancer, several CTC technologies have been proposed by various research groups. Despite their potential role in early cancer diagnosis and prognosis, CTC methods are currently used for research purposes only, and very few methods have been accepted for clinical applications because of difficulties, including CTC heterogeneity, CTC separation from the blood, and a lack of thorough clinical validation. Although current CTC technologies have not been truly implemented, they possess high potential as future clinical diagnostic techniques for individualized cancer. Here, we review current developments in CTC separation technology. We also explore new CTC detection methods based on telomerase and nanomaterials, such as in vivo flow cytometry. In addition, we discuss the difficulties that must be overcome before CTC can be applied in clinical settings.
Collapse
Affiliation(s)
- Cheng Tian
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Xinhua Xu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Yuke Wang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Dailong Li
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Haiyan Lu
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| | - Ziwei Yang
- Yichang Central People's Hospital, First Clinical Medical College of Three Gorges University, Yichang 443000, People's Republic of China
| |
Collapse
|
15
|
Jeong YJ, Park SH, Jeon CH. Detection of circulating tumor cells in patients with breast cancer using the conditionally reprogrammed cell culture method and reverse transcription-PCR of hTERT and MAGE A1-6. Oncol Lett 2020; 20:78. [PMID: 32863911 PMCID: PMC7436930 DOI: 10.3892/ol.2020.11939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to verify the efficacy of the conditionally reprogrammed cell (CRC) culture method for the detection of circulating tumor cells (CTCs) in breast cancer. CTCs were isolated from the peripheral blood of patients with breast cancer, and culture of the collected CTCs was performed according to the conditional reprogramming protocol. Total RNA was extracted from cultured CTCs, and the hTERT and MAGE A1-6 genes were amplified using reverse transcription-PCR (RT-PCR). In addition, RNA extraction from another blood sample was performed and the expression of the two genes was analyzed by RT-PCR only. Following CRC culture, grown CTCs were observed in 7 samples (23.3%). The CTC detection rates by RT-PCR for the hTERT and MAGE A1-6 genes in CTCs grown using the CRC culture method were 26.7 and 10.0%, respectively. The positive expression rates for the hTERT and MAGE genes in CTCs assessed by RT-PCR only were 44.1 and 23.5%, respectively. When combining the positive expression rates of RT-PCR only and CRC culture for the hTERT and MAGE A1-6 genes, CTC detection rates increased to 53.3 and 23.3%, respectively. Additionally, when combining the positive expression rates of the two genes by either method, the CTC detection rate was the highest value observed. In conclusion, the present study revealed the potential of CRC culture in the detection of CTCs in breast cancer. Furthermore, a combination of CRC culture and RT-PCR for the hTERT and MAGE A1-6 genes is useful in enhancing the detection rate of CTCs in the blood.
Collapse
Affiliation(s)
- Young Ju Jeong
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Sung Hwan Park
- Department of Surgery, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Chang-Ho Jeon
- Department of Laboratory Medicine, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
16
|
Li N, Guha U, Kim C, Ye L, Cheng J, Li F, Chia D, Wei F, Wong DTW. Longitudinal Monitoring of EGFR and PIK3CA Mutations by Saliva-Based EFIRM in Advanced NSCLC Patients With Local Ablative Therapy and Osimertinib Treatment: Two Case Reports. Front Oncol 2020; 10:1240. [PMID: 32793495 PMCID: PMC7393232 DOI: 10.3389/fonc.2020.01240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The longitudinal monitoring of actionable oncogenes in circulating tumor DNA (ctDNA) of non-small cell lung cancer (NSCLC) is crucial for clinicians to evaluate current therapeutic response and adjust therapeutic strategies. Saliva-based electric field-induced release and measurement (EFIRM) is liquid biopsy platform to that can directly detect mutation genes with a small volume of samples. Herein, we compared the effectiveness of longitudinal monitoring for the combination of epidermal growth factor receptor (EGFR) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations between saliva-based EFIRM and plasma-based platforms (ddPCR and NGS) in two advanced NSCLC patients undergoing the treatment with osimertinib before and after local ablative therapy (LAT). Patients and Methods: Two patients with unresectable advanced NSCLC were enrolled into the National Institutes of Health Clinical Center (NIHCC) Study (ClinicalTrials.gov: 16-C-0092; local ablative therapy for the treatment of oligoprogressive, EGFR-mutated, non-small cell lung cancer after treatment with osimertinib). Serial collections of saliva, plasma, and metastatic tumor volume measurement by computed tomography (CT) were performed. Longitudinal paired saliva and plasma samples were analyzed for p.L858R EGFR, exon19 del EGFR, and p.E545K PIK3CA ctDNA using EFIRM (saliva) and ddPCR and NGS (plasma). Results: In Case 1, the saliva ctDNA curve of exon19 del EGFR by EFIRM demonstrated a strong similarity to those of tumor volume (R = 0.78, P = 0.00) and exon19 del EGFR in ddPCR (R = 0.53, P = 0.01). Moreover, the curve of p.E545K PIK3CA in EFIRM showed similarity to those of tumor volume (R = 0.70, P = 0.00) and p.E545K PIK3CA in NGS (R = 0.72, P = 0.00). In Case 2, the curve of p.E545K PIK3CA in EFIRM revealed a reverse relationship to that of tumor volume (R = -0.65, P = 0.01). Conclusion: In these two case reports, saliva-based EFIRM platform demonstrates a high level of concordance to plasma-based platforms (ddPCR and NGS) for longitudinally monitoring the combination of EGFR and PIK3CA ctDNA and can be a useful platform to monitor tumor progression and response to targeted therapy in NSCLC patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Chul Kim
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Leah Ye
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David T. W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Koch C, Kuske A, Joosse SA, Yigit G, Sflomos G, Thaler S, Smit DJ, Werner S, Borgmann K, Gärtner S, Mossahebi Mohammadi P, Battista L, Cayrefourcq L, Altmüller J, Salinas-Riester G, Raithatha K, Zibat A, Goy Y, Ott L, Bartkowiak K, Tan TZ, Zhou Q, Speicher MR, Müller V, Gorges TM, Jücker M, Thiery JP, Brisken C, Riethdorf S, Alix-Panabières C, Pantel K. Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol Med 2020; 12:e11908. [PMID: 32667137 PMCID: PMC7507517 DOI: 10.15252/emmm.201911908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Functional studies giving insight into the biology of circulating tumor cells (CTCs) remain scarce due to the low frequency of CTCs and lack of appropriate models. Here, we describe the characterization of a novel CTC‐derived breast cancer cell line, designated CTC‐ITB‐01, established from a patient with metastatic estrogen receptor‐positive (ER+) breast cancer, resistant to endocrine therapy. CTC‐ITB‐01 remained ER+ in culture, and copy number alteration (CNA) profiling showed high concordance between CTC‐ITB‐01 and CTCs originally present in the patient with cancer at the time point of blood draw. RNA‐sequencing data indicate that CTC‐ITB‐01 has a predominantly epithelial expression signature. Primary tumor and metastasis formation in an intraductal PDX mouse model mirrored the clinical progression of ER+ breast cancer. Downstream ER signaling was constitutively active in CTC‐ITB‐01 independent of ligand availability, and the CDK4/6 inhibitor Palbociclib strongly inhibited CTC‐ITB‐01 growth. Thus, we established a functional model that opens a new avenue to study CTC biology.
