1
|
Recent and Future Strategies to Overcome Resistance to Targeted Therapies and Immunotherapies in Metastatic Colorectal Cancer. J Clin Med 2022; 11:jcm11247523. [PMID: 36556139 PMCID: PMC9783354 DOI: 10.3390/jcm11247523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide, and 20% of patients with CRC present at diagnosis with metastases. The treatment of metastatic CRC is based on a fluoropyrimidine-based chemotherapy plus additional agents such as oxaliplatin and irinotecan. To date, on the basis of the molecular background, targeted therapies (e.g., monoclonal antibodies against epidermal growth factor receptor or inhibiting angiogenesis) are administered to improve the treatment of metastatic CRC. In addition, more recently, immunological agents emerged as effective in patients with a defective mismatch repair system. The administration of targeted therapies and immunotherapy lead to a significant increase in the survival of patients; however these drugs do not always prove effective. In most cases the lack of effectiveness is due to the development of primary resistance, either a resistance-inducing factor is already present before treatment or resistance is acquired when it occurs after treatment initiation. In this review we describe the most relevant targeted therapies and immunotherapies and expand on the reasons for resistance to the different approved or under development targeted drugs. Then we showed the possible mechanisms and drugs that may lead to overcoming the primary or acquired resistance in metastatic CRC.
Collapse
|
2
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Golay J, Andrea AE, Cattaneo I. Role of Fc Core Fucosylation in the Effector Function of IgG1 Antibodies. Front Immunol 2022; 13:929895. [PMID: 35844552 PMCID: PMC9279668 DOI: 10.3389/fimmu.2022.929895] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The presence of fucose on IgG1 Asn-297 N-linked glycan is the modification of the human IgG1 Fc structure with the most significant impact on FcɣRIII affinity. It also significantly enhances the efficacy of antibody dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells in vitro, induced by IgG1 therapeutic monoclonal antibodies (mAbs). The effect of afucosylation on ADCC or antibody dependent phagocytosis (ADCP) mediated by macrophages or polymorphonuclear neutrophils (PMN) is less clear. Evidence for enhanced efficacy of afucosylated therapeutic mAbs in vivo has also been reported. This has led to the development of several therapeutic antibodies with low Fc core fucose to treat cancer and inflammatory diseases, seven of which have already been approved for clinical use. More recently, the regulation of IgG Fc core fucosylation has been shown to take place naturally during the B-cell immune response: A decrease in α-1,6 fucose has been observed in polyclonal, antigen-specific IgG1 antibodies which are generated during alloimmunization of pregnant women by fetal erythrocyte or platelet antigens and following infection by some enveloped viruses and parasites. Low IgG1 Fc core fucose on antigen-specific polyclonal IgG1 has been linked to disease severity in several cases, such as SARS-CoV 2 and Dengue virus infection and during alloimmunization, highlighting the in vivo significance of this phenomenon. This review aims to summarize the current knowledge about human IgG1 Fc core fucosylation and its regulation and function in vivo, in the context of both therapeutic antibodies and the natural immune response. The parallels in these two areas are informative about the mechanisms and in vivo effects of Fc core fucosylation, and may allow to further exploit the desired properties of this modification in different clinical contexts.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
- *Correspondence: Josée Golay,
| | - Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Irene Cattaneo
- Center of Cellular Therapy "G. Lanzani", Division of Hematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
4
|
Nakamura A, Grossman S, Song K, Xega K, Zhang Y, Cvet D, Berger A, Shapiro G, Huszar D. The SUMOylation inhibitor subasumstat potentiates rituximab activity by IFN1-dependent macrophage and NK cell stimulation. Blood 2022; 139:2770-2781. [PMID: 35226739 PMCID: PMC11022956 DOI: 10.1182/blood.2021014267] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/07/2022] [Indexed: 11/20/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) is a member of a ubiquitin-like protein superfamily. SUMOylation is a reversible posttranslational modification that has been implicated in the regulation of various cellular processes including inflammatory responses and expression of type 1 interferons (IFN1). In this report, we have explored the activity of the selective small molecule SUMOylation inhibitor subasumstat (TAK-981) in promoting antitumor innate immune responses. We demonstrate that treatment with TAK-981 results in IFN1-dependent macrophage and natural killer (NK) cell activation, promoting macrophage phagocytosis and NK cell cytotoxicity in ex vivo assays. Furthermore, pretreatment with TAK-981 enhanced macrophage phagocytosis or NK cell cytotoxicity against CD20+ target cells in combination with the anti-CD20 antibody rituximab. In vivo studies demonstrated enhanced antitumor activity of TAK-981 and rituximab in CD20+ lymphoma xenograft models. Combination of TAK-981 with anti-CD38 antibody daratumumab also resulted in enhanced antitumor activity. TAK-981 is currently being studied in phase 1 clinical trials (#NCT03648372, #NCT04074330, #NCT04776018, and #NCT04381650; www.clinicaltrials.gov) for the treatment of patients with lymphomas and solid tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Allison Berger
- Oncology Therapeutic Area Unit, Takeda Development Center Americas, Inc., Cambridge, MA
| | | | | |
Collapse
|
5
|
Wingert S, Reusch U, Knackmuss S, Kluge M, Damrat M, Pahl J, Schniegler-Mattox U, Mueller T, Fucek I, Ellwanger K, Tesar M, Haneke T, Koch J, Treder M, Fischer W, Rajkovic E. Preclinical evaluation of AFM24, a novel CD16A-specific innate immune cell engager targeting EGFR-positive tumors. MAbs 2021; 13:1950264. [PMID: 34325617 PMCID: PMC8331026 DOI: 10.1080/19420862.2021.1950264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR)-targeted cancer therapy such as anti-EGFR monoclonal antibodies and tyrosine kinase inhibitors have demonstrated clinical efficacy. However, there remains a medical need addressing limitations of these therapies, which include a narrow therapeutic window mainly due to skin and organ toxicity, and primary and secondary resistance mechanisms of the EGFR-signaling cascade (e.g., RAS-mutated colorectal cancer). Using the redirected optimized cell killing (ROCK®) antibody platform, we have developed AFM24, a novel bispecific, IgG1-scFv fusion antibody targeting CD16A on innate immune cells, and EGFR on tumor cells. We herein demonstrate binding of AFM24 to CD16A on natural killer (NK) cells and macrophages with KD values in the low nanomolar range and to various EGFR-expressing tumor cells. AFM24 was highly potent and effective for antibody-dependent cell-mediated cytotoxicity via NK cells, and also mediated antibody-dependent cellular phagocytosis via macrophages in vitro. Importantly, AFM24 was effective toward a variety of EGFR-expressing tumor cells, regardless of EGFR expression level and KRAS/BRAF mutational status. In vivo, AFM24 was well tolerated up to the highest dose (75 mg/kg) when administered to cynomolgus monkeys once weekly for 28 days. Notably, skin and other toxicities were not observed. A transient elevation of interleukin-6 levels was detected at all dose levels, 2-4 hours post-dose, which returned to baseline levels after 24 hours. These results emphasize the promise of bispecific innate cell engagers as an alternative cancer therapy and demonstrate the potential for AFM24 to effectively target tumors expressing varying levels of EGFR, regardless of their mutational status.Abbreviations: ADA: antidrug antibody; ADCC: antibody-dependent cell-mediated cytotoxicity; ADCP: antibody-dependent cellular phagocytosis; AUC: area under the curve; CAR: chimeric-antigen receptor; CD: Cluster of differentiation; CRC :colorectal cancer; ECD: extracellular domain; EGF: epidermal growth factorEGFR epidermal growth factor receptor; ELISA: enzyme-linked immunosorbent assay; FACS: fluorescence-activated cell sorting; Fc: fragment, crystallizableFv variable fragment; HNSCC: head and neck squamous carcinomaIL interleukinm; Ab monoclonal antibody; MOA: mechanism of action; NK :natural killer; NSCLC: non-small cell lung cancer; PBMC: peripheral blood mononuclear cell; PBS: phosphate-buffered saline; PD: pharmacodynamic; ROCK: redirected optimized cell killing; RSV: respiratory syncytial virus; SABC: specific antibody binding capacity; SD: standard deviation; TAM: tumor-associated macrophage; TKI: tyrosine kinase inhibitor; WT: wildtype.
Collapse
Affiliation(s)
| | - Uwe Reusch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Kluge
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Michael Damrat
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Jens Pahl
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Thomas Mueller
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Ivica Fucek
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | | | - Michael Tesar
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Torsten Haneke
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Joachim Koch
- Research & Development, Affimed GmbH, Heidelberg, Germany
| | - Martin Treder
- Formerly Affimed GmbH, Heidelberg, Germany. Now: Arjuna Therapeutics, Santiago De Compostela, Spain
| | | | - Erich Rajkovic
- Research & Development, Affimed GmbH, Heidelberg, Germany
| |
Collapse
|
6
|
Sur D, Havasi A, Gorzo A, Burz C. A Critical Review of Second-Generation Anti-EGFR Monoclonal Antibodies in Metastatic Colorectal Cancer. Curr Drug Targets 2021; 22:1034-1042. [PMID: 32718285 DOI: 10.2174/1389450121666200727121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Anti-EGFR monoclonal antibodies (mAbs) have become a relevant solution for the treatment of patients with metastatic colorectal cancer. Current anti-EGFR monoclonal antibodies face a series of problems, including resistance and non-durable response, and RAS and BRAF mutations serve as exclusion criteria for treatment with anti-EGFR mAbs. Advances in molecular tumor profiling and information on subsequent pathways responsible for disease progression and drug resistance helped develop a new generation of anti-EGFR mAbs. These second-generation mAbs have been developed to overcome existing resistance mechanisms and to limit common side effects. For the moment, existing literature suggests that these novel anti-EGFR mAbs are far from finding their way to clinical practice soon. OBJECTIVE In this review, we summarize and evaluate current data regarding ongoing research and completed clinical trials for different second-generation anti-EGFR monoclonal antibodies. CONCLUSION Anti-EGFR mAbs exhibit efficacy in advanced colorectal cancer, but second-generation mAbs failed to prove their benefit in the treatment of metastatic colorectal cancer. Understanding the biological basis of primary and acquired drug resistance could allow scientists to design better clinical trials and develop improved second-generation mAbs.
