Kang J, Coates JT, Strawderman RL, Rosenstein BS, Kerns SL. Genomics models in radiotherapy: From mechanistic to machine learning.
Med Phys 2020;
47:e203-e217. [PMID:
32418335 PMCID:
PMC8725063 DOI:
10.1002/mp.13751]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022] Open
Abstract
Machine learning (ML) provides a broad framework for addressing high-dimensional prediction problems in classification and regression. While ML is often applied for imaging problems in medical physics, there are many efforts to apply these principles to biological data toward questions of radiation biology. Here, we provide a review of radiogenomics modeling frameworks and efforts toward genomically guided radiotherapy. We first discuss medical oncology efforts to develop precision biomarkers. We next discuss similar efforts to create clinical assays for normal tissue or tumor radiosensitivity. We then discuss modeling frameworks for radiosensitivity and the evolution of ML to create predictive models for radiogenomics.
Collapse