Collapse
Affiliation(s)
- Claudia Koch
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andra Kuske
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon A Joosse
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - George Sflomos
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sonja Thaler
- European Centre for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Borgmann
- Radiobiology& Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Gärtner
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Battista
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre, Montpellier, France.,Montpellier University, Montpellier, France
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Gabriela Salinas-Riester
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Kaamini Raithatha
- NGS Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Yvonne Goy
- Radiobiology& Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonie Ott
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Bartkowiak
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Qing Zhou
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Michael R Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias M Gorges
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean-Paul Thiery
- INSERM Unit 1186, Comprehensive Cancer Center, Institut Gustave Roussy, Villejuif, France
| | - Cathrin Brisken
- ISREC - Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK
| | - Sabine Riethdorf
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre, Montpellier, France.,Montpellier University, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Liquid Biopsy Serial Monitoring of Treatment Responses and Relapse in Advanced Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12061352. [PMID: 32466419 PMCID: PMC7352685 DOI: 10.3390/cancers12061352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Early predictive markers to track treatment responses are needed for advanced esophageal squamous cell carcinoma (ESCC) patients. We examined the prognostication and risk stratification role of liquid biopsy serial monitoring for this deadly cancer. (2) Methods: Circulating tumor cells (CTCs) and plasma cell-free DNA (cfDNA) were isolated from 60 ESCC patients treated by chemotherapy (CT) at five serial timepoints: baseline (CTC1/cfDNA1), CT pre-cycle III (CTC2/cfDNA2), CT post-cycle IV, end of CT and relapse. (3) Results: In 45/57 ESCC patients with evaluable CTC counts at CT pre-cycle III, positive CTC2 (≥3 CTCs) is independently associated with response at interim reassessment and progression-free survival (PFS) in multivariate analysis. In 42/57 ESCC patients with changes of CTC1/CTC2 and cfDNA1/cfDNA2, patients categorized into four risk groups based on the number of favorable and unfavorable changes of CTC1/CTC2 and cfDNA1/cfDNA2, were independently associated with overall survival (OS) by multivariate analysis. (4) Conclusions: CTC counts at pre-cycle III are independently associated with response at interim reassessment and PFS. Combined changes of CTC counts and cfDNA levels from baseline to pre-cycle III are independently associated with OS. Longitudinal liquid biopsy serial monitoring provides complementary information for prediction and prognosis for CT responses in advanced ESCC.
Collapse
|
19
|
Duan GC, Zhang XP, Wang HE, Wang ZK, Zhang H, Yu L, Xue WF, Xin ZF, Hu ZH, Zhao QT. Circulating Tumor Cells as a Screening and Diagnostic Marker for Early-Stage Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:1931-1939. [PMID: 32184628 PMCID: PMC7061431 DOI: 10.2147/ott.s241956] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background Circulating tumor cells (CTCs) have become potential diagnostic biomarker for several types of cancer, including lung cancer. In this study, we aim to determine whether CTCs detected by CellCollector can be used for early-stage diagnosis of lung cancer. Methods In this study, we recruited 64 volunteers, among whom 44 were suspected lung cancer patients requiring surgical treatment and 20 were healthy volunteers. We simultaneously analyzed PD-L1 expression in CTCs isolated using the GILUPI CellCollector and copy number variation by next-generation sequencing (NGS). Results We enrolled a total of 44 patients with suspected lung cancer who required surgery and 20 healthy volunteers. The patients were classified into 4 groups based on their pathological results: benign disease, in situ cancer, microinvasive, and invasive. The CTCs detection rate for each group was 10.00% (1/10), 45% (5/11), 50% (7/14), and 67% (6/9), respectively. Among the patients with lung cancer, the CTCs detection rate increased with disease progression. The rate of CTCs positivity was 52.94% (18/34) in patients who were diagnosed with lung cancer by pathology and 10% (1/10) in patients with benign disease. CTCs were not detected in the control group. The area under the receiver operating characteristic (ROC) curve, a measure for distinguishing patients with primary lung cancer, was 0.715 (95% CI 0.549-0.880, P=0.041). The sensitivity and specificity of the in vivo CTCs detection strategy for the diagnosis of early-stage lung cancer were 52.94% and 90%, respectively. CTCs were associated with clinical pathology but not with the size and location of the nodules. Conclusion CTCs isolation using the CellCollector in vivo detection method might be effective for distinguishing between benign and malignant nodules and may be used for early-stage diagnosis of lung cancer.
Collapse
Affiliation(s)
- Guo-Chen Duan
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Xiao-Peng Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Hui-En Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhi-Kang Wang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Hua Zhang
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Lei Yu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Wen-Fei Xue
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhi-Fei Xin
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhong-Hui Hu
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Qing-Tao Zhao
- Department of Thoracic Surgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| |
Collapse
|
20
|
Gao Y, Xi H, Wei B, Cui J, Zhang K, Li H, Cai A, Shen W, Li J, Rosell R, Chao J, Chen T, Klempner S, Qiao Z, Chen L. Association Between Liquid Biopsy and Prognosis of Gastric Cancer Patients: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:1222. [PMID: 31850190 PMCID: PMC6901923 DOI: 10.3389/fonc.2019.01222] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Reports regarding liquid biopsy and gastric cancer (GC) have emerged rapidly in recent decades, yet their prognostic value still remains controversial. This study was aimed to assess the impact of liquid biopsy, including circulating tumor cells (CTCs) and cell-free nucleic acids, on GC patients' prognosis. Methods: PubMed, Medline, EMBASE, and ClinicalTrial.gov databases were searched for studies that report GC patient survival data stratified by CTC/circulating tumor DNA (ctDNA)/circulating miRNAs' status. The hazard ratios (HRs) and their 95% confidence intervals (CIs) for patients' overall survival (OS) and disease-free survival (DFS)/progression-free survival (PFS) were recorded or calculated depending on circulating target status. Results: We initially identified 4,221 studies, from which 43 were eligible for further analysis, comprising 3,814 GC patients. Pooled analyses showed that detection of certain CTCs, ctDNA, and circulating miRNA was associated with poorer OS (CTCs: HR = 1.84, 95%CI 1.50–2.26, p < 0.001; ctDNA: HR = 1.78, 95%CI 1.36–2.34, p < 0.001; circulating miRNA: HR = 1.74, 95%CI 1.13–2.69, p < 0.001) and DFS/PFS (CTCs: HR = 3.39, 95%CI 2.21–5.20, p < 0.001; ctDNA: HR = 2.38, 95%CI 1.31–4.32, p = 0.004; circulating miRNA: HR = 3.30, 95%CI 2.39–4.55, p < 0.001) of GC patients, regardless of disease stage and time point at which sample is taken (at baseline or post-treatment). Conclusions: The presence of CTCs and/or cellular components identifies a group of GC with poorer prognosis. Among circulating markers, CTCs demonstrated a stronger and more stable predictive value for late-stage disease and among Mongolian populations with GC. Less data are available for ctDNA and miRNA; however, their presence may also reflect aggressive biology and warrants further prospective study.