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Andrei Havasi
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| | - Claudia Burz
- Department of Medical Oncology, "Ion Chiricuta" Oncology Institute, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Prat M, Salon M, Allain T, Dubreuil O, Noël G, Preisser L, Jean B, Cassard L, Lemée F, Tabah-Fish I, Pipy B, Jeannin P, Prost JF, Barret JM, Coste A. Murlentamab, a Low Fucosylated Anti-Müllerian Hormone Type II Receptor (AMHRII) Antibody, Exhibits Anti-Tumor Activity through Tumor-Associated Macrophage Reprogrammation and T Cell Activation. Cancers (Basel) 2021; 13:cancers13081845. [PMID: 33924378 PMCID: PMC8070390 DOI: 10.3390/cancers13081845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/19/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs in healthy adults but is also re-expressed in ovarian, colorectal and lung cancers. In this context, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody, currently in clinical trial. Preliminary data suggest that murlentamab anti-tumor activity involves immune response activation. Thus, in vitro experiments were performed to precisely characterize the murlentamab effect on the human immune system. We show that murlentamab treatment is associated with evidences of innate and adaptive immune cell activation in cancer patient samples. Moreover, we demonstrate that the murlentamab opsonization of AMHRII-expressing ovarian tumor cells promotes a polarization switch of both naïve and tumor-associated macrophages towards an anti-tumor M1-like phenotype. Our work also supports that, through macrophage reeducation, murlentamab activates an anti-tumor adaptive immune response. Finally, the combination of murlentamab with pembrolizumab confirmed novel clinical perspectives of murlentamab association with checkpoint inhibitors and other immuno-modulators. Abstract AMHRII, the anti-Müllerian hormone receptor, is selectively expressed in normal sexual organs but is also re-expressed in gynecologic cancers. Hence, we developed murlentamab, a humanized glyco-engineered anti-AMHRII monoclonal antibody currently in clinical trial. Low-fucosylated antibodies are known to increase the antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) potency of effector cells, but some preliminary results suggest a more global murlentamab-dependent activation of the immune system. In this context, we demonstrate here that the murlentamab opsonization of AMHRII-expressing ovarian tumor cells, in the presence of unstimulated- or tumor-associated macrophage (TAM)-like macrophages, significantly promotes macrophage-mediated ADCC and shifts the whole microenvironment towards a pro-inflammatory and anti-tumoral status, thus triggering anti-tumor activity. We also report that murlentamab orients both unstimulated- and TAM-like macrophages to an M1-like phenotype characterized by a strong expression of co-stimulation markers, pro-inflammatory cytokines and chemokines, favoring T cell recruitment and activation. Moreover, we show that murlentamab treatment shifts CD4+ Th1/Th2 balance towards a Th1 response and activates CD8+ T cells. Altogether, these results suggest that murlentamab, through naïve macrophage orientation and TAM reprogrammation, stimulates the anti-tumor adaptive immune response. Those mechanisms might contribute to the sustained clinical benefit observed in advanced cancer patients treated with murlentamab. Finally, the enhanced murlentamab activity in combination with pembrolizumab opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
| | - Marie Salon
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
| | - Thibault Allain
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
| | - Olivier Dubreuil
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Grégory Noël
- Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Laurence Preisser
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, 49000 Angers, France; (L.P.); (P.J.)
| | - Bérangère Jean
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Lydie Cassard
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, 94905 Villejuif, France;
| | - Fanny Lemée
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Isabelle Tabah-Fish
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Bernard Pipy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
| | - Pascale Jeannin
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, 49000 Angers, France; (L.P.); (P.J.)
| | - Jean-François Prost
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Jean-Marc Barret
- GamaMabs Pharma, 31106 Toulouse, France; (O.D.); (B.J.); (F.L.); (J.-F.P.); (J.-M.B.)
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31062 Toulouse, France; (M.P.); (M.S.); (T.A.); (B.P.)
- RESTORE Research Center, Université de Toulouse, INSERM, CNRS, EFS, UPS, 31100 Toulouse, France
- Correspondence: ; Tel.: +33-534-609-501
| |
Collapse
|
8
|
Sha Z, He JB, Jiang Q, Xu L, Hu L, Liang Z, Li T, Lin Z, Yu Q, Pei X, Lv W. Clinical observation of Pemetrexed first-line treatment in advanced non-squamous lung cancer or non-small cell lung cancer without driver-mutations: a phase 2, single-arm trial. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1315. [PMID: 33209895 PMCID: PMC7661875 DOI: 10.21037/atm-20-6539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background Non-dominant population, which means patients with advanced non-squamous lung cancer or non-small cell lung cancer (NSCLC) without driver-mutations, who are excluded from clinical studies because of specific baseline conditions refractory to multiple treatments, have poor outcomes. We assessed the activity of pemetrexed first-line treatment for a non-dominant population, explore the safety and efficacy of pemetrexed therapy. Methods We did this two-phased, single-arm trial at two sites at the Fifth Affiliated Hospital of Sun Yat-sen University and Guangxi medical university cancer hospital. Pemetrexed 500 mg/m2, static drops on day 1; 21 days for a cycle, each treatment for at least two cycles and up to six cycles. Efficacy was assessed every two cycles. Results We counted the July 21, 2018 to 2020 on May 31, first diagnosed with IIIb–IV period (American Joint Committee on Cancer eighth edition) no drive genes, non-squamous cell carcinomas, 30 patients with non-small cell lung cancer, the follow-up to July 31, 2020, median follow-up time was 12 months. Most were elderly patients with poor general conditions (96.7% of patients had ECOG scores of 2–3) (median age 66 years). Median duration of maintenance treatment was 6 months. Median progression-free survival was 6.5 months. Median overall survival was 12 months. Patients with performance status =0–2 had a significantly higher median overall survival time (16 months) compared with patients with performance status =3 who had a median overall survival time of 7 months (P=0.001). Most treatment-related adverse events were grade 1 or grade 2. Conclusions This study is the first to investigate the survival benefit and toxicity tolerance of pemetrexed treatment in non-dominant population in the real world, providing a new therapeutic possibility for those who failed to be enrolled in clinical studies.
Collapse
Affiliation(s)
- Zhou Sha
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Jian-Bo He
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qinling Jiang
- Department of Oncology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Linlin Xu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liyang Hu
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zibin Liang
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Tin Li
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Zhong Lin
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Qitao Yu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Weize Lv
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
9
|
Abstract
New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.
Collapse
|
10
|
Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, Komatsu Y, Nishina T, Esaki T, Hasegawa J, Kakurai Y, Kamiyama E, Nakata T, Nakamura K, Sakaki H, Hyodo I. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer 2019; 7:219. [PMID: 31412935 PMCID: PMC6694490 DOI: 10.1186/s40425-019-0679-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Erythropoietin-producing hepatocellular receptor A2 (EPHA2) is overexpressed on the cell surface in many cancers and predicts poor prognosis. DS-8895a is a humanized anti-EPHA2 IgG1 monoclonal antibody afucosylated to enhance antibody-dependent cellular cytotoxicity activity. We conducted a two-step, phase I, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of DS-8895a in patients with advanced solid tumors. Methods Step 1 was a dose escalation cohort in advanced solid tumor patients (six dose levels, 0.1–20 mg/kg) to determine Step 2 dosing. Step 2 was a dose expansion cohort in EPHA2-positive esophageal and gastric cancer patients. DS-8895a was intravenously administered every 2 weeks for the duration of the study, with a 28-day period to assess dose-limiting toxicity (DLT). Safety, pharmacokinetics, tumor response, and potential biomarkers were evaluated. Results Thirty-seven patients (Step 1: 22, Step 2: 15 [9: gastric cancer, 6: esophageal cancer]) were enrolled. Although one DLT (Grade 4 platelet count decreased) was observed in Step 1 (dose level 6, 20 mg/kg), the maximum tolerated dose was not reached; the highest dose (20 mg/kg) was used in Step 2. Of the 37 patients, 24 (64.9%) experienced drug-related adverse events (AEs) including three (8.1%) with Grade ≥ 3 AEs. Infusion-related reactions occurred in 19 patients (51.4%) but were manageable. All patients discontinued the study (evident disease progression, 33; AEs, 4). Maximum and trough serum DS-8895a concentrations increased dose-dependently. One gastric cancer patient achieved partial response and 13 patients achieved stable disease. Serum inflammatory cytokines transiently increased at completion of and 4 h after the start of DS-8895a administration. The proportion of CD16-positive natural killer (NK) cells (CD3−CD56+CD16+) decreased 4 h after the start of DS-8895a administration, and the ratio of CD3−CD56+CD137+ to CD3−CD56+CD16+ cells increased on day 3. Conclusions Twenty mg/kg DS-8895a infused intravenously every 2 weeks was generally safe and well tolerated in patients (n = 21) with advanced solid tumors. The exposure of DS-8895a seemed to increase dose-dependently and induce activated NK cells. Trial registration Phase 1 Study of DS-8895a in patients with advanced solid tumors (NCT02004717; 7 November 2013 to 2 February 2017); retrospectively registered on 9 December 2013. Electronic supplementary material The online version of this article (10.1186/s40425-019-0679-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kohei Shitara
- National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa City, Chiba, Japan.
| | - Taroh Satoh
- Osaka University Graduate School of Medicine, Osaka, Japan
| | | | - Kensei Yamaguchi
- Cancer Institute Hospital of Japan Foundation for Cancer Research, Tokyo, Japan
| | - Kei Muro
- Aichi Cancer Center Hospital and Research Institute, Aichi, Japan
| | | | | | - Taito Esaki
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Bas M, Terrier A, Jacque E, Dehenne A, Pochet-Béghin V, Beghin C, Dezetter AS, Dupont G, Engrand A, Beaufils B, Mondon P, Fournier N, de Romeuf C, Jorieux S, Fontayne A, Mars LT, Monnet C. Fc Sialylation Prolongs Serum Half-Life of Therapeutic Antibodies. THE JOURNAL OF IMMUNOLOGY 2019; 202:1582-1594. [PMID: 30683704 DOI: 10.4049/jimmunol.1800896] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/29/2018] [Indexed: 01/01/2023]
Abstract
The long serum t 1/2 of IgGs is ensured by their interaction with the neonatal Fc receptor (FcRn), which salvages IgG from intracellular degradation. Fc glycosylation is thought not to influence FcRn binding and IgG longevity in vivo. In this article, we demonstrate that hypersialylation of asparagine 297 (N297) enhances IgG serum persistence. This polarized glycosylation is achieved using a novel Fc mutation, a glutamate residue deletion at position 294 (Del) that endows IgGs with an up to 9-fold increase in serum lifespan. The strongest impact was observed when the Del was combined with Fc mutations improving FcRn binding (Del-FcRn+). Enzymatic desialylation of a Del-FcRn+ mutant or its production in a cell line unable to hypersialylate reduced the in vivo serum t 1/2 of the desialylated mutants to that of native FcRn+ mutants. Consequently, our study proves that sialylation of the N297 sugar moiety has a direct impact on human IgG serum persistence.
