1
|
Greene JM, Schneble EJ, Jackson DO, Hale DF, Vreeland TJ, Flores M, Martin J, Herbert GS, Hardin MO, Yu X, Wagner TE, Peoples GE. A phase I/IIa clinical trial in stage IV melanoma of an autologous tumor-dendritic cell fusion (dendritoma) vaccine with low dose interleukin-2. Cancer Immunol Immunother 2016; 65:383-92. [PMID: 26894495 PMCID: PMC11028476 DOI: 10.1007/s00262-016-1809-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Stage IV melanoma has high mortality, largely unaffected by traditional therapies. Immunotherapy including cytokine therapies and checkpoint inhibitors improves outcomes, but has significant toxicities. In this phase I/IIa trial, we investigated safety and efficacy of a dendritoma vaccine, an active, specific immunotherapy, in stage IV melanoma patients. METHODS Autologous tumor lysate and dendritic cells were fused creating dendritoma vaccines for each patient. Phase I patients were vaccinated every 3 months with IL-2 given for 5 days after initial inoculation. Phase IIa patients were vaccinated every 6 weeks with IL-2 given on days 1, 3 and 5 after initial inoculation. Toxicity and clinical outcomes were assessed. RESULTS Twenty-five patients were enrolled and inoculated. All dendritoma and IL-2 toxicities were CONCLUSIONS The dendritoma vaccine has minimal toxicity profile with potential clinical benefit. There was OS advantage for NED stage IV patients, those receiving higher number of doses and increased frequency. Based on these results, we initiated a phase IIb trial utilizing improved dendritoma technology in the adjuvant setting for NED stage III/IV melanoma patients.
Collapse
Affiliation(s)
- Julia M Greene
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Erika J Schneble
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Doreen O Jackson
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Diane F Hale
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA.
| | - Timothy J Vreeland
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Madeline Flores
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Jonathan Martin
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Garth S Herbert
- General Surgery Department, San Antonio Military Medical Center, 3851 Roger Brooke Drive, Joint Base San Antonio-Ft. Sam Houston, TX, USA
| | - Mark O Hardin
- General Surgery Department, Madigan Army Medical Center, 9040 Jackson Ave., Tacoma, 98431, WA, USA
| | | | | | - George E Peoples
- Cancer Vaccine Development Program, 600 Navarro Street, Suite 500, San Antonio, TX, 78205, USA.
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Ascierto PA, Atkins M, Bifulco C, Botti G, Cochran A, Davies M, Demaria S, Dummer R, Ferrone S, Formenti S, Gajewski TF, Garbe C, Khleif S, Kiessling R, Lo R, Lorigan P, Arthur GM, Masucci G, Melero I, Mihm M, Palmieri G, Parmiani G, Puzanov I, Romero P, Schilling B, Seliger B, Stroncek D, Taube J, Tomei S, Zarour HM, Testori A, Wang E, Galon J, Ciliberto G, Mozzillo N, Marincola FM, Thurin M. Future perspectives in melanoma research: meeting report from the "Melanoma Bridge": Napoli, December 3rd-6th 2014. J Transl Med 2015; 13:374. [PMID: 26619946 PMCID: PMC4665874 DOI: 10.1186/s12967-015-0736-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
The fourth "Melanoma Bridge Meeting" took place in Naples, December 3-6th, 2014. The four topics discussed at this meeting were: Molecular and Immunological Advances, Combination Therapies, News in Immunotherapy, and Tumor Microenvironment and Biomarkers. Until recently systemic therapy for metastatic melanoma patients was ineffective, but recent advances in tumor biology and immunology have led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS). New therapies, such as mitogen-activated protein kinase (MAPK) pathway inhibitors as well as other signaling pathway inhibitors, are being tested in patients with metastatic melanoma either as monotherapy or in combination, and all have yielded promising results. These include inhibitors of receptor tyrosine kinases (BRAF, MEK, and VEGFR), the phosphatidylinositol 3 kinase (PI3K) pathway [PI3K, AKT, mammalian target of rapamycin (mTOR)], activators of apoptotic pathway, and the cell cycle inhibitors (CDK4/6). Various locoregional interventions including radiotherapy and surgery are still valid approaches in treatment of advanced melanoma that can be integrated with novel therapies. Intrinsic, adaptive and acquired resistance occur with targeted therapy such as BRAF inhibitors, where most responses are short-lived. Given that the reactivation of the MAPK pathway through several distinct mechanisms is responsible for the majority of acquired resistance, it is logical to combine BRAF inhibitors with inhibitors of targets downstream in the MAPK pathway. For example, combination of BRAF/MEK inhibitors (e.g., dabrafenib/trametinib) have been demonstrated to improve survival compared to monotherapy. Application of novel technologies such sequencing have proven useful as a tool for identification of MAPK pathway-alternative resistance mechanism and designing other combinatorial therapies such as those between BRAF and AKT inhibitors. Improved survival rates have also been observed with immune-targeted therapy for patients with metastatic melanoma. Immune-modulating antibodies came to the forefront with anti-CTLA-4, programmed cell death-1 (PD-1) and PD-1 ligand 1 (PD-L1) pathway blocking antibodies that result in durable responses in a subset of melanoma patients. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors and other approaches such as adoptive cell transfer demonstrate clinical benefit in patients with melanoma as well. These agents are being studied in combination with targeted therapies in attempt to produce longer-term responses than those more typically seen with targeted therapy. Other combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for this patient population. This meeting's specific focus was on advances in combination of targeted therapy and immunotherapy. Both combination targeted therapy approaches and different immunotherapies were discussed. Similarly to the previous meetings, the importance of biomarkers for clinical application as markers for diagnosis, prognosis and prediction of treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into contemporary clinical management of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Michael Atkins
- Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA.