Collapse
Affiliation(s)
- Yunhe Gao
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,General Surgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Hongqing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Bo Wei
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,General Surgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Jianxin Cui
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Kecheng Zhang
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Hua Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Aizhen Cai
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,General Surgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Weishen Shen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,Nanjing General Hospital of Nanjing Military Command, Nanjing, China
| | - Jiyang Li
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,General Surgery Institute, Chinese PLA General Hospital, Beijing, China
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Health Science Institute and Hospital, Barcelona, Spain
| | - Joseph Chao
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Tianhui Chen
- Department of Cancer Prevention, Institute of Cancer and Basic Medicine (ICBM), Zhejiang Provincial Office for Cancer Prevention and Control, Cancer Hospital of the University of CAS, Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Samuel Klempner
- The Angeles Clinic and Research Institute, Los Angeles, CA, United States.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhi Qiao
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing, China.,General Surgery Institute, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Zhao Y, Han L, Zhang W, Shan L, Wang Y, Song P, Peng C, Zhao X. Preoperative chemotherapy compared with postoperative adjuvant chemotherapy for squamous cell carcinoma of the thoracic oesophagus with the detection of circulating tumour cells randomized controlled trial. Int J Surg 2019; 73:1-8. [PMID: 31756547 DOI: 10.1016/j.ijsu.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The role of preoperative chemotherapy in the treatment of patients with oesophageal squamous cell carcinoma (ESCC) remains controversial. Chemotherapy followed by surgery was compared with surgery ± chemotherapy, and the detection of circulating tumour cells (CTCs) was performed on all enrolled patients. METHODS We randomly assigned patients with resectable tumours to the preoperative chemotherapy group (Pre group) or surgery group (patients who were either given or not given adjuvant chemotherapy according to their postoperative lymph node status, Post group). Blood samples were collected 1-3 days before treatment (including preoperative chemotherapy and surgery) and 7 days after surgery for CTC detection. RESULTS From July 2016 to October 2018, 115 patients were enrolled in the study, of whom 57 were assigned to the Pre group and 58 to the Post group. The proportion of patients with stage III ESCC was 63.16% in the Pre group and 48.28% in the Post group. No patients died during chemotherapy. One patient exhibited a complete response to preoperative chemotherapy, and 13 patients exhibited partial responses. The 2-year progression-free survival (PFS) and overall survival (OS) rates were not significantly different between the Pre and Post groups. In the subgroup analysis, patients with CTC (+) prior to treatments receiving preoperative chemotherapy had a better 2-year PFS (71.90% vs. 38.73%, P = 0.0379). In the Cox proportional hazards regression analysis, platelet count was proven to correlate significantly with disease progression (P = 0.016), and no factors were proven to correlate significantly with mortality after the factors were balanced in the present analysis. CONCLUSIONS Preoperative chemotherapy improved the short-term PFS when CTC detection was positive prior to any treatment for patients with stage II or III ESCC. CTC detection may be used as an index to guide individualized strategic decisions regarding preoperative chemotherapy, but more evidence is needed.
Collapse
Affiliation(s)
- Yunpeng Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lu Han
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute (HL), Jinan, Shandong, China
| | - Wenhao Zhang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Shan
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yongqiang Wang
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Pingping Song
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute (HL), Jinan, Shandong, China
| | - Chuanliang Peng
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
22
|
Qin Y, Yang X, Zhang J, Cao X. Target capturing performance of microfluidic channel surface immobilized aptamers: the effects of spacer lengths. Biomed Microdevices 2019; 21:54. [PMID: 31203429 DOI: 10.1007/s10544-019-0403-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aptamers have been widely used to recognize and capture their targets in sensitive detection applications, such as in detections of circulating tumor cells. In this study, we investigate the effects of different lengths of oligo-T spacers on surface tethered sgc8 aptamers and their target capturing performances. To achieve this, sgc8 aptamers were immobilized onto microfluidic channel surfaces via oligo-T spacers of different lengths, and the target capturing performances of these immobilized aptamers were studied using CCRF-CEM cells. We demonstrate that the capturing performances of the immobilized aptamers were significantly affected by steric hindrance. Our results also show that aptamers immobilized on surfaces via spacers of ten Ts demonstrated the best cell capturing performances; aptamers with either too short or too long oligo-T spacers showed reduced cell capturing performances. Therefore it can be concluded that spacer optimizations are critically important for surface tethered aptamers that are commonly used in microfluidic devices for sensitive target sensing and detections.
Collapse
Affiliation(s)
- Yubo Qin
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology, Haikou, 571126, China
| | - Jingchang Zhang
- Hainan Institute of Science and Technology, Haikou, 571126, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada. .,Ottawa-Carleton Institute of Biomedical Engineering, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
23
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
24
|
S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019; 40:1457-1477. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.
Collapse
Affiliation(s)
| | - Wen Jing Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Hossein Heidari
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Daniel P Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, Nanyang Technological University, Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| |
Collapse
|
25
|
Agnoletto C, Minotti L, Brulle-Soumare L, Pasquali L, Galasso M, Corrà F, Baldassari F, Judde JG, Cairo S, Volinia S. Heterogeneous expression of EPCAM in human circulating tumour cells from patient-derived xenografts. Biomark Res 2018; 6:31. [PMID: 30450210 PMCID: PMC6208170 DOI: 10.1186/s40364-018-0145-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Background We aim to characterize the heterogeneous circulating tumour cells (CTCs) in peripheral blood, independently of physical or immunological purification, by using patient-derived xenografts (PDXs) models. CTC studies from blood generally rely on enrichment or purification. Conversely, we devised a method for the inclusive study of human cells from blood of PDX models, without pre-selection or enrichment. Methods A qRT-PCR assay was developed to detect human and cancer-related transcripts from CTCs in PDXs. We quantified the EPCAM and keratins CTC markers, in a PDX cohort of breast cancer. The murine beta actin gene was used for normalization. Spearman's rho coefficients were calculated for correlation. Results We demonstrated, for the first time, that we can quantify the content of CTCs and the expression of human CTC markers in PDX blood using human-specific qRT-PCR. Our method holds strong potential for the study of CTC heterogeneity and for the identification of novel CTC markers. Conclusions The identification and the relative quantification of the diverse spectrum of CTCs in patients, irrespective of EPCAM or other currently used markers, will have a great impact on personalized medicine: unrestricted CTCs characterization will allow the early detection of metastases in cancer patients and the assessment of personalized therapies.
Collapse
Affiliation(s)
- Chiara Agnoletto
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Linda Minotti
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | - Lorenzo Pasquali
- 3Dermatology and Venereology Unit, Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Marco Galasso
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Fabio Corrà
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Federica Baldassari
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | | | | | - Stefano Volinia
- 1Department of Morphology, Surgery and Experimental Medicine, LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
26
|
K.C. TB, Suga K, Isoshima T, Aigaki T, Ito Y, Shiba K, Uzawa T. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands. Biochem Biophys Res Commun 2018; 500:283-287. [DOI: 10.1016/j.bbrc.2018.04.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 12/31/2022]
|
27
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
28
|
Pizon M, Schott D, Pachmann U, Pachmann K. The number of tumorspheres cultured from peripheral blood is a predictor for presence of metastasis in patients with breast cancer. Oncotarget 2018; 7:48143-48154. [PMID: 27340862 PMCID: PMC5217007 DOI: 10.18632/oncotarget.10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor metastases are the major cause of cancer morbidity and mortality. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs). METHODS CETCs were cultured under conditions favoring growth of tumorspheres from 72 patients with breast cancer, including a subpopulation of 23 patients with metastatic disease. CETCs were determined using the maintrac® method. Gene expression profiles of single CETCs and tumorspheres of the same patients were analyzed using qRT-PCR. RESULTS Sphere formation was observed in 79 % of patients. We found that the number of tumorspheres depended on stage of disease. Furthermore, the most important factor for growing of tumorspheres is obtaining chemotherapy. Patients with chemotherapy treatment had lower numbers of tumorspheres compared to patients without chemotherapy. Patients with HER2 positive primary tumor had higher number of tumorspheres. Analysis of surface marker expression profile of tumorspheres showed that cells in the spheres had typical phenotype of cancer stem cells. There was no sphere formation in a control group with 50 healthy donors. CONCLUSIONS This study demonstrates that a small fraction of CETCs has proliferative activity. Identifying the CETC subset with cancer stem cell properties may provide more clinically useful prognostic information. Chemotherapy is the most important component in cancer therapy because it frequently reduces the number of tumorspheres.