Collapse
Affiliation(s)
- Mathilde Bas
- LFB Biotechnologies, 59011 Lille Cedex, France.,INSERM UMR995, Laboratory of Neuroinflammation and Multiple Sclerosis, F-59000 Lille, France.,University of Lille, Lille Center of Excellence in Neurodegenerative Diseases (LICEND), F-59000 Lille, France; and
| | | | - Emilie Jacque
- LFB Biotechnologies, 91958 Courtaboeuf Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | - Lennart T Mars
- INSERM UMR995, Laboratory of Neuroinflammation and Multiple Sclerosis, F-59000 Lille, France.,University of Lille, Lille Center of Excellence in Neurodegenerative Diseases (LICEND), F-59000 Lille, France; and
| | | |
Collapse
|
12
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Viala M, Vinches M, Alexandre M, Mollevi C, Durigova A, Hayaoui N, Homicsko K, Cuenant A, Gongora C, Gianni L, Tosi D. Strategies for clinical development of monoclonal antibodies beyond first-in-human trials: tested doses and rationale for dose selection. Br J Cancer 2018; 118:679-697. [PMID: 29438365 PMCID: PMC5846071 DOI: 10.1038/bjc.2017.473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Our previous survey on first-in-human trials (FIHT) of monoclonal antibodies (mAbs) showed that, due to their limited toxicity, the recommended phase II dose (RP2D) was only tentatively defined. METHODS We identified, by MEDLINE search, articles on single-agent trials of mAbs with an FIHT included in our previous survey. For each mAb, we examined tested dose(s) and dose selection rationale in non-FIHTs (NFIHTs). We also assessed the correlation between doses tested in the registration trials (RTs) of all FDA-approved mAbs and the corresponding FIHT results. RESULTS In the 37 dose-escalation NFIHTs, the RP2D indication was still poorly defined. In phase II-III NFIHTs (n=103 on 37 mAbs), the FIHT RP2D was the only dose tested for five mAbs. For 16 mAbs, only doses different from the FIHT RP2D or the maximum administered dose (MAD) were tested and the dose selection rationale infrequently indicated. In the 60 RTs on 27 FDA-approved mAbs with available FIHT, the FIHT RP2D was tested only for two mAbs, and RT doses were much lower than the FIHT MAD. CONCLUSIONS The rationale beyond dose selection in phase II and III trials of mAbs is often unclear in published articles and not based on FIHT data.
Collapse
Affiliation(s)
- Marie Viala
- Institut du Cancer de Montpellier, Montpellier, France
| | - Marie Vinches
- Institut du Cancer de Montpellier, Montpellier, France
| | | | | | | | - Nadia Hayaoui
- Institut du Cancer de Montpellier, Montpellier, France
| | | | - Alice Cuenant
- Institut du Cancer de Montpellier, Montpellier, France
| | - Céline Gongora
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| | - Luca Gianni
- San Raffaele – Scientific Institute, Milan, Italy
| | - Diego Tosi
- Institut du Cancer de Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier, Inserm U1194, Montpellier, France
| |
Collapse
|
14
|
Pool M, Kol A, Lub-de Hooge MN, Gerdes CA, de Jong S, de Vries EGE, Terwisscha van Scheltinga AGT. Extracellular domain shedding influences specific tumor uptake and organ distribution of the EGFR PET tracer 89Zr-imgatuzumab. Oncotarget 2018; 7:68111-68121. [PMID: 27602494 PMCID: PMC5356542 DOI: 10.18632/oncotarget.11827] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023] Open
Abstract
Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Kol
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Christian A Gerdes
- Department of Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
15
|
Fiedler W, Cresta S, Schulze-Bergkamen H, De Dosso S, Weidmann J, Tessari A, Baumeister H, Danielczyk A, Dietrich B, Goletz S, Zurlo A, Salzberg M, Sessa C, Gianni L. Phase I study of tomuzotuximab, a glycoengineered therapeutic antibody against the epidermal growth factor receptor, in patients with advanced carcinomas. ESMO Open 2018; 3:e000303. [PMID: 29464112 PMCID: PMC5812399 DOI: 10.1136/esmoopen-2017-000303] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 01/09/2023] Open
Abstract
Background Changes in glycosylation of the constant domain (Fc) of monoclonal antibodies (mAbs) enhance antibody-dependent cell-mediated cytotoxicity independently of downstream effects following receptor blockade by the antibody, thus extending their indication. We investigated the safety, pharmacokinetics, pharmacodynamics and antitumour activity of tomuzotuximab, an IgG1 glycoengineered mAb against the epidermal growth factor receptor with enhanced tumour cytotoxicity in a phase I dose-escalation study (NTC01222637). Patients and methods Forty-one patients with advanced solid tumours refractory to standard therapies received tomuzotuximab weekly (12–1370 mg) or two-weekly (990 mg) on a three-plus-three dose escalation design. Results A maximum tolerated dose was not reached. The most frequent treatment-related adverse events were infusion-related reactions in 31 (76%) patients (grade 3, 12%), mainly confined to the first dose, and skin toxicities (grade 1 or 2) in 30 (73%) patients. Hypomagnesaemia was observed in 9 out of 23 evaluable patients (39%). Similar to cetuximab, tomuzotuximab concentrations increased proportionally to dose from doses≥480 mg with a median terminal half life (t½) of 82 hours, range 55–113 hours. Antitumour activity included one complete response ongoing since more than 4.5 years in a patient with non-small-cell lung cancer and one partial response lasting 353 days in a patient with colorectal cancer. Twelve patients achieved stable disease (median, 166 days, range, 71–414 days) and two patients had prolonged control (>1 year) of their non-measurable disease. Conclusion Tomuzotuximab was safe and showed promising antitumour activity in heavily pretreated patients with advanced metastatic disease. A phase IIb trial of chemotherapy and weekly tomuzotuximab or cetuximab followed with maintenance therapy with the corresponding mAb in patients with recurrent or metastatic head and neck squamous cell carcinoma is ongoing.
Collapse
Affiliation(s)
- Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus-Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Cresta
- Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano, Italy
| | - Henning Schulze-Bergkamen
- Department of Medical Oncology, National Center of Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Sara De Dosso
- Oncology Institute of Southern Switzerland, Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - Jens Weidmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus-Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Tessari
- Fondazione IRCCS, Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | - Alfredo Zurlo
- Clinical Development, Glycotope GmbH, Berlin, Germany
| | | | - Cristiana Sessa
- Oncology Institute of Southern Switzerland, Ospedale Regionale Bellinzona e Valli, Bellinzona, Switzerland
| | - Luca Gianni
- Department of Medical Oncology, Ospedale San Raffaele, Milano, Italy
| |
Collapse
|
16
|
Li W, Zhu Z, Chen W, Feng Y, Dimitrov DS. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development. Front Immunol 2017; 8:1554. [PMID: 29181010 PMCID: PMC5693878 DOI: 10.3389/fimmu.2017.01554] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
Monoclonal antibody (mAb)-based therapeutics are the fastest growing class of human pharmaceuticals. They are typically IgG1 molecules with N-glycans attached to the N297 residue on crystallizable fragment (Fc). Different Fc glycoforms impact their effector function, pharmacokinetics, stability, aggregation, safety, and immunogenicity. Fc glycoforms affect mAbs effector functions including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) by modulating the Fc-FcγRs and Fc-C1q interactions. While the terminal galactose enhances CDC activity, the fucose significantly decreases ADCC. Defucosylated immunoglobulin Gs (IgGs) are thus highly pursued as next-generation therapeutic mAbs with potent ADCC at reduced doses. A plethora of cell glycoengineering and chemoenzymatic glycoengineering strategies is emerging to produce IgGs with homogenous glycoforms especially without core fucose. The chemoenzymatic glycosylation remodeling also offers useful avenues for site-specific conjugations of small molecule drugs onto mAbs. Herein, we review the current progress of IgG-Fc glycoengineering. We begin with the discussion of the structures of IgG N-glycans and biosynthesis followed by reviewing the impact of IgG glycoforms on antibody effector functions and the current Fc glycoengineering strategies with emphasis on Fc defucosylation. Furthermore, we briefly discuss two novel therapeutic mAbs formats: aglycosylated mAbs and Fc glycan specific antibody-drug conjugates (ADCs). The advances in the understanding of Fc glycobiology and development of novel glycoengineering technologies have facilitated the generation of therapeutic mAbs with homogenous glycoforms and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Dimiter S. Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
17
|
Temam S, Spicer J, Farzaneh F, Soria JC, Oppenheim D, McGurk M, Hollebecque A, Sarini J, Hussain K, Soehrman Brossard S, Manenti L, Evers S, Delmar P, Di Scala L, Mancao C, Feuerhake F, Andries L, Ott MG, Passioukov A, Delord JP. An exploratory, open-label, randomized, multicenter study to investigate the pharmacodynamics of a glycoengineered antibody (imgatuzumab) and cetuximab in patients with operable head and neck squamous cell carcinoma. Ann Oncol 2017; 28:2827-2835. [PMID: 28950289 PMCID: PMC5834084 DOI: 10.1093/annonc/mdx489] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In addition to inhibiting epidermal growth factor receptor (EGFR) signaling, anti-EGFR antibodies of the IgG1 'subtype' can induce a complementary therapeutic effect through the induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Glycoengineering of therapeutic antibodies increases the affinity for the Fc-gamma receptor, thereby enhancing ADCC. PATIENTS AND METHODS We investigated the changes in immune effector cells and EGFR pathway biomarkers in 44 patients with operable, advanced stage head and neck squamous cell carcinoma treated with two preoperative doses of either glycoengineered imgatuzumab (GA201; 700 or 1400 mg) or cetuximab (standard dosing) in a neoadjuvant setting with paired pre- and post-treatment tumor biopsies. RESULTS Significant antitumor activity was observed with both antibodies after just two infusions. Metabolic responses were seen in 23 (59.0%) patients overall. One imgatuzumab-treated patient (700 mg) achieved a 'pathological' complete response. An immediate and sustained decrease in peripheral natural killer cells was consistently observed with the first imgatuzumab infusion but not with cetuximab. The functionality of the remaining peripheral natural killer cells was maintained. Similarly, a pronounced increase in circulating cytokines was seen following the first infusion of imgatuzumab but not cetuximab. Overall, tumor-infiltrating CD3+ cell counts increased following treatment with both antibodies. A significant increase from baseline in CD3+/perforin+ cytotoxic T cells occurred only in the 700-mg imgatuzumab group (median 95% increase, P < 0.05). The most prominent decrease of EGFR-expressing cells was recorded after treatment with imgatuzumab (700 mg, -34.6%; 1400 mg, -41.8%). The post-treatment inflammatory tumor microenvironment was strongly related to baseline tumor-infiltrating immune cell density, and baseline levels of EGFR and pERK in tumor cells most strongly predicted therapeutic response. CONCLUSIONS These pharmacodynamic observations and relationship with efficacy are consistent with the proposed mode of action of imgatuzumab combining efficient EGFR pathway inhibition with ADCC-related immune antitumor effects. CLINICAL TRIAL REGISTRATION NUMBER NCT01046266 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- S Temam
- Department of Head and Neck Surgical Oncology, Institut Gustave Roussy, Villejuif, France.