| | - Carlo Bifulco
- Translational Molecular Pathology, Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR, USA.
| | - Gerardo Botti
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | - Alistair Cochran
- Departments of Pathology and Laboratory Medicine and Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), John Wayne Cancer Institute, Santa Monica, CA, USA.
| | - Michael Davies
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sandra Demaria
- Departments of Radiation Oncology and Pathology, Weill Cornell Medical College, New York, NY, USA.
| | - Reinhard Dummer
- Skin Cancer Unit, Department of Dermatology, University Hospital Zürich, 8091, Zurich, Switzerland.
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
| | - Thomas F Gajewski
- Departments of Medicine and of Pathology, Immunology and Cancer Program, The University of Chicago Medicine, Chicago, IL, USA.
| | - Claus Garbe
- Department of Dermatology, Center for Dermato Oncology, University of Tübingen, Tübingen, Germany.
| | - Samir Khleif
- Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA, USA.
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.
| | - Roger Lo
- Departments of Medicine and Molecular and Medical Pharmacology, David Geffen School of Medicine and Jonsson Comprehensive Cancer Center at the University of California Los Angeles (UCLA), Los Angeles, CA, USA.
| | - Paul Lorigan
- University of Manchester/Christie NHS Foundation Trust, Manchester, UK.
| | - Grant Mc Arthur
- Peter MacCallum Cancer Centre and University of Melbourne, Victoria, Australia.
| | - Giuseppe Masucci
- Department of Oncology-Pathology, The Karolinska Hospital, Stockholm, Sweden.
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada, and Clinica Universidad de Navarra, Pamplona, Navarra, Spain.
| | - Martin Mihm
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy.
| | - Giorgio Parmiani
- Division of Molecular Oncology, Unit of Bio-Immunotherapy of Solid Tumors, San Raffaele Institute, Milan, Italy.
| | - Igor Puzanov
- Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Pedro Romero
- Ludwig Cancer Research Center, University of Lausanne, Lausanne, Switzerland.
| | - Bastian Schilling
- Department of Dermatology, University Hospital, West German Cancer Center, University Duisburg-Essen, Essen, Germany. .,German Cancer Consortium (DKTK), Essen, Germany.
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA.
| | - Janis Taube
- Department of Dermatology, Johns Hopkins University SOM, Baltimore, MD, USA.
| | - Sara Tomei
- Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar.
| | - Hassane M Zarour
- Departments of Medicine, Immunology and Dermatology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Ena Wang
- Division of Translational Medicine, Sidra Medical and Research Centre, Doha, Qatar.
| | - Jérôme Galon
- INSERM, UMRS1138, Laboratory of Integrative Cancer Immunology, Université Paris Descartes, Sorbonne Paris Cité, Centre de Recherche des Cordeliers, Paris, France.
| | | | - Nicola Mozzillo
- Istituto Nazionale Tumori, Fondazione "G. Pascale", Naples, Italy.
| | | | - Magdalena Thurin
- Cancer Diagnosis Program, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Daud A, Soon C, Dummer R, Eggermont AMM, Hwu WJ, Grob JJ, Garbe C, Hauschild A. Management of pegylated interferon alpha toxicity in adjuvant therapy of melanoma. Expert Opin Biol Ther 2012; 12:1087-99. [PMID: 22694288 DOI: 10.1517/14712598.2012.694421] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Both native IFNα2b and pegylated IFNα2b (PegIFNα2b) are approved for the adjuvant treatment of high-risk melanoma. AREAS COVERED This review compares the toxicity profiles of high-dose IFNα2b (HDI) and PegIFNα2b, and provides recommendations on the management of common PegIFNα2b-related toxicities, based on available clinical data and published literature. EXPERT OPINION The toxicity profile of PegIFNα2b at the approved dose (6 μg/kg/week for 8 weeks then 3 μg/kg/week for up to 5 years) is qualitatively similar to HDI in melanoma. The most common adverse events (AEs) are fatigue, anorexia, hepatotoxicity, flu-like symptoms, injection site reactions and depression. However, fatigue and flu-like symptoms appear less severe with PegIFNα2b, and toxicity seems to occur earlier, whereas with HDI toxicity may increase with time. Most AEs can be managed effectively by dose modification and aggressive symptom control. Dosing to tolerance using a three-step dose reduction schedule to maintain an ECOG performance status of 0 - 1 may enable patients experiencing toxicity to remain on treatment; this can be applied readily in clinical practice. PegIFNα2b is therefore a valuable alternative option for adjuvant treatment in melanoma, with a toxicity profile similar to that of HDI overall but a more convenient administration schedule.
Collapse
Affiliation(s)
- Adil Daud
- University of California, San Francisco, Melanoma Program, San Francisco 1600 Divisadero St, Rm A741, Box 1770, San Francisco, CA 94115, USA.
| | | | | | | | | | | | | | | |
Collapse
|