Collapse
Affiliation(s)
- Monika Pizon
- Transfusion Center Bayreuth, 95448, Bayreuth, Germany
| | | | | | | |
Collapse
|
29
|
Burinaru TA, Avram M, Avram A, Mărculescu C, Ţîncu B, Ţucureanu V, Matei A, Militaru M. Detection of Circulating Tumor Cells Using Microfluidics. ACS COMBINATORIAL SCIENCE 2018; 20:107-126. [PMID: 29363937 DOI: 10.1021/acscombsci.7b00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metastasis is the main cause of death in cancer patients worldwide. During metastasis, cancer cells detach from the primary tumor and invade distant tissue. The cells that undergo this process are called circulating tumor cells (CTCs). Studies show that the number of CTCs in the peripheral blood can predict progression-free survival and overall survival and can be informative concerning the efficacy of treatment. Research is now concentrated on developing devices that can detect CTCs in the blood of cancer patients with improved sensitivity and specificity that can lead to improved clinical evaluation. This review focuses on devices that detect and capture CTCs using different cell properties (surface markers, size, deformability, electrical properties, etc.). We also discuss the process of tumor cell dissemination, the biology of CTCs, epithelial-mesenchymal transition (EMT), and several challenges and clinical applications of CTC detection.
Collapse
Affiliation(s)
- Tiberiu A. Burinaru
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Marioara Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Andrei Avram
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Cătălin Mărculescu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Bianca Ţîncu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Vasilica Ţucureanu
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Alina Matei
- National Institute for R&D in Microtechnologies, IMT-Bucharest, Bucharest, Romania, 077190
| | - Manuella Militaru
- University of Agronomic
Sciences and Veterinary Medicine, Bucharest, Romania, 050097
| |
Collapse
|
30
|
Zhou J, Ma X, Bi F, Liu M. Clinical significance of circulating tumor cells in gastric cancer patients. Oncotarget 2018; 8:25713-25720. [PMID: 28147337 PMCID: PMC5421964 DOI: 10.18632/oncotarget.14879] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/16/2017] [Indexed: 02/05/2023] Open
Abstract
Circulating tumor cells (CTCs) are rare cancer cells released from tumors into the blood stream that are thought to have a key role in cancer metastasis. Investigation of CTCs is an exciting area of research but remains in its infancy, and the presence of CTCs has been associated with worse prognosis in several major cancer types. Gastric cancer (GC) is a highly lethal malignancy and a serious public health concern in East Asia especially in China. There is an urgent need for identifying new, better prognostic markers to enhance diagnosis and prognosis, facilitate drug development, and to improve the treatment of gastric cancer patients. There are considerable interests in gastric CTCs given their potential use as gastric cancer biomarkers. This review highlights recent advances in studies of gastric CTCs, including the isolation and biological molecular characteristics of gastric CTCs, and their clinical significance.
Collapse
Affiliation(s)
- Jitao Zhou
- Department of Medical Oncology/Laboratory of Signal Transduction & Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Ma
- Department of Medical Oncology/Laboratory of Signal Transduction & Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Bi
- Department of Medical Oncology/Laboratory of Signal Transduction & Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Laboratory of Signal Transduction & Molecular Targeted Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Kulasinghe A, Perry C, Warkiani ME, Blick T, Davies A, O'Byrne K, Thompson EW, Nelson CC, Vela I, Punyadeera C. Short term ex-vivo expansion of circulating head and neck tumour cells. Oncotarget 2018; 7:60101-60109. [PMID: 27517751 PMCID: PMC5312371 DOI: 10.18632/oncotarget.11159] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023] Open
Abstract
Minimally invasive techniques are required for the identification of head and neck cancer (HNC) patients who are at an increased risk of metastasis, or are not responding to therapy. An approach utilised in other solid cancers is the identification and enumeration of circulating tumour cells (CTCs) in the peripheral blood of patients. Low numbers of CTCs has been a limiting factor in the HNC field to date. Here we present a methodology to expand HNC patient derived CTCs ex-vivo. As a proof of principle study, 25 advanced stage HNC patient bloods were enriched for circulating tumour cells through negative selection and cultured in 2D and 3D culture environments under hypoxic conditions (2% O2, 5% CO2). CTCs were detected in 14/25 (56%) of patients (ranging from 1–15 CTCs/5 mL blood). Short term CTC cultures were successfully generated in 7/25 advanced stage HNC patients (5/7 of these cultures were from HPV+ patients). Blood samples from which CTC culture was successful had higher CTC counts (p = 0.0002), and were predominantly from HPV+ patients (p = 0.007). This is, to our knowledge, the first pilot study to culture HNC CTCs ex-vivo. Further studies are warranted to determine the use of short term expansion in HNC and the role of HPV in promoting culture success.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Chris Perry
- Department of Otolaryngology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Majid E Warkiani
- School of Mechanical and Manufacturing Engineering, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, Australia
| | - Tony Blick
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Anthony Davies
- Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ken O'Byrne
- Translational Research Institute, Woolloongabba, QLD, Australia.,Translational Cell Imaging Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, QLD, Australia
| | - Erik W Thompson
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ian Vela
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Princess Alexandra Hospital, QLD, Australia.,Department of Urology, Princess Alexandra Hospital, Wolloongabba, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| | - Chamindie Punyadeera
- The School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
32
|
Tan Y, Wu H. The significant prognostic value of circulating tumor cells in colorectal cancer: A systematic review and meta-analysis. Curr Probl Cancer 2018; 42:95-106. [DOI: 10.1016/j.currproblcancer.2017.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/18/2022]
|
33
|
Wang G, Benasutti H, Jones JF, Shi G, Benchimol M, Pingle S, Kesari S, Yeh Y, Hsieh LE, Liu YT, Elias A, Simberg D. Isolation of Breast cancer CTCs with multitargeted buoyant immunomicrobubbles. Colloids Surf B Biointerfaces 2018; 161:200-209. [PMID: 29080504 PMCID: PMC5726926 DOI: 10.1016/j.colsurfb.2017.10.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/16/2022]
Abstract
Circulating tumor cells (CTCs) are extremely rare cells found in blood of metastatic cancer patients. There is a need for inexpensive technologies for fast enrichment of CTCs from large blood volumes. Previous data showed that antibody-conjugated lipid shell immuno-microbubbles (MBs) bind and isolate cells from biological fluids by flotation. Here, blood-stable MBs targeted to several surface markers for isolation of breast tumor cells were developed. MBs coated with anti-human EpCAM antibodies showed efficient binding of EpCAM+ breast cancer cell lines SKBR-3, MCF-7, and MDA-MB-453, whereas anti-human EGFR MBs showed binding of EpCAMLOW/NEGATIVE cell lines MDA-MB-231 and BT-549. Multitargeted anti-human EpCAM/EGFR MBs bound all cell lines with over 95% efficiency. Highly concentrated MB-bound tumor cells were collected in a microliter volume via an inverted vacuum-assisted harvesting setup. Using anti-EpCAM and/or anti-EpCAM/EGFR MBs, an efficient (70-90%) recovery and fast (30min) isolation of the above-mentioned cells and cell clusters was achieved from 7.5mL of spiked human blood. Using anti-EpCAM MBs and anti-EpCAM/EGFR MBs, cytokeratin-positive, CD45-negative CTCs were detected in 62.5% (10/16) of patients with metastatic breast cancer and CTC clusters were detected in 41.7% (5/12) of CTC-positive samples. Moreover, in some samples MBs isolated cytokeratin positive, CD45 negative tumor-derived microparticles. None of these structures were detected in blood from non-epithelial malignancies. The fast and inexpensive multitargeted platform for batch isolation of CTCs can promote research and clinical applications involving primary tumors and metastases.