| | | | - F Farzaneh
- Department of Haematological Medicine, King's College London, London, UK
| | - J C Soria
- DITEP (Drug Development Department), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - D Oppenheim
- Department of Haematological Medicine, King's College London, London, UK
| | - M McGurk
- Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - A Hollebecque
- DITEP (Drug Development Department), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - J Sarini
- Department of Surgery, Institut Claudius Regaud, Toulouse, France
| | - K Hussain
- Head and Neck Surgery, King's College London, Guy's Hospital Campus, London, UK
| | | | - L Manenti
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - S Evers
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - P Delmar
- Roche Innovation Center Basel, Basel
| | | | - C Mancao
- Roche Innovation Center Basel, Basel
| | - F Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover; Institute for Neuropathology, University Hospital Freiburg, Freiburg im Breisgau, Germany
| | | | - M G Ott
- Roche Innovation Center Basel, Basel
| | - A Passioukov
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - J P Delord
- Clinical Research Unit, Institut Claudius Regaud, Toulouse, France
| |
Collapse
|
18
|
Yu X, Marshall MJE, Cragg MS, Crispin M. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs 2017; 31:151-166. [DOI: 10.1007/s40259-017-0223-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res 2017; 15:635-650. [PMID: 28356330 DOI: 10.1158/1541-7786.mcr-16-0427] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 12/22/2022]
Abstract
The current concepts and practice of cancer immunotherapy evolved from classical experiments that distinguished "self" from "non-self" and the finding that humoral immunity is complemented by cellular immunity. Elucidation of the biology underlying immune checkpoints and interactions between ligands and ligand receptors that govern the immune system's ability to recognize tumor cells as foreign has led to the emergence of new strategies that mobilize the immune system to reverse this apparent tolerance. Some of these approaches have led to new therapies such as the use of mAbs to interfere with the immune checkpoint. Others have exploited molecular technologies to reengineer a subset of T cells to directly engage and kill tumor cells, particularly those of B-cell malignancies. However, before immunotherapy can become a more effective method of cancer care, there are many challenges that remain to be addressed and hurdles to overcome. Included are manipulation of tumor microenvironment (TME) to enhance T effector cell infiltration and access to the tumor, augmentation of tumor MHC expression for adequate presentation of tumor associated antigens, regulation of cytokines and their potential adverse effects, and reduced risk of secondary malignancies as a consequence of mutations generated by the various forms of genetic engineering of immune cells. Despite these challenges, the future of immunotherapy as a standard anticancer therapy is encouraging. Mol Cancer Res; 15(6); 635-50. ©2017 AACR.
Collapse
Affiliation(s)
- Peter J Stambrook
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - John Maher
- Kings College London, CAR Mechanics Group, Guy's Hospital, London, United Kingdom
| | - Farzin Farzaneh
- Division of Cancer Studies, Department of Haematological Medicine, Kings College London, London, United Kingdom
| |
Collapse
|
20
|
Suh HY, Peck CC, Yu KS, Lee H. Determination of the starting dose in the first-in-human clinical trials with monoclonal antibodies: a systematic review of papers published between 1990 and 2013. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:4005-4016. [PMID: 27994442 PMCID: PMC5153257 DOI: 10.2147/dddt.s121520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A systematic review was performed to evaluate how the maximum recommended starting dose (MRSD) was determined in first-in-human (FIH) studies with monoclonal antibodies (mAbs). Factors associated with the choice of each MRSD determination method were also identified. PubMed was searched for FIH studies with mAbs published in English between January 1, 1990 and December 31, 2013, and the following information was extracted: MRSD determination method, publication year, therapeutic area, antibody type, safety factor, safety assessment results after the first dose, and number of dose escalation steps. Seventy-nine FIH studies with mAbs were identified, 49 of which clearly reported the MRSD determination method. The no observed adverse effects level (NOAEL)-based approach was the most frequently used method, whereas the model-based approach was the least commonly used method (34.7% vs 16.3%). The minimal anticipated biological effect level (MABEL)- or minimum effective dose (MED)-based approach was used more frequently in 2011–2013 than in 1990–2007 (31.6% vs 6.3%, P=0.036), reflecting a slow, but steady acceptance of the European Medicines Agency’s guidance on mitigating risks for FIH clinical trials (2007). The median safety factor was much lower for the MABEL- or MED-based approach than for the other MRSD determination methods (10 vs 32.2–53). The number of dose escalation steps was not significantly different among the different MRSD determination methods. The MABEL-based approach appears to be safer and as efficient as the other MRSD determination methods for achieving the objectives of FIH studies with mAbs faster.
Collapse
Affiliation(s)
- Hoon Young Suh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Carl C Peck
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, CA, USA
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Howard Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University Hospital, Seoul, Korea; Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
21
|
Novel Immunotherapeutic Approaches for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2016; 8:cancers8100087. [PMID: 27669306 PMCID: PMC5082377 DOI: 10.3390/cancers8100087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/16/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The immune system plays a key role in preventing tumor formation by recognizing and destroying malignant cells. For over a century, researchers have attempted to harness the immune response as a cancer treatment, although this approach has only recently achieved clinical success. Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is associated with cigarette smoking, alcohol consumption, betel nut use, and human papillomavirus infection. Unfortunately, worldwide mortality from HNSCC remains high, partially due to limits on therapy secondary to the significant morbidity associated with current treatments. Therefore, immunotherapeutic approaches to HNSCC treatment are attractive for their potential to reduce morbidity while improving survival. However, the application of immunotherapies to this disease has been challenging because HNSCC is profoundly immunosuppressive, resulting in decreased absolute lymphocyte counts, impaired natural killer cell function, reduced antigen-presenting cell function, and a tumor-permissive cytokine profile. Despite these challenges, numerous clinical trials testing the safety and efficacy of immunotherapeutic approaches to HNSCC treatment are currently underway, many of which have produced promising results. This review will summarize immunotherapeutic approaches to HNSCC that are currently undergoing clinical trials.
Collapse
|
22
|
Sforza V, Martinelli E, Ciardiello F, Gambardella V, Napolitano S, Martini G, della Corte C, Cardone C, Ferrara ML, Reginelli A, Liguori G, Belli G, Troiani T. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol 2016; 22:6345-61. [PMID: 27605871 PMCID: PMC4968117 DOI: 10.3748/wjg.v22.i28.6345] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them.
Collapse
|
23
|
Combination of NK Cells and Cetuximab to Enhance Anti-Tumor Responses in RAS Mutant Metastatic Colorectal Cancer. PLoS One 2016; 11:e0157830. [PMID: 27314237 PMCID: PMC4912059 DOI: 10.1371/journal.pone.0157830] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 06/06/2016] [Indexed: 01/28/2023] Open
Abstract
The ability of Natural Killer (NK) cells to kill tumor targets has been extensively studied in various hematological malignancies. However, NK cell therapy directed against solid tumors is still in early development. Epidermal Growth Factor Receptor (EGFR) targeted therapies using monoclonal antibodies (mAbs) such as cetuximab and panitumumab are widely used for the treatment of metastatic colorectal cancer (mCRC). Still, the clinical efficacy of this treatment is hampered by mutations in RAS gene, allowing tumors to escape from anti-EGFR mAb therapy. It is well established that NK cells kill tumor cells by natural cytotoxicity and can in addition be activated upon binding of IgG1 mAbs through Fc receptors (CD16/FcγRIIIa) on their surface, thereby mediating antibody dependent cellular cytotoxicity (ADCC). In the current study, activated Peripheral Blood NK cells (PBNK) were combined with anti-EGFR mAbs to study their effect on the killing of EGFR+/- cancer cell lines, including those with RAS mutations. In vitro cytotoxicity experiments using colon cancer primary tumors and cell lines COLO320, Caco-2, SW620, SW480 and HT-29, demonstrated that PBNK cells are cytotoxic for a range of tumor cells, regardless of EGFR, RAS or BRAF status and at low E:T ratios. Cetuximab enhanced the cytotoxic activity of NK cells on EGFR+ tumor cells (either RASwt, RASmut or BRAFmut) in a CD16 dependent manner, whereas it could not increase the killing of EGFR- COLO320. Our study provides a rationale to strengthen NK cell immunotherapy through a combination with cetuximab for RAS and BRAF mutant mCRC patients.
Collapse
|
24
|
Kjær I, Lindsted T, Fröhlich C, Olsen JV, Horak ID, Kragh M, Pedersen MW. Cetuximab Resistance in Squamous Carcinomas of the Upper Aerodigestive Tract Is Driven by Receptor Tyrosine Kinase Plasticity: Potential for mAb Mixtures. Mol Cancer Ther 2016; 15:1614-26. [PMID: 27196767 DOI: 10.1158/1535-7163.mct-15-0565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/28/2016] [Indexed: 11/16/2022]
Abstract
Squamous cell carcinomas (SCC) arising in upper parts of the aerodigestive tract are among the leading causes of death worldwide. EGFR has been found to play an essential role in driving the malignancy of SCC of the upper aerodigestive tract (SCCUAT), but, despite this, clinical results using a range of different EGFR-targeted agents have been disappointing. Cetuximab is currently the only EGFR-targeted agent approved by the FDA for treatment of SCCUAT. However, intrinsic and acquired cetuximab resistance is a major problem for effective therapy. Thus, a better understanding of the mechanisms responsible for cetuximab resistance is valuable for development of the next generation of antibody therapeutics. In order to better understand the underlying mechanisms of cetuximab resistance in SCCUAT, we established from cetuximab-sensitive models cell lines with acquired resistance to cetuximab by continuous selective pressure in vitro and in vivo Our results show that resistant clones maintain partial dependency on EGFR and that receptor tyrosine kinase plasticity mediated by HER3 and IGF1R plays an essential role. A multitarget mAb mixture against EGFR, HER3, and IGF1R was able to overcome cetuximab resistance in vitro To our surprise, these findings could be extended to include SCCUAT cell lines with intrinsic resistance to cetuximab, suggesting that the triad consisting of EGFR, HER3, and IGF1R plays a key role in SCCUAT. Our results thus provide a rationale for simultaneous targeting of EGFR, HER3, and IGF1R in SCCUAT. Mol Cancer Ther; 15(7); 1614-26. ©2016 AACR.
Collapse
Affiliation(s)
- Ida Kjær
- Symphogen A/S, Ballerup, Denmark. The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jesper Velgaard Olsen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
25
|
Shepherd FA, Bunn PA, Paz-Ares L. Lung cancer in 2013: state of the art therapy for metastatic disease. Am Soc Clin Oncol Educ Book 2016:339-46. [PMID: 23714542 DOI: 10.14694/edbook_am.2013.33.339] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lung cancer is the leading worldwide cause of cancer death and the majority of patients present with metastatic stage IV disease. At diagnosis, clinical, histologic, and molecular features must be considered in therapeutic decision-making for systemic therapy. Molecular testing for at least epidermal growth factor receptor (EGFR) and ALK should be performed in all patients before therapy. Platinum doublet chemotherapy may be considered for "fit" patients who do not have a molecular driver genetic abnormality. Bevacizumab can be considered for addition to the doublet in patients with nonsquamous cancers who have no contraindications. A pemetrexed combination is considered only in nonsquamous histology. Patients with EGFR mutations or ALK fusions should be treated with erlotinib or crizotinib, respectively, even in patients with tumor-related poor performance. The tyrosine-kinase inhibitors (TKIs) may be continued until multisite, symptomatic progression. For patients initially treated with a platinum doublet, maintenance chemotherapy with pemetrexed, erlotinib, gemcitabine, or possibly docetaxel is an option with selection based on clinical features, histology, type of initial therapy, and response to first-line therapy.
Collapse
Affiliation(s)
- Frances A Shepherd
- From the Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada; University of Colorado Denver, Aurora, CO; Medical Oncology Department, Instituto de Biomedicina de Sevilla and Hospital Universitario Virgen del Rocío, Seville, Spain
| | | | | |
Collapse
|
26
|
Schanzer JM, Wartha K, Moessner E, Hosse RJ, Moser S, Croasdale R, Trochanowska H, Shao C, Wang P, Shi L, Weinzierl T, Rieder N, Bacac M, Ries CH, Kettenberger H, Schlothauer T, Friess T, Umana P, Klein C. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs 2016; 8:811-27. [PMID: 26984378 PMCID: PMC4966845 DOI: 10.1080/19420862.2016.1160989] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the "knobs-into-holes" technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2-3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juergen M Schanzer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Katharina Wartha
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Ekkehard Moessner
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Ralf J Hosse
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Samuel Moser
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Rebecca Croasdale
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Halina Trochanowska
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Cuiying Shao
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Peng Wang
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Lei Shi
- c Pharma Research and Early Development, Roche Innovation Center Shanghai , Cai Lun Road, Shanghai , China
| | - Tina Weinzierl
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Natascha Rieder
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Marina Bacac
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Carola H Ries
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Hubert Kettenberger
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Tilman Schlothauer
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Thomas Friess
- a Roche Pharma Research and Early Development, Roche Innovation Center Munich , Nonnenwald, Penzberg , Germany
| | - Pablo Umana
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| | - Christian Klein
- b Roche Pharma Research and Early Development, Roche Innovation Center Zurich , Wagistrasse, Schlieren , Switzerland
| |
Collapse
|
27
|
Temraz S, Mukherji D, Shamseddine A. Dual targeting of HER3 and EGFR in colorectal tumors might overcome anti-EGFR resistance. Crit Rev Oncol Hematol 2016; 101:151-7. [PMID: 27017409 DOI: 10.1016/j.critrevonc.2016.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/13/2016] [Accepted: 03/07/2016] [Indexed: 01/29/2023] Open
Abstract
Multiple genetic alterations have been associated with resistance to anti-EGFR therapy in metastatic colorectal cancer (CRC) patients. Research has been mainly focused on driver mutations in KRAS, NRAS, BRAF and PI3K. However, recent evidence suggests a crucial role for non-genetic mechanisms in conferring resistance to anti-EGFR therapy. Specifically, the HER3 receptor is capable of heterodimerizing with multiple EGFR family members resulting in downstream activation of the PI3K and MAPK pathways. Monoclonal antibodies targeted against the HER3 receptor are being investigated in clinical trials; however, preliminary data has shown limited clinical activity. Thus, given the relevance of the HER3 receptor in activating downstream effector pathways and in conferring resistance to anti-EGFR therapy, the therapeutic targeting of HER3 in combination with primary drivers of the tumor is also being investigated. Here, we review the role of HER3 as a promoter of clinical resistance to EGFR therapy and discuss therapeutic approaches that could potentially overcome this resistance.
Collapse
Affiliation(s)
- Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, 110 72020 Beirut, Lebanon.
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, 110 72020 Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, 110 72020 Beirut, Lebanon
| |
Collapse
|
28
|
Dienstmann R, Salazar R, Tabernero J. Overcoming Resistance to Anti-EGFR Therapy in Colorectal Cancer. Am Soc Clin Oncol Educ Book 2016:e149-56. [PMID: 25993166 DOI: 10.14694/edbook_am.2015.35.e149] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our understanding of the genetic and nongenetic molecular alterations associated with anti-epidermal growth factor receptor (EGFR) therapy resistance in colorectal cancer (CRC) has markedly expanded in recent years. Mutations in RAS genes (KRAS/NRAS exons 2, 3, or 4) predict a lack of clinical benefit when anti-EGFR monoclonal antibodies (mAbs) are added to chemotherapy. Genetic events in additional nodes of the mitogen-activated protein kinase (MAPK)-phosphoinositide 3-kinase (PI3K) pathways that bypass EGFR signaling, such as BRAF or PIK3CA mutations or KRAS, ERBB2, or MET amplifications, also may confer resistance to cetuximab or panitumumab. Polymorphisms that block antibody binding as a result of EGFR extracellular domain mutations have been reported. Nongenetic mechanisms, including compensatory activation of receptor tyrosine kinases HER3 and MET, together with high expression of the ligands amphiregulin, transforming growth factor alpha heregulin, and hepatocyte growth factor in the tumor microenvironment also are thought to be involved in resistance. In one-third of the samples, more than one genetic event can be found, and nongenetic events most likely coexist with gene alterations. Furthermore, activation of a gene expression signature of epithelial-mesenchymal transition has been associated with reduced cellular dependence on EGFR signaling. Collectively, this body of work provides convincing evidence that the molecular heterogeneity of CRC plays an important role in the context of resistance to anti-EGFR therapy. Herein, we discuss how this knowledge has been translated into drug development strategies to overcome primary and acquired anti-EGFR resistance, with rational combinations of targeted agents in genomically selected populations, second-generation EGFR inhibitors, and other agents expected to boost the immune response at the tumor site.
Collapse
Affiliation(s)
- Rodrigo Dienstmann
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ramon Salazar
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Tabernero
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology, Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
29
|
Mohammed AA, El-Tanni H, El-Khatib HM, Mirza AA, El-Kashif AT. WITHDRAWN: Molecular classification of colorectal cancer: Current perspectives and controversies. J Egypt Natl Canc Inst 2016:S1110-0362(15)00109-0. [PMID: 26754152 DOI: 10.1016/j.jnci.2015.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 12/26/2022] Open
Abstract
This article has been withdrawn at the request of the editor. The authors have plagiarized part of a paper that had already appeared in ASCO EDUCATIONAL BOOK (2014), 91-99 (http://meetinglibrary.asco.org/content/114000091-144). One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents an abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).
Collapse
Affiliation(s)
- Amrallah A Mohammed
- Medical Oncology Department, Faculty of Medicine, Zagazig University, Egypt; Oncology Center, King Abdullah Medical City-Holy Capital, Saudi Arabia.
| | - Hani El-Tanni
- Oncology Center, King Abdullah Medical City-Holy Capital, Saudi Arabia
| | - Hani M El-Khatib
- Oncology Center, King Abdullah Medical City-Holy Capital, Saudi Arabia
| | - Ahmad A Mirza
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amr T El-Kashif
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
30
|
Gonzalez-Nicolini V, Herter S, Lang S, Waldhauer I, Bacac M, Roemmele M, Bommer E, Freytag O, van Puijenbroek E, Umaña P, Gerdes CA. Premedication and Chemotherapy Agents do not Impair Imgatuzumab (GA201)-Mediated Antibody-Dependent Cellular Cytotoxicity and Combination Therapies Enhance Efficacy. Clin Cancer Res 2015; 22:2453-61. [PMID: 26581243 DOI: 10.1158/1078-0432.ccr-14-2579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/20/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Imgatuzumab (GA201) is a novel anti-EGFR mAb that is glycoengineered for enhanced antibody-dependent cellular cytotoxicity (ADCC). Future treatment schedules for imgatuzumab will likely involve the use of potentially immunosuppressive drugs, such as premedication therapies, to mitigate infusion reactions characteristic of mAb therapy and chemotherapy combination partners. Because of the strong immunologic component of mode of action of imgatuzumab, it is important to understand whether these drugs influence imgatuzumab-mediated ADCC and impact efficacy. EXPERIMENTAL DESIGN We performed a series of ADCC assays using human peripheral blood mononuclear cells that were first preincubated in physiologically relevant concentrations of commonly used premedication drugs and cancer chemotherapies. The ability of common chemotherapy agents to enhance the efficacy of imgatuzumab in vivo was then examined using orthotopic xenograft models of human cancer. RESULTS A majority of premedication and chemotherapy drugs investigated had no significant effect on the ADCC activity of imgatuzumab in vitro Furthermore, enhanced in vivo efficacy was seen with imgatuzumab combination regimens compared with single-agent imgatuzumab, single-agent chemotherapy, or cetuximab combinations. CONCLUSIONS These data indicate that medications currently coadministered with anti-EGFR therapies are unlikely to diminish the ADCC capabilities of imgatuzumab. Further studies using syngeneic models with functional adaptive T-cell responses are now required to fully understand how chemotherapy agents will influence a long-term response to imgatuzumab therapy. Thus, this study and future ones can provide a framework for designing imgatuzumab combination regimens with enhanced efficacy for investigation in phase II trials. Clin Cancer Res; 22(10); 2453-61. ©2015 AACR.