Collapse
Affiliation(s)
- Guankui Wang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Halli Benasutti
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Jessica F Jones
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA
| | - Guixin Shi
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Michael Benchimol
- Diagnologix, LLC, 5820 Oberlin Drive, Suite 104, San Diego, CA 92121, USA
| | - Sandeep Pingle
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neuro-Oncology and Neurotherapeutics, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Blvd., Santa Monica, CA 90404, USA
| | - Yasan Yeh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Li-En Hsieh
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA
| | - Yu-Tsueng Liu
- Moores UCSD Cancer Center, University of California San Diego,3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| | - Anthony Elias
- University of Colorado Cancer Center, Breast & Sarcoma Programs, Department of Medicine, University of Colorado, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Dmitri Simberg
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 East Montview Blvd., Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Turashvili G, Brogi E. Tumor Heterogeneity in Breast Cancer. Front Med (Lausanne) 2017; 4:227. [PMID: 29276709 PMCID: PMC5727049 DOI: 10.3389/fmed.2017.00227] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a heterogeneous disease and differs greatly among different patients (intertumor heterogeneity) and even within each individual tumor (intratumor heterogeneity). Clinical and morphologic intertumor heterogeneity is reflected by staging systems and histopathologic classification of breast cancer. Heterogeneity in the expression of established prognostic and predictive biomarkers, hormone receptors, and human epidermal growth factor receptor 2 oncoprotein is the basis for targeted treatment. Molecular classifications are indicators of genetic tumor heterogeneity, which is probed with multigene assays and can lead to improved stratification into low- and high-risk groups for personalized therapy. Intratumor heterogeneity occurs at the morphologic, genomic, transcriptomic, and proteomic levels, creating diagnostic and therapeutic challenges. Understanding the molecular and cellular mechanisms of tumor heterogeneity that are relevant to the development of treatment resistance is a major area of research. Despite the improved knowledge of the complex genetic and phenotypic features underpinning tumor heterogeneity, there has been only limited advancement in diagnostic, prognostic, or predictive strategies for breast cancer. The current guidelines for reporting of biomarkers aim to maximize patient eligibility for targeted therapy, but do not take into account intratumor heterogeneity. The molecular classification of breast cancer is not implemented in routine clinical practice. Additional studies and in-depth analysis are required to understand the clinical significance of rapidly accumulating data. This review highlights inter- and intratumor heterogeneity of breast carcinoma with special emphasis on pathologic findings, and provides insights into the clinical significance of molecular and cellular mechanisms of heterogeneity.
Collapse
Affiliation(s)
- Gulisa Turashvili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Edi Brogi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
35
|
Circulating Tumor Cells Detected by the Expression of Cancer Stem Cell Markers CD90 and CD44 in Patients With Esophageal Cancer. Int Surg 2017. [DOI: 10.9738/intsurg-d-16-00022.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background
Epithelial cell adhesion molecule (EpCAM) is a marker for circulating tumor cells (CTCs) in various types of cancer. Cell surface antigens, such as CD90 and CD44, have been reported to be cancer stem cell (CSC) markers in esophageal squamous cell carcinoma (ESCC). The aim of this study was to assess the use of CD90 and CD44 as markers to identify clinically significant CTC subpopulations in ESCC.
Methods
We collected 3 mL of peripheral blood from 10 ESCC patients and 10 healthy volunteers to detect combined expression of EpCAM, CD90, and CD40 using flow cytometry.
Results
The number of EpCAM-positive cell counts (average ± SD) in the patients was significantly higher than healthy volunteers (29.1 ± 35.9 and 2.3 ± 2.5, P = 0.001). The proportions (average ±SD) of CD90- and CD44-positive cells in EpCAM-positive cells were 45.7% ± 42.4% and 98.7% ± 2.7%, respectively. EpCAM-positive/CD44-positive CTC counts, which was equivalent to EpCAM-positive CTC counts, correlated with pathologic V factors in the resected primary tumors (P > 0.01). EpCAM-positive/CD90-positive CTC counts, but not EpCAM-positive/CD90-negative CTC counts, correlated with pathologic V factors in the resected primary tumors (P = 0.01). Our results suggested that combined expression of EpCAM and CD90 may useful to detect CTC subsets, which have highly metastatic features in ESCC. CD44, on the other hand, is equivalent to EpCAM as a marker to detect CTCs in ESCC.
Collapse
|
36
|
Yang C, Zou K, Zheng L, Xiong B. Prognostic and clinicopathological significance of circulating tumor cells detected by RT-PCR in non-metastatic colorectal cancer: a meta-analysis and systematic review. BMC Cancer 2017; 17:725. [PMID: 29115932 PMCID: PMC5688806 DOI: 10.1186/s12885-017-3704-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
Background Circulating tumor cells (CTCs) have been accepted as a prognostic marker in patients with metastatic colorectal cancer (mCRC, UICC stage IV). However, the prognostic value of CTCs in patients with non-metastatic colorectal cancer (non-mCRC, UICC stage I-III) still remains in dispute. A meta-analysis was performed to investigate the prognostic significance of CTCs detected by the RT-PCR method in patients diagnosed with non-mCRC patients. Methods A comprehensive literature search for relevant articles was performed in the EmBase, PubMed, Ovid, Web of Science, Cochrane library and Google Scholar databases. The studies were selected according to predetermined inclusion/exclusion criteria. Using the random-effects model of Stata software, version12.0 (2011) (Stata Corp, College Station, TX, USA), to conduct the meta-analysis, and the hazard ratio (HR), risk ratio (RR) and their 95% confidence intervals (95% CIs) were regarded as the effect measures. Subgroup analyses and meta-regression were also conducted to clarify the heterogeneity. Results Twelve eligible studies, containing 2363 patients with non-mCRC, were suitable for final analyses. The results showed that the overall survival (OS) (HR = 3.07, 95% CI: [2.05–4.624], P < 0.001; I2 = 55.7%, P = 0.008) and disease-free survival (DFS) (HR = 2.58, 95% CI: [2.00–3.32], P < 0.001; I2 = 34.0%, P = 0.085) were poorer in patients with CTC-positive, regardless of the sampling time, adjuvant therapy and TNM stage. CTC-positive was also significantly associated with regional lymph nodes (RLNs) metastasis (RR = 1.62, 95% CI: [1.17–2.23], P = 0.003; I2 = 74.6%, P<0.001), depth of infiltration (RR = 1.41, 95% CI: [1.03–1.92], P = 0.03; I2 = 38.3%, P = 0.136), vascular invasion (RR = 1.66, 95% CI: [1.17–2.36], P = 0.004; I2 = 46.0%, P = 0.135), tumor grade (RR = 1.19, 95% CI: [1.02–1.40], P = 0.029; I2 = 0%, P = 0.821) and tumor-node-metastasis (TNM) stage(I, II versus III) (RR = 0.76, 95% CI 0.71–0.81, P < 0.001; I2 = 0%, P = 0.717). However, there was no significant relationship between CTC-positive and tumor size (RR = 1.08, 95% CI: [0.94–1.24], P = 0.30; I2 = 0%, P = 0.528). Conclusions Detection of CTCs by RT-PCR method has prognostic value for non-mCRC patients, and CTC-positive was associated with poor prognosis and poor clinicopathological prognostic factors. However, the prognostic value of CTCs supports the use of CTCs as an indicator of metastatic disease prior to the current classification of mCRC meaning it is detectable by CT/MRI.