Collapse
Affiliation(s)
| | - Sylvia Herter
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Sabine Lang
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Inja Waldhauer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marina Bacac
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Michaela Roemmele
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Esther Bommer
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Olivier Freytag
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Erwin van Puijenbroek
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Pablo Umaña
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Christian A Gerdes
- Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| |
Collapse
|
31
|
Misiukiewicz K, Dang RP, Parides M, Camille N, Uczkowski H, Sarlis NJ, Posner M. Endothelial growth factor receptor inhibitors in recurrent metastatic cancer of the head and neck. Head Neck 2015; 38 Suppl 1:E2221-8. [PMID: 25900280 DOI: 10.1002/hed.24083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/25/2022] Open
Abstract
Targeted therapy has become an important new class of therapeutic agents used in squamous cell carcinoma of the head and neck (SCCHN). Among them epidermal growth factor receptor (EGFR) inhibitors have been studied the most. Today, two classes of EGFR inhibitors are routinely used in the clinic; anti-EGFR monoclonal antibodies and small-molecule inhibitors of the EGFR tyrosine kinase activity. These agents have been used clinically in the recurrent metastatic (R/M) settings but only cetuximab has reached a regulatory approval. Current research is focused on innovative compound design, predictive biomarker discovery, and combination strategies in order to overcome resistance. Efforts should also be focused on endpoints other than overall survival, which is the current gold standard, such as surrogate endpoints. This article summarizes the clinical evidence of the anticancer activity of EGFR inhibitors in patients with R/M SCCHN, and analyzes the current, controversial clinical issues with respect to their interpretation. © 2015 Wiley Periodicals, Inc. Head Neck 38: E2221-E2228, 2016.
Collapse
Affiliation(s)
- Krzysztof Misiukiewicz
- Department of Medical Oncology, Tisch Cancer Institute at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajan P Dang
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Parides
- Department of Medical Oncology, Tisch Cancer Institute at Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nadia Camille
- Department of Medical Oncology, Tisch Cancer Institute at Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Nicholas J Sarlis
- Department of Clinical & Exper. Medicine & Pharmacology Masters Program, University of Messina, Messina, Italy
| | - Marshall Posner
- Department of Medical Oncology, Tisch Cancer Institute at Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
32
|
Acquired resistance to anti-EGFR mAb ICR62 in cancer cells is accompanied by an increased EGFR expression, HER-2/HER-3 signalling and sensitivity to pan HER blockers. Br J Cancer 2015; 113:1010-9. [PMID: 26372697 PMCID: PMC4651123 DOI: 10.1038/bjc.2015.319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/15/2015] [Accepted: 08/12/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The human epidermal growth factor receptor (EGFR) is an important target for cancer treatment. Currently, only the EGFR antibodies cetuximab and panitumumab are approved for the treatment of patients with colorectal cancer. However, a major clinical challenge is a short-term response owing to development of acquired resistance during the course of the treatment. METHODS In this study, we investigated the molecular mechanisms underlying development of acquired resistance in DiFi colorectal cancer cells to the anti-EGFR mAb ICR62 (termed DiFi62) and to the small molecule tyrosine kinase inhibitor (TKI) gefitinib (termed DiFiG) using a range of techniques. RESULTS Compared with the findings from parental DiFi and DiFiG cells, development of acquired resistance to anti-EGFR mAb ICR62 in DiFi62 cells was accompanied by an increase in cell surface EGFR and increased phosphorylation of HER-2 and HER-3. Interestingly, DiFi62 cells also acquired resistance to treatment with anti-EGFR mAbs cetuximab and ICR61, which bind to other distinct epitopes on the extracellular domain of EGFR, but these cells remained equally sensitive as the parental cells to treatment with pan-HER inhibitors such as afatinib. CONCLUSIONS Our results provide a novel mechanistic insight into the development of acquired resistance to EGFR antibody-based therapy in colorectal cancer cells and justify further investigations on the therapeutic benefits of pan-HER family inhibitors in the treatment of colorectal cancer patients once acquired resistance to EGFR antibody-based therapy is developed.
Collapse
|
33
|
Leabman MK, Meng YG, Kelley RF, DeForge LE, Cowan KJ, Iyer S. Effects of altered FcγR binding on antibody pharmacokinetics in cynomolgus monkeys. MAbs 2015; 5:896-903. [PMID: 24492343 DOI: 10.4161/mabs.26436] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Antibody interactions with Fcγ receptors (FcγRs), like FcγRIIIA, play a critical role in mediating antibody effector functions and thereby contribute significantly to the biologic and therapeutic activity of antibodies. Over the past decade, considerable work has been directed towards production of antibodies with altered binding affinity to FcγRs and evaluation of how the alterations modulate their therapeutic activity. This has been achieved by altering glycosylation status at N297 or by engineering modifications in the crystallizable fragment (Fc) region. While the effects of these modifications on biologic activity and efficacy have been examined, few studies have been conducted to understand their effect on antibody pharmacokinetics (PK). We present here a retrospective analysis in which we characterize the PK of three antibody variants with decreased FcγR binding affinity caused by amino acid substitutions in the Fc region (N297A, N297G, and L234A/L235A) and three antibody variants with increased FcγRIIIA binding affinity caused by afucosylation at N297, and compare their PK to corresponding wild type antibody PK in cynomolgus monkeys. For all antibodies, PK was examined at a dose that was known to be in the linear range. Since production of the N297A and N297G variants in Chinese hamster ovary cells results in aglycosylated antibodies that do not bind to FcγRs, we also examined the effect of expression of an aglycosylated antibody, without sequence change(s), in E. coli. All the variants demonstrated similar PK compared with that of the wild type antibodies, suggesting that, for the six antibodies presented here, altered FcγR binding affinity does not affect PK.
Collapse
Affiliation(s)
- Maya K Leabman
- Department of Pharmacokinetics and Pharmacodynamics; Genentech, Inc; San Francisco, CA USA
| | - Y Gloria Meng
- Department of Biochemical and Cellular Pharmacology; Genentech, Inc; San Francisco, CA USA
| | - Robert F Kelley
- Department of Antibody Engineering; Genentech, Inc; San Francisco, CA USA
| | - Laura E DeForge
- Department of Biochemical and Cellular Pharmacology; Genentech, Inc; San Francisco, CA USA
| | - Kyra J Cowan
- Department of BioAnalytical Sciences; Genentech, Inc; San Francisco, CA USA
| | - Suhasini Iyer
- Department of Pharmacokinetics and Pharmacodynamics; Genentech, Inc; San Francisco, CA USA
| |
Collapse
|
34
|
Derer S, Lohse S, Valerius T. EGFR expression levels affect the mode of action of EGFR-targeting monoclonal antibodies. Oncoimmunology 2014; 2:e24052. [PMID: 23762793 PMCID: PMC3667899 DOI: 10.4161/onci.24052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/27/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) expression levels appear to modulate the efficacy of EGFR-targeting monoclonal antibodies. More specifically, we observed that high EGFR densities negatively affect the effects of EGFR-specific antibodies on EGFR phosphorylation yet exacerbate Fc-mediated tumor-cell killing. These results suggest that the predominant mode of action of EGFR-targeting antibodies depend on EGFR expression levels.
Collapse
Affiliation(s)
- Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; Christian-Albrechts-University and University Hospital Schleswig-Holstein; Kiel, Germany
| | | | | |
Collapse
|
35
|
Gerdes CA, Umaña P. GA201: a novel humanized and glycoengineered anti-EGFR antibody--response. Clin Cancer Res 2014; 20:1055. [PMID: 24536075 DOI: 10.1158/1078-0432.ccr-13-2699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Optimization of the Development of Old and New EGFR and MAP Kinase Inhibitors for Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Ugurluer G, Ozsahin M. Early investigational drugs that target epidermal growth factor receptors for the treatment of head and neck cancer. Expert Opin Investig Drugs 2014; 23:1637-54. [DOI: 10.1517/13543784.2014.951435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Li X, Wei S, Chen J. Critical appraisal of pemetrexed in the treatment of NSCLC and metastatic pulmonary nodules. Onco Targets Ther 2014; 7:937-45. [PMID: 24944517 PMCID: PMC4057332 DOI: 10.2147/ott.s45148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pemetrexed, a new multitarget antifolate antineoplastic agent, has significantly improved the overall survival in nonsquamous non-small-cell lung cancer patients. Presently, pemetrexed is recommended for first line treatment in combination with platinum derivatives, for second line treatment as a single agent and, more recently, as maintenance treatment after first line chemotherapy. In this article we critically appraise the status of pemetrexed including pharmacodynamics, pharmacokinetics, toxicity, and the cost effectiveness of pemetrexed, as well as the predictive biomarkers for pemetrexed based chemotherapy.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Heping District, Tianjin, People's Republic of China
| | - Sen Wei
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Heping District, Tianjin, People's Republic of China
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Heping District, Tianjin, People's Republic of China
| |
Collapse
|
39
|
Schanzer JM, Wartha K, Croasdale R, Moser S, Künkele KP, Ries C, Scheuer W, Duerr H, Pompiati S, Pollman J, Stracke J, Lau W, Ries S, Brinkmann U, Klein C, Umana P. A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type I (IGF-1R) demonstrating unique molecular properties. J Biol Chem 2014; 289:18693-706. [PMID: 24841203 DOI: 10.1074/jbc.m113.528109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In the present study, we have developed a novel one-arm single chain Fab heterodimeric bispecific IgG (OAscFab-IgG) antibody format targeting the insulin-like growth factor receptor type I (IGF-1R) and the epidermal growth factor receptor (EGFR) with one binding site for each target antigen. The bispecific antibody XGFR is based on the "knob-into-hole" technology for heavy chain heterodimerization with one heavy chain consisting of a single chain Fab to prevent wrong pairing of light chains. XGFR was produced with high expression yields and showed simultaneous binding to IGF-1R and EGFR with high affinity. Due to monovalent binding of XGFR to IGF-1R, IGF-1R internalization was strongly reduced compared with the bivalent parental antibody, leading to enhanced Fc-mediated cellular cytotoxicity. To further increase immune effector functions triggered by XGFR, the Fc portion of the bispecific antibody was glycoengineered, which resulted in strong antibody-dependent cell-mediated cytotoxicity activity. XGFR-mediated inhibition of IGF-1R and EGFR phosphorylation as well as A549 tumor cell proliferation was highly effective and was comparable with a combined treatment with EGFR (GA201) and IGF-1R (R1507) antibodies. XGFR also demonstrated potent anti-tumor efficacy in multiple mouse xenograft tumor models with a complete growth inhibition of AsPC1 human pancreatic tumors and improved survival of SCID beige mice carrying A549 human lung tumors compared with treatment with antibodies targeting either IGF-1R or EGFR. In summary, we have applied rational antibody engineering technology to develop a heterodimeric OAscFab-IgG bispecific antibody, which combines potent signaling inhibition with antibody-dependent cell-mediated cytotoxicity induction and results in superior molecular properties over two established tetravalent bispecific formats.