Collapse
Affiliation(s)
- Chaogang Yang
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Kun Zou
- Department of Oncology, Central Hospital of Wuhan, No.16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Liang Zheng
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University; Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
37
|
Radpour R. Tracing and targeting cancer stem cells: New venture for personalized molecular cancer therapy. World J Stem Cells 2017; 9:169-178. [PMID: 29104735 PMCID: PMC5661129 DOI: 10.4252/wjsc.v9.i10.169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023] Open
Abstract
Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells (CSCs) are a minor sub-population within the bulk cancer fraction which has been found to reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine.
Collapse
Affiliation(s)
- Ramin Radpour
- Tumor Immunology and Cancer Stem Cells, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
38
|
Mascalchi M, Maddau C, Sali L, Bertelli E, Salvianti F, Zuccherelli S, Matucci M, Borgheresi A, Raspanti C, Lanzetta M, Falchini M, Mazza E, Vella A, Luconi M, Pinzani P, Pazzagli M. Circulating tumor cells and microemboli can differentiate malignant and benign pulmonary lesions. J Cancer 2017; 8:2223-2230. [PMID: 28819424 PMCID: PMC5560139 DOI: 10.7150/jca.18418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/26/2017] [Indexed: 01/02/2023] Open
Abstract
The presence of circulating tumor cells (CTC) or microemboli (CTM) in the peripheral blood can theoretically anticipate malignancy of solid lesions in a variety of organs. We aimed to preliminarily assess this capability in patients with pulmonary lesions of suspected malignant nature. We used a cell-size filtration method (ScreenCell) and cytomorphometric criteria to detect CTC/CTM in a 3 mL sample of peripheral blood that was taken just before diagnostic percutaneous CT-guided fine needle aspiration (FNA) or core biopsy of the suspicious lung lesion. At least one CTC/CTM was found in 47 of 67 (70%) patients with final diagnoses of lung malignancy and in none of 8 patients with benign pulmonary nodules. In particular they were detected in 38 (69%) of 55 primary lung cancers and in 9 (75%) of 12 lung metastases from extra-pulmonary cancers. Sensitivity of CTC/CTM presence for malignancy was 70.1% (95%CI: 56.9-83.1%), specificity 100%, positive predictive value 100% and negative predictive value 28.6% (95%CI: 11.9-45.3%). Remarkably, the presence of CTC/CTM anticipated the diagnosis of primary lung cancer in 3 of 5 patients with non-diagnostic or inconclusive results of FNA or core biopsy, whereas CTC/CTM were not observed in 1 patient with sarcoidosis and 1 with amarthocondroma. These results suggest that presently, due to the low sensitivity, the search of CTC/CTM cannot replace CT guided percutaneous FNA or core biopsy in the diagnostic work-up of patients with suspicious malignant lung lesions. However, the high specificity may as yet indicate a role in cases with non-diagnostic or inconclusive FNA or core biopsy results that warrants to be further investigated.
Collapse
Affiliation(s)
- Mario Mascalchi
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Cristina Maddau
- Oncological Prevention Laboratory, Institute for Cancer Research and Prevention (ISPO), Florence, Italy
| | - Lapo Sali
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Elena Bertelli
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Francesca Salvianti
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Stefania Zuccherelli
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Marzia Matucci
- Oncological Prevention Laboratory, Institute for Cancer Research and Prevention (ISPO), Florence, Italy
| | - Alessandra Borgheresi
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Claudio Raspanti
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Monica Lanzetta
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Massimo Falchini
- Diagnostic and Interventional Radiology Units, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Ernesto Mazza
- Interventional Radiology Unit, Careggi Hospital, Florence, Italy
| | - Alessandra Vella
- Nuclear Medicine Unit, Le Scotte University Hospital, Siena, Italy
| | - Michaela Luconi
- Endocrinology Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Pamela Pinzani
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Mario Pazzagli
- Clinical Biochemistry Unit, "Mario Serio" Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
39
|
Zhang Y, Lv Y, Niu Y, Su H, Feng A. Role of Circulating Tumor Cell (CTC) Monitoring in Evaluating Prognosis of Triple-Negative Breast Cancer Patients in China. Med Sci Monit 2017. [PMID: 28643770 PMCID: PMC5493060 DOI: 10.12659/msm.902637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Breast cancer (BC) is the most common malignant tumor in females. This study investigated the role and utility of CTC monitoring in evaluating the prognosis of triple-negative breast cancer patients. Material/Methods We enrolled 286 female triple-negative breast cancer patients who were diagnosed at and received radical resection surgery in our hospital. Peripheral venous blood samples were collected preoperatively and at 3 and 7 days postoperative, and the Cell Search system was used to detect CTC in peripheral blood. We analyzed the relationship between preoperative CTC level and clinical pathological characteristics of patients. Kaplan-Meier method was used to establish progression-free survival curves and overall survival curves, we used the log-rank test to compare the survival rate, and we explored the effects of preoperative and postoperative CTC levels on patient survival. Results Compared with preoperative levels, the average CTC content in peripheral blood of breast cancer patients was significantly increased at 3 days after surgery, and then decreased to the preoperative baseline level by 7 days after surgery. The 3-year overall survival rate and progression-free survival rate in patients with CTC >5/7.5 mL peripheral blood were significantly lower than in patients with CTC <5/7.5 mL peripheral blood detected preoperatively and at 3 and 7 days postoperatively. Conclusions Dynamic monitoring of preoperative and postoperative CTC levels can accurately predict recurrence and progression of disease, and is important in postoperative monitoring and prognosis evaluation.
Collapse
Affiliation(s)
- Yanwu Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yidong Lv
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yaodong Niu
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Hongge Su
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Aiqiang Feng
- Department of Breast Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
40
|
Liu Y, Meucci S, Sheng L, Keilholz U. Meta-analysis of the mutational status of circulation tumor cells and paired primary tumor tissues from colorectal cancer patients. Oncotarget 2017; 8:77928-77941. [PMID: 29100436 PMCID: PMC5652825 DOI: 10.18632/oncotarget.18272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
As predictive markers for anti-EGFR therapy, KRAS and BRAF mutations are routinely detected in primary and metastatic colorectal cancer (CRC) cells, but seldom in circulating tumor cells (CTCs). Detecting mutations in CTCs could help explain mutational differences between tumor cells at local sites and distant metastases, thereby improving treatment outcomes. Here, we conducted a systematic review and meta-analysis to compare KRAS and BRAF mutations in paired CTCs and primary tumors from CRC patients, to detect any possible discordance. A total of 244 CRC patients from nine studies were included. Our subgroup meta-analysis demonstrated that the total odds ratio for mutations in CTCs was only 55% of that in primary tumors in the stage IV subgroup. We also found low heterogeneity among studies and differences in mutations between CTCs and primary tumors in the stage IV subgroup (I2 = 0%, P = 0.01). We observed a higher frequency of KRAS mutations in CTCs than in primary tumors at early stages (I + II), a similar frequency in stage III, and a lower frequency in stage IV. There were also differences among the Epcam-targeted CTC enrichment, PCR-based mutation profiling, and ≥ 3 CTCs enriched (I2 = 0%, P = 0.03) subgroups. These finding indicate mutational discordance between CTCs and primary CRCs, particularly in the stage IV and KRAS subgroups. We suggest large-sample studies stratified by clinical stage and KRAS subtype are urgently warranted to accurately evaluate mutational variations in CTCs compared to primary and metastatic CRC cells.
Collapse
Affiliation(s)
- Yong Liu
- Surgical Department of Colorectal Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China.,Charité Comprehensive Cancer Center, Labor AG Keilholz, Berlin, Germany
| | - Stefano Meucci
- Charité Comprehensive Cancer Center, Labor AG Keilholz, Berlin, Germany
| | - Liming Sheng
- Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, China
| | - Ulrich Keilholz
- Charité Comprehensive Cancer Center, Labor AG Keilholz, Berlin, Germany
| |
Collapse
|
41
|
Bu J, Kang YT, Lee YS, Kim J, Cho YH, Moon BI. Lab on a fabric: Mass producible and low-cost fabric filters for the high-throughput viable isolation of circulating tumor cells. Biosens Bioelectron 2017; 91:747-755. [DOI: 10.1016/j.bios.2017.01.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/02/2017] [Accepted: 01/19/2017] [Indexed: 01/01/2023]
|
42
|
Zhang D, Zhao L, Shen Q, Lv Q, Jin M, Ma H, Nie X, Zheng X, Huang S, Zhou P, Wu G, Zhang T. Down-regulation of KIAA1199/CEMIP by miR-216a suppresses tumor invasion and metastasis in colorectal cancer. Int J Cancer 2017; 140:2298-2309. [PMID: 28213952 DOI: 10.1002/ijc.30656] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 12/27/2022]
Abstract
Colorectal cancer is one of the major causes of death from cancer. Metastasis is the leading cause of treatment failure, in which cancer stem cells and circulating tumor cells play crucial roles. Identifying the involved metastatic biomarkers and clarifying the regulation mechanisms are of great importance for targeting tumor metastasis. In the current research, we discovered that KIAA1199, a cell-migration inducing protein, showed higher expression in CD44+ cancer cells from metastatic compared with the paired primary tissues, and was upregulated in colorectal cancer and positively correlated with numbers and mesenchymal phenotype of circulating tumor cells, and predicted shorter progress-free survival. Moreover, we indicated that down-regulation of KIAA1199 suppressed migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Furthermore, we demonstrated that KIAA1199 was one of the direct and functional targets of miR-216a, and miR-216a overexpression led to decreased migration and invasion of colorectal cancer cells in vitro, and inhibited metastasis in vivo. Collectively, KIAA1199 plays a critical role in maintaining an aggressive phenotype of tumor cells, and suppression of KIAA1199-related motilities of tumor cells contributes to reduced tumor metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Dejun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiong Shen
- Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Lv
- Department of Gastroenterology Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoyi Huang
- Wuhan YZY Medical Science & Technology Co, Ltd, Wuhan, 430075, People's Republic of China
| | - Pengfei Zhou
- Wuhan YZY Medical Science & Technology Co, Ltd, Wuhan, 430075, People's Republic of China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
43
|
Qin Y, Yang X, Zhang J, Cao X. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections. Colloids Surf B Biointerfaces 2017; 151:39-46. [DOI: 10.1016/j.colsurfb.2016.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023]
|
44
|
Clinical significance of circulating tumor cells in patients with small-cell lung cancer. TUMORI JOURNAL 2017; 103:242-248. [PMID: 28218384 DOI: 10.5301/tj.5000601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND This study investigated the correlation of the presence of circulating tumor cells (CTCs) with clinical characteristics, and the predictive value of CTCs for progression-free survival (PFS) in patients with small-cell lung cancer (SCLC). METHODS Samples were obtained from 42 patients with SCLC before and after the first cycle of chemotherapy. CTCs were quantitated by negative immunomagnetic enrichment and immunocytochemistry using anti-CD45 and anti-pancytokeratin antibodies. RESULTS CTCs were positive (≥2) in 76.19% of patients with SCLC and negative in the control group. The presence of CTCs was positively correlated with 6 clinical characteristics. PFS was 6.055 and 10.670 months for patients with ≥2 and <2 CTCs/7.5 mL of blood before chemotherapy; after chemotherapy PFS was 4.862 and 10.535 months, respectively. CONCLUSIONS This study showed that both baseline CTC numbers and the change in CTC numbers after 1 cycle of chemotherapy are significant prognostic factors of PFS for SCLC.
Collapse
|
45
|
Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Flow Cytometric Detection of Circulating Tumor Cells Using a Candidate Stem Cell Marker, p75 Neurotrophin Receptor (p75NTR). Methods Mol Biol 2017; 1634:211-217. [PMID: 28819854 DOI: 10.1007/978-1-4939-7144-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The most widely studied detection for circulating tumor cells (CTCs) in peripheral blood of cancer patients has been based on immunomagnetic enrichment using antibodies against epithelial cell adhesion molecule (EpCAM), which is overexpressed in epithelial cells. A neurotrophin receptor p75 (p75NTR) is expressed in a candidate stem cell fraction in esophageal squamous cell carcinoma (ESCC), which shows significantly higher colony formation, enhanced tumor formation in mice, along with strong expression of epithelial mesenchymal transition-related genes. Here, we describe a method to detect CTCs in ESCC based on the combined expression of EpCAM and p75NTR using flow cytometry, demonstrating the feasibility of expression analysis of multiple cell surface markers in viable cells.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
46
|
Okumura T, Yamaguchi T, Watanabe T, Nagata T, Shimada Y. Clinical Relevance of a Candidate Stem Cell Marker, p75 Neurotrophin Receptor (p75NTR) Expression in Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 994:247-254. [PMID: 28560678 DOI: 10.1007/978-3-319-55947-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances in its diagnosis and multimodal therapies, the prognosis of esophageal squamous cell carcinoma (ESCC) patients remains poor, because of high incidences of metastasis . Recent reports suggested that circulating tumor stem cells (CTSCs), rather than circulating tumor cells (CTCs), were more accurate diagnostic marker for metastasis, because tumor stem cells or cancer stem cells (CSCs) are more responsible for metastasis through processes such as epithelial mesenchymal transition (EMT) and tumor initiation. A neurotrophin receptor p75 (p75NTR) is expressed in a candidate CSC s in ESCC, which possess enhanced tumorigenicity along with strong expression of EMT-related genes. Our recent report using two-color flow cytometry demonstrated that CTC counts based on a combined expression of epithelial cell adhesion molecule (EpCAM) and p75NTR was significantly higher in peripheral blood samples of ESCC patients than healthy controls. In addition, EpCAM + p75NTR+, but not EpCAM + p75NTR- CTC counts, correlated with clinically diagnosed distant metastasis and pathological venous invasion in surgically resected primary ESCC tumors. Malignant cytology of the isolated EpCAM + p75NTR+ cells was microscopically confirmed as well. These results demonstrated that EpCAM + p75NTR+ CTC count was a more accurate diagnostic marker than EpCAM+ CTC count, suggesting the highly metastatic potential of CTCs with p75NTR expression.Investigation using the isolated EpCAM + p75NTR+ CTCs to assess their stem cell properties may shed light on their roles in tumor metastasis in ESCC.Further investigations based on large-scale prospective studies with long term follow up may provide us with evidences for its clinical use.