Collapse
Affiliation(s)
| | | | | | - Samuel Moser
- Roche Glycart AG, CH-8952 Schlieren, Switzerland, and
| | | | | | | | - Harald Duerr
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Sandra Pompiati
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Jan Pollman
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Jan Stracke
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Wilma Lau
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Stefan Ries
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Ulrich Brinkmann
- Large Molecule Research, Pharmaceutical Research and Early Development, Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | | | - Pablo Umana
- Roche Glycart AG, CH-8952 Schlieren, Switzerland, and
| |
Collapse
|
40
|
Terwisscha van Scheltinga AGT, Lub-de Hooge MN, Abiraj K, Schröder CP, Pot L, Bossenmaier B, Thomas M, Hölzlwimmer G, Friess T, Kosterink JGW, de Vries EGE. ImmunoPET and biodistribution with human epidermal growth factor receptor 3 targeting antibody ⁸⁹Zr-RG7116. MAbs 2014; 6:1051-8. [PMID: 24870719 DOI: 10.4161/mabs.29097] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The humanized monoclonal antibody with high affinity for the human epidermal growth factor receptor (HER) 3, RG7116, is a glycoengineered, IgG1 class antibody. By labeling RG7116 with zirconium-89 ((89)Zr) we aimed to visualize in vivo HER3 expression and study the biodistribution of this antibody in human tumor-bearing mice. Biodistribution of (89)Zr-RG7116 was studied in subcutaneously xenografted FaDu tumor cells (HER3-positive). Dose-dependency of (89)Zr-RG7116 organ distribution and specific tumor uptake was assessed by administering doses ranging from 0.05 to 10 mg/kg RG7116 to SCID/Beige mice. Biodistribution was analyzed at 24 and 144 h after injection. MicroPET imaging was performed at 1, 3, and 6 days after injection of 1.0 mg/kg (89)Zr-RG7116 in the FaDu, H441, QG-56 and Calu-1 xenografts with varying HER3 expression. The excised tumors were analyzed for HER3 expression. Biodistribution analyses showed a dose- and time-dependent (89)Zr-RG7116 tumor uptake in FaDu tumors. The highest tumor uptake of (89)Zr-RG7116 was observed in the 0.05 mg/kg dose group with 27.5%ID/g at 144 h after tracer injection. MicroPET imaging revealed specific tumor uptake of (89)Zr-RG7116 in FaDu and H441 models with an increase in tumor uptake over time. Biodistribution data was consistent with the microPET findings in FaDu, H441, QG56 and Calu-1 xenografts, which correlated with HER3 expression levels. In conclusion, (89)Zr-RG7116 specifically accumulates in HER3 expressing tumors. PET imaging with this tracer provides real-time non-invasive information about RG7116 distribution, tumor targeting and tumor HER3 expression levels.
Collapse
Affiliation(s)
- Anton G T Terwisscha van Scheltinga
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands; Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands; Department of Nuclear Medicine and Molecular Imaging; University of Groningen; Groningen, The Netherlands
| | - Keelara Abiraj
- Pharma Research & Early Development (pRED); F. Hoffmann-La Roche AG; Basel, Switzerland
| | - Carolien P Schröder
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands
| | - Linda Pot
- Department of Medical Oncology; University of Groningen; Groningen, The Netherlands
| | - Birgit Bossenmaier
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Marlene Thomas
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Gabriele Hölzlwimmer
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Thomas Friess
- Pharma Research & Early Development (pRED); Roche Diagnostics GmbH; Penzberg, Germany
| | - Jos G W Kosterink
- Department of Hospital and Clinical Pharmacy; University of Groningen; Groningen, The Netherlands
| | | |
Collapse
|
41
|
Derer S, Glorius P, Schlaeth M, Lohse S, Klausz K, Muchhal U, Desjarlais JR, Humpe A, Valerius T, Peipp M. Increasing FcγRIIa affinity of an FcγRIII-optimized anti-EGFR antibody restores neutrophil-mediated cytotoxicity. MAbs 2014; 6:409-21. [PMID: 24492248 PMCID: PMC3984330 DOI: 10.4161/mabs.27457] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/07/2013] [Accepted: 12/07/2013] [Indexed: 01/27/2023] Open
Abstract
Antibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC. Here, non-fucosylated or protein-engineered anti-EGFR antibodies with optimized FcγRIIIa affinities demonstrated the expected benefit in NK cell-mediated ADCC, but did not mediate ADCC by PMN, which could be restored by FcγRIIIb blockade. Furthermore, eosinophils and PMN from paroxysmal nocturnal hemoglobinuria patients that expressed no or low levels of FcγRIIIb mediated effective ADCC with FcγRIII-optimized anti-EGFR antibody. Additional experiments with double FcγRIIa/FcγRIII-optimized constructs demonstrated enhanced PMN-mediated ADCC compared with single FcγRIII-optimized antibody. In conclusion, our data demonstrate that FcγRIIIb engagement impairs PMN-mediated ADCC activity of FcγRIII-optimized anti-EGFR antibodies, while further optimization of FcγRIIa binding significantly restores PMN recruitment.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/metabolism
- Antibody Affinity/genetics
- Antibody-Dependent Cell Cytotoxicity/genetics
- Cells, Cultured
- Cetuximab
- Cytotoxicity, Immunologic/genetics
- Eosinophils/immunology
- ErbB Receptors/immunology
- Glycosylation
- Hemoglobinuria, Paroxysmal/immunology
- Hemoglobinuria, Paroxysmal/therapy
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Immunotherapy/trends
- Neutrophils/immunology
- Polymorphism, Genetic
- Protein Engineering
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
Collapse
Affiliation(s)
- Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Pia Glorius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Martin Schlaeth
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Stefan Lohse
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Katja Klausz
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | | | | | - Andreas Humpe
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy; 2nd Department of Medicine; University Hospital Schleswig-Holstein and Christian-Albrechts-University; Kiel, Germany
| |
Collapse
|
42
|
Tomasini P, Greillier L, Khobta N, Barlesi F. The place of pemetrexed in the management of non-small-cell lung cancer patients. Expert Rev Anticancer Ther 2014; 13:257-66. [PMID: 23477511 DOI: 10.1586/era.12.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer death worldwide. Chemotherapy is included in the management of the majority of NSCLC patients either in addition to a local treatment (surgery/radiotherapy) or alone. In this setting, pemetrexed has become one of the most important partners of current chemotherapy regimens for nonsquamous NSCLC patients. Indeed, pemetrexed demonstrated a comparable efficacy to other previously available drugs in NSCLC, with however a better safety profile and an easier schedule of administration. In addition, pemetrexed demonstrated a greater efficacy in nonsquamous NSCLC that lead to an exploration of the underlying potential biological background. It is now suggested that the tumor thymidylate synthase level may act as a predictor of pemetrexed efficacy, therefore potentially providing clinicians in the future with a predictor of efficacy, which it is usually lacking with standard chemotherapies.
Collapse
Affiliation(s)
- Pascale Tomasini
- Aix-Marseille Université - Assistance Publique Hôpitaux de Marseille, Multidisciplinary Oncology & Therapeutic Innovations Department, Chemin des Bourrely, 13915 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
43
|
Singer J, Jensen‐Jarolim E. IgE-based immunotherapy of cancer: challenges and chances. Allergy 2014; 69:137-49. [PMID: 24117861 PMCID: PMC4022995 DOI: 10.1111/all.12276] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/16/2022]
Abstract
Passive immunotherapy with monoclonal antibodies is an indispensable cornerstone of clinical oncology. Notably, all FDA-approved antibodies comprise the IgG class, although numerous research articles proposed monoclonal antibodies of the IgM, IgG, IgA and IgE classes directed specifically against tumor-associated antigens. In particular, for the IgE isotype class, several recent studies could demonstrate high tumoricidic efficacy. Therefore, this review specifically highlights the latest developments toward IgE-based immunotherapy of cancer. Possible mechanisms and safety aspects of IgE-mediated tumor cell death are discussed with special focus on the attracted immune cells. An outlook is given on how especially comparative oncology could contribute to further developments. Humans and dogs have a highly comparable IgE biology, suggesting that translational AllergoOncology studies in patients with canine cancer could have predictive value for the potential of IgE-based anticancer immunotherapy in human clinical oncology.
Collapse
Affiliation(s)
- J. Singer
- Comparative Immunology and Oncology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
| | - E. Jensen‐Jarolim
- Comparative Immunology and Oncology Institute of Pathophysiology and Allergy Research Medical University of Vienna Vienna Austria
- Comparative Medicine Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
| |
Collapse
|
44
|
Bakema JE, van Egmond M. Fc receptor-dependent mechanisms of monoclonal antibody therapy of cancer. Curr Top Microbiol Immunol 2014; 382:373-92. [PMID: 25116109 DOI: 10.1007/978-3-319-07911-0_17] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeted therapies like treatment with monoclonal antibodies (mAbs) have entered the arsenal of modern anticancer drugs. mAbs combine specificity with multiple effector functions that can lead to reduction of tumour burden. Direct mechanisms of action, including induction of apoptosis or growth inhibition, depend on the biology of the target antigen. Fc tails of mAbs have furthermore the potential to initiate complement-dependent lysis as well as immune effector cell-mediated tumour cell killing via binding to Fc receptors. Natural killer cells can induce apoptosis via antibody-dependent cellular cytotoxicity (ADCC), whereas macrophages are able to phagocytose mAb-opsonized tumour cells (antibody-dependent cellular phagocytosis; ADCP). Finally, neutrophils can induce non-apoptotic tumour cell death, especially in the presence of immunoglobulin A (IgA) antitumour mAbs. In spite of promising clinical successes in some malignancies, improvement of mAb immunotherapy is required to achieve overall complete remission in cancer patients. New strategies to enhance Fc receptor-mediated mechanisms of action or to overcome the immunosuppressive microenvironment of the tumour in mAb therapy of cancer are therefore currently being explored and will be addressed in this chapter.