Collapse
Affiliation(s)
- Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan.
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama City, Toyama, 930-0194, Japan
| | - Yutaka Shimada
- Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
47
|
Current and future role of circulating tumor cells in patients with epithelial ovarian cancer. Eur J Surg Oncol 2016; 42:1772-1779. [DOI: 10.1016/j.ejso.2016.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/01/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
|
48
|
Watanabe T, Okumura T, Hirano K, Yamaguchi T, Sekine S, Nagata T, Tsukada K. Circulating tumor cells expressing cancer stem cell marker CD44 as a diagnostic biomarker in patients with gastric cancer. Oncol Lett 2016; 13:281-288. [PMID: 28123556 PMCID: PMC5244869 DOI: 10.3892/ol.2016.5432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a marker for circulating tumor cells (CTCs) in various types of cancer, while cluster of differentiation 44 (CD44) is a marker for gastric cancer (GC) stem cells. To evaluate the clinical significance of CD44+ CTCs in patients with GC in the present study, the number of EpCAM+CD44+ and EpCAM+CD44- cells were detected in the peripheral blood of 26 GC patients and 12 healthy volunteers using flow cytometry. The number (mean ± standard deviation) of EpCAM+CD44+ cells in the GC patients and healthy volunteers was 69.9±52.0 and 0.91±2.10, respectively (P=0.0001), while that of EpCAM+CD44- cells was 59.1±88.0 and 9.83±9.91, respectively (P=0.0313). The sensitivity and specificity of EpCAM+CD44+ cell detection for the identification of GC patients were 92.3 and 100%, respectively. By contrast, the values of EpCAM+CD44- cell detection were 76.9 and 83.3%, respectively. The number of EpCAM+CD44+ cells in the GC patients was correlated with the disease stage (P=0.0423), the depth of the tumor (P=0.0314) and venous invasion (P=0.0184) in the resected tumor specimens, while the number of EpCAM+CD44- cells did not correlate with any clinicopathological factors. The number of EpCAM+CD44+ cells significantly decreased following surgical resection of the tumor or induction of systemic chemotherapy. Additionally, atypical cells with a high nuclear to cytoplasmic ratio were morphologically detected in the sorted EpCAM+CD44+ cells. These results suggested that CD44+ CTCs, but not CD44- CTCs, reflect the malignant status of the primary tumor in patients with GC, providing a candidate biomarker for diagnosis and treatment response.
Collapse
Affiliation(s)
- Toru Watanabe
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Katsuhisa Hirano
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Tetsuji Yamaguchi
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Shinichi Sekine
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Nagata
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| | - Kazuhiro Tsukada
- Department of Surgery and Science, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
49
|
Cell-Free RNA Content in Peripheral Blood as Potential Biomarkers for Detecting Circulating Tumor Cells in Non-Small Cell Lung Carcinoma. Int J Mol Sci 2016; 17:ijms17111845. [PMID: 27827952 PMCID: PMC5133845 DOI: 10.3390/ijms17111845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 01/27/2023] Open
Abstract
Circulating tumor cells (CTCs) have been implicated in tumor progression and prognosis. Techniques detecting CTCs in the peripheral blood of patients with non-small cell lung carcinoma (NSCLC) may help to identify individuals likely to benefit from early systemic treatment. However, the detection of CTCs with a single marker is challenging, owing to low specificity and sensitivity and due to the heterogeneity and rareness of CTCs. Herein, the probability of cell-free RNA content in the peripheral blood as a potential biomarker for detecting CTCs in cancer patients was investigated. An immunomagnetic enrichment of real-time reverse-transcription PCR (RT-PCR) technology for analysis of CTCs in NSCLC patients was also developed. The mRNA levels of four candidate genes, cytokeratin 7 (CK7), E74-like factor 3 (ELF3), epidermal growth factor receptor (EGFR), and erythropoietin-producing hepatocellular carcinoma receptor B4 (EphB4) that were significantly elevated in tumor tissues and peripheral blood mononuclear cells (PBMCs) were determined. The expression of CK7 and ELF3 in tumor tissues and EGFR in PBMCs was associated with lymph node metastasis (all p < 0.05). The expression of CK7 in PBMCs was correlated with age and EphB4 in PBMCs correlated with histopathological type, respectively (all p < 0.05). The expression of all four genes in tumor tissues and PBMCs was significantly correlated with the clinical stage (all p < 0.01). Survival analysis showed that the patients with enhanced expression of CK7, ELF3, EGFR, and EphB4 mRNA in PBMCs had poorer disease-free survival (DFS) and overall survival (OS) than those without (all p < 0.0001). The present study showed that this alteration of cell-free RNA content in peripheral blood might have clinical ramifications in the diagnosis and treatment of NSCLC patients.
Collapse
|
50
|
Hassan EM, Willmore WG, DeRosa MC. Aptamers: Promising Tools for the Detection of Circulating Tumor Cells. Nucleic Acid Ther 2016; 26:335-347. [PMID: 27736306 DOI: 10.1089/nat.2016.0632] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and freely circulate in the blood, retaining the ability to initiate metastasis and form a secondary tumor in distant organs in the body. CTCs reflect the molecular profile of the primary tumor, therefore studying CTCs can allow for an understanding of the mechanism of metastasis, and an opportunity to monitor the prognosis of cancer. Unfortunately, the detection of CTCs is a considerable challenge due to their low abundance in the bloodstream and the lack of consistent markers present to recognize these cells. The aim of this review is to summarize some of the aptamer-based affinity methods for the detection of CTCs. The basic biological concept of how metastasis occurs and the role of CTCs in this process are presented. Some methods of CTC detection employing antibodies or peptides are mentioned here for comparison. The review of present literature suggests that aptamers are emerging as competitive technology in the detection of CTCs, especially due to their unique properties, but there still remain several challenges to be met, including the need to improve the throughput and sensitivity of such methods.
Collapse
Affiliation(s)
- Eman M Hassan
- 1 Institut National de la Recherche Scientifique-Energie, Materiaux Telecommunication , Quebec, Canada .,2 Department of Chemistry, Carleton University , Ottawa, Canada
| | | | - Maria C DeRosa
- 2 Department of Chemistry, Carleton University , Ottawa, Canada .,3 Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|