Collapse
Affiliation(s)
- Jantine E Bakema
- Tumor Biology Section, Department of Otolaryngology/Head-Neck Surgery, VU University Medical Center, De Boelelaan 1117, 1007 MB, Amsterdam, The Netherlands
| | | |
Collapse
|
45
|
Dienstmann R, Salazar R, Tabernero J. The evolution of our molecular understanding of colorectal cancer: what we are doing now, what the future holds, and how tumor profiling is just the beginning. Am Soc Clin Oncol Educ Book 2014:91-99. [PMID: 24857065 DOI: 10.14694/edbook_am.2014.34.91] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Colorectal cancer (CRC) has been extensively molecularly characterized in recent years. In addition to the understanding of biologic hallmarks of the disease, the ultimate goal of these studies was to provide tools that could allow us to differentiate subgroups of CRC with prognostic and predictive implications. So far, subtype classification has been largely driven by well-described features: (1) defective mismatch repair resulting in higher mutation rate; (2) cellular proliferation along with chromosomal instability and copy number aberrations; and (3) an invasive stromal phenotype mainly driven by TGF-β linked to epithelial-mesenchymal transition. Recent studies have outlined the complexity of CRC at the gene expression level, confirming how heterogeneous the disease is beyond currently validated parameters, namely KRAS, BRAF mutations and microsatellite instability. In fact, adopting an extended mutation profile upfront, which includes nonrecurrent KRAS, NRAS, and PIK3CA gene variants, likely improves outcomes. In this article, we review the current trends of translational research in CRC, summarize ongoing genomically driven clinical trials, and describe the challenges for defining a comprehensive, robust, and reproducible disease classification system that links molecular features to personalized medicine. We believe that identification of CRC subtypes based on integrative genomic analyses will provide a better guide for patient stratification and for rational design of drugs targeting specific pathways.
Collapse
Affiliation(s)
- Rodrigo Dienstmann
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Salazar
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep Tabernero
- From the Sage Bionetworks, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Medical Oncology, Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Medical Oncology Department, Vall d'Hebron University Hospital and Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
46
|
Delord JP, Tabernero J, García-Carbonero R, Cervantes A, Gomez-Roca C, Bergé Y, Capdevila J, Paz-Ares L, Roda D, Delmar P, Oppenheim D, Brossard SS, Farzaneh F, Manenti L, Passioukov A, Ott MG, Soria JC. Open-label, multicentre expansion cohort to evaluate imgatuzumab in pre-treated patients with KRAS-mutant advanced colorectal carcinoma. Eur J Cancer 2013; 50:496-505. [PMID: 24262587 DOI: 10.1016/j.ejca.2013.10.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/15/2013] [Indexed: 11/18/2022]
Abstract
AIM Imgatuzumab (GA201) is a novel anti-epidermal growth factor receptor (anti-EGFR) antibody glycoengineered for enhanced antibody-dependent cell-mediated cytotoxicity (ADCC). We investigated the efficacy of imgatuzumab in patients with EGFR-positive, KRAS-mutant advanced colorectal cancer. METHODS Patients received single-agent imgatuzumab (1400mg on day 1 and 8 followed by q2W) as third line therapy in an open-label, multicentre, non-randomised, expansion study. The primary end-point was tumour response. Pre- and on-treatment biopsies and blood samples were investigated for biomarkers related to imgatuzumab's believed mechanism of action (MoA). RESULTS 25 patients were treated and the best overall response was stable disease occurring in 40% of patients at 8weeks, 24% at 16weeks and 8% (two patients) at 32weeks. Median overall survival was 9.3months (95% confidence interval (CI): 5.1-12.3). Treatment-related rash, hypomagnesaemia and infusion-related reactions were the most common adverse events. Comparison of pre- and post-treatment biopsies revealed that the number of tumour-infiltrating immune cells increased notably after one cycle of therapy (median compound immune reactive score of 1491 versus 898 cells/mm(3) at baseline), whereas the number of peripheral natural killer cells decreased. A potential association between baseline tumour immune infiltration and clinical efficacy was seen. CONCLUSIONS These data may suggest that the MoA of imgatuzumab involves ADCC-related immune effects in the tumour and is not limited to simple receptor blockade.
Collapse
Affiliation(s)
| | - Josep Tabernero
- Vall d'Hebron University Hospital, VHIO, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rocío García-Carbonero
- Oncology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS) [Universidad de Sevilla, CSIC, HUVR], Seville, Spain
| | - Andres Cervantes
- Department of Haematology and Medical Oncology, INCLIVA, University of Valencia, Spain
| | - Carlos Gomez-Roca
- Institut Gustave Roussy, Villejuif, France; University Paris South, France
| | - Yann Bergé
- Institut Claudius Regaud and Toulouse III University, Toulouse, France
| | - Jaume Capdevila
- Vall d'Hebron University Hospital, VHIO, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Paz-Ares
- Oncology Department, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS) [Universidad de Sevilla, CSIC, HUVR], Seville, Spain
| | - Desamparados Roda
- Department of Haematology and Medical Oncology, INCLIVA, University of Valencia, Spain
| | - Paul Delmar
- F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David Oppenheim
- Department of Haematological Medicine, King's College, London, UK
| | | | - Farzin Farzaneh
- Department of Haematological Medicine, King's College, London, UK
| | | | | | | | - Jean-Charles Soria
- Institut Gustave Roussy, Villejuif, France; University Paris South, France.
| |
Collapse
|
47
|
Manji A, Brana I, Amir E, Tomlinson G, Tannock IF, Bedard PL, Oza A, Siu LL, Razak ARA. Evolution of clinical trial design in early drug development: systematic review of expansion cohort use in single-agent phase I cancer trials. J Clin Oncol 2013; 31:4260-7. [PMID: 24127441 DOI: 10.1200/jco.2012.47.4957] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To evaluate the use and objectives of expansion cohorts in phase I cancer trials and to explore trial characteristics associated with their use. METHODS We performed a systematic review of MEDLINE and EMBASE, limiting studies to single-agent phase I trials recruiting adults and published after 2006. Eligibility assessment and data extraction were performed by two reviewers. Data were assessed descriptively, and associations were tested by univariable and multivariable logistic regression. RESULTS We identified 611 unique phase I cancer trials, of which 149 (24%) included an expansion cohort. The trials were significantly more likely to use an expansion cohort if they were published more recently, were multicenter, or evaluated a noncytotoxic agent. Objectives of the expansion cohort were reported in 74% of trials. In these trials, safety (80%), efficacy (45%), pharmacokinetics (28%), pharmacodynamics (23%), and patient enrichment (14%) were cited as objectives. Among expansion cohorts with safety objectives, the recommended phase II dose was modified in 13% and new toxicities were described in 54% of trials. Among trials aimed at assessing efficacy, only 11% demonstrated antitumor activity assessed by response criteria that was not previously observed during dose escalation. CONCLUSION The utilization of expansion cohorts has increased with time. Safety and efficacy are common objectives, but 26% fail to report explicit aims. Expansion cohorts may provide useful supplementary data for phase I trials, particularly with regard to toxicity and definition of recommended dose for phase II studies.
Collapse
Affiliation(s)
- Arif Manji
- Arif Manji, Irene Brana, Eitan Amir, Ian F. Tannock, Philippe L. Bedard, Amit Oza, Lillian L. Siu, and Albiruni R. Abdul Razak, Princess Margaret Cancer Centre, University Health Network; George Tomlinson, University of Toronto; and Arif Manji, Hospital for Sick Children, Toronto, and Southlake Regional Health Centre, Newmarket, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Current challenges and clinical investigations of epidermal growth factor receptor (EGFR)- and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat Rev 2013; 40:567-77. [PMID: 24216225 DOI: 10.1016/j.ctrv.2013.10.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/06/2013] [Indexed: 12/23/2022]
Abstract
Overexpression of the epidermal growth factor receptor (EGFR) is a common characteristic of head and neck squamous cell carcinomas (HNSCC). Cetuximab is a chimeric anti-EGFR monoclonal antibody (mAb) with multiple approved indications in HNSCC, including with radiation therapy (RT) for locoregionally advanced disease, as monotherapy after platinum progression, and with platinum/5-fluorouracil for recurrent or metastatic disease. There remain, however, numerous unanswered questions regarding the optimal use of cetuximab in HNSCC, including patient selection, its mechanisms of action and resistance, the effect of human papillomavirus status on outcomes, its role when combined with induction chemotherapy or adjuvant radiation, and optimal management of skin toxicity and hypersensitivity reactions. In addition, a variety of other anti-EGFR agents (the multitargeted small molecule tyrosine kinase inhibitors [TKIs] lapatinib, dacomitinib, and afatinib and the anti-EGFR mAbs zalutumumab, nimotuzumab, and panitumumab) are currently under investigation in phase II and III clinical trials in different HNSCC therapeutic settings. The anti-EGFR TKI erlotinib is currently in phase III development for oral cancer prevention. Numerous other drugs are in earlier stages of development for HNSCC treatment, including novel anti-EGFR mAbs (MEHD7945A, necitumumab, and RO5083945), small-molecule TKIs (vandetanib, icotinib, and CUDC-101), EGFR antisense, various add-on therapies to radiation and chemotherapy (bevacizumab, interleukin-12, lenalidomide, alisertib, and VTX-2337), and drugs (temsirolimus, everolimus, OSI-906, dasatinib, and PX-866) intended to overcome resistance to anti-EGFR agents. Overall, a wealth of clinical trial data is expected in the coming years, with the potential to modify significantly the approach to anti-EGFR therapy for HNSCC.
Collapse
|
49
|
Preclinical recapitulation of antiangiogenic drug clinical efficacies using models of early or late stage breast cancer metastatis. Breast 2013; 22 Suppl 2:S57-65. [DOI: 10.1016/j.breast.2013.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
50
|
Kellner C, Derer S, Valerius T, Peipp M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions. Methods 2013; 65:105-13. [PMID: 23851282 DOI: 10.1016/j.ymeth.2013.06.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/26/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
In recent years, therapy with monoclonal antibodies has become standard of care in various clinical applications. Despite obvious clinical activity, not all patients respond and benefit from this generally well tolerated treatment option. Therefore, rational optimization of antibody therapy represents a major area of interest in translational research. Animal models and clinical data suggested important roles of Fc-mediated effector mechanisms such as antibody dependent cell-mediated cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC) in antibody therapy. These novel insights into the mechanisms of action mediated by monoclonal antibodies inspired the development of different engineering approaches to enhance/optimize antibodies' effector functions. Fc-engineering approaches by altering the Fc-bound glycosylation profile or by exchanging amino acids in the protein backbone have been intensively studied. Here, advanced and emerging technologies in Fc-engineering resulting in altered ADCC and CDC activity are summarized and experimental strategies to evaluate antibodies' effector functions are discussed.
Collapse
Affiliation(s)
- Christian Kellner
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Stefanie Derer
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Thomas Valerius
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, 2nd Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|