1
|
Ren Q, Li Q, Shao C, Zhang P, Hu Z, Li J, Wang W, Yu Y. Establishing a prognostic model based on immune-related genes and identification of BIRC5 as a potential biomarker for lung adenocarcinoma patients. BMC Cancer 2023; 23:897. [PMID: 37741993 PMCID: PMC10517491 DOI: 10.1186/s12885-023-11249-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/03/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is an extraordinarily malignant tumor, with rapidly increasing morbidity and poor prognosis. Immunotherapy has emerged as a hopeful therapeutic modality for lung adenocarcinoma. Furthermore, a prognostic model (based on immune genes) can fulfill the purpose of early diagnosis and accurate prognostic prediction. METHODS Immune-related mRNAs (IRmRNAs) were utilized to construct a prognostic model that sorted patients into high- and low-risk groups. Then, the prediction efficacy of our model was evaluated using a nomogram. The differences in overall survival (OS), the tumor mutation landscape, and the tumor microenvironment were further explored between different risk groups. In addition, the immune genes comprising the prognostic model were subjected to single-cell RNA sequencing to investigate the expression of these immune genes in different cells. Finally, the functions of BIRC5 were validated through in vitro experiments. RESULTS Patients in different risk groups exhibited sharply significant variations in OS, pathway activity, immune cell infiltration, mutation patterns, and immune response. Single-cell RNA sequencing revealed that the expression level of BIRC5 was significantly high in T cells. Cell experiments further revealed that BIRC5 knockdown markedly reduced LUAD cell proliferation. CONCLUSION This model can function as an instrumental variable in the prognostic, molecular, and therapeutic prediction of LUAD, shedding new light on the optimal clinical practice guidelines for LUAD patients.
Collapse
Affiliation(s)
- Qianhe Ren
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenye Shao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhuangzhuang Hu
- Department of Urology, Shuyang First People's Hospital, Suqian, China
| | - Jun Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Wang Y, Liu H, Yu N, Xiang X. Concordance of Abundance for Mutational EGFR and Co-Mutational TP53 with Efficacy of EGFR-TKI Treatment in Metastatic Patients with Non-Small-Cell Lung Cancer. Curr Oncol 2023; 30:8464-8476. [PMID: 37754531 PMCID: PMC10528559 DOI: 10.3390/curroncol30090616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
The present study aimed to investigate the influence of the mutation abundance of the epidermal growth factor receptor (EGFR) and its co-mutation with TP53 on the therapeutic efficacy of tyrosine kinase inhibitor (TKI) treatment in patients with metastatic lung adenocarcinoma (LUAD). In total, 130 patients (January 2018-September 2022) with metastatic LUAD from the Second Affiliated Hospital of Zhejiang University were included. Kaplan-Meier analysis was performed to measure the duration of drug application (DDA) and the log-rank test was used to compare differences. Univariate and multivariate analyses of Cox proportional hazard regression models were used to evaluate the association between the relevant clinicopathological factors and DDA. Hazard ratios with 95% confidence intervals were also calculated. Among the 130 patients who were treated with first-generation EGFR-TKIs, 86 showed high-EGFR mutation abundance (>22.0%) and 44 showed low-EGFR mutation abundance (≤22.0%). Patients in the high-EGFR group had a greater DDA than those in the low-EGFR group (p < 0.05). The results of the subgroup analysis were consistent with those of the total mutation population (exon19: >18.5% vs. ≤18.5%, 14 months vs. 10 months, p = 0.049; exon21: >22.0% vs. ≤22.0%, 15 months vs. 9 months, p = 0.005). In addition, the mutation abundance of TP53 was negatively correlated with the DDA (p < 0.05). Patients in the combination group had a better DDA than those in the monotherapy group (p < 0.05). Subgroup analysis showed that, among the low mutation abundance of the EGFR exon 21 or 19 cohort, the combination group had a better DDA than the monotherapy group (p < 0.05). An EGFR mutation abundance greater than 22.0% was a positive predictor of DDA in patients with metastatic LUAD. However, a TP53 mutation abundance higher than 32.5% could reverse this situation. Finally, first-line treatment with EGFR-TKIs plus chemotherapy is a potential treatment strategy for patients with low-abundance EGFR mutations.
Collapse
Affiliation(s)
- Youping Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| | - Hong Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Ningjuan Yu
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| | - Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China;
| |
Collapse
|
3
|
Kawata J, Koga Y, Noguchi S, Shimada Y, Yamada Y, Yamamoto T, Shindo K, Nakamura M, Oda Y. Clinicopathologic Features and Genetic Alterations in Mixed-Type Ampullary Carcinoma. Mod Pathol 2023; 36:100181. [PMID: 37004749 DOI: 10.1016/j.modpat.2023.100181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Mixed-type ampullary carcinoma is a subtype that combines intestinal-type (I-type) and pancreatobiliary-type (PB-type) lesions, but few studies have examined its clinicopathologic features and genetic alterations. The differences in genetic alterations between mixed type and other subtypes, as well as the genetic differences between I-type and PB-type lesions in the mixed type, remain unclear. In this study, we compared the clinicopathologic features and prognosis of 110 ampullary carcinomas classified by hematoxylin and eosin and immunohistochemical staining as follows: 63 PB-type, 35 I-type, and 12 mixed-type carcinomas. A comparative analysis of genetic mutations by targeted sequencing of 24 genes was also performed in 3 I-type cases, 9 PB-type cases, and I and PB-type lesions of 6 mixed-type cases. The mixed subtype had a poorer prognosis than the other subtypes, and there was also a similar tendency in the adjuvant group (n = 22). A total of 49 genetic mutations were detected in all 18 lesions for which genetic alteration was analyzed. No genetic mutations specific to the mixed type were found, and it was not possible to determine genetically whether the mixed type had originally been I or PB type. However, 5 of 6 cases had mutations common to both I and PB-type lesions, and additional mutations were found only in either I or PB-type lesions. In support of this, the mixed type more frequently exhibited genetic heterogeneity intratumorally than the other subtypes. Mixed-type tumors are histologically, immunohistochemically, and genetically heterogeneous, and this heterogeneity is associated with poor prognosis and may affect treatment resistance.
Collapse
Affiliation(s)
- Jun Kawata
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yutaka Koga
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Shoko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Koji Shindo
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Hou X, Chen H, Liu Y, Gong S, Zhudai M, Shen L. Clinicopathological and computed tomography features of patients with early-stage non-small-cell lung cancer harboring ALK rearrangement. Cancer Imaging 2023; 23:20. [PMID: 36823653 PMCID: PMC9951448 DOI: 10.1186/s40644-023-00537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Although some studies have assessed the correlation between computed tomography (CT) features and anaplastic lymphoma kinase (ALK) rearrangement in patients with non-small-cell lung cancer (NSCLC), few have focused on early-stage patients. The results of some previous studies are inconsistent and contradictory. Therefore, this study aimed to analyze the clinicopathological and CT features of patients with early-stage NSCLC harboring ALK rearrangement. METHODS This retrospective analysis included 65 patients with ALK rearrangement and 629 ALK-negative patients. All patients had surgically resected NSCLC and were diagnosed with stage IA or stage IIB NSCLC. Clinicopathological features and CT signs, including tumor size and density, consolidation tumor ratio (CTR), lesion location, round or irregular shape, lobulated or spiculated margins, air bronchograms, bubble-like lucency or cavities, and pleural retraction, were investigated according to different genotypes. RESULTS The prevalence of ALK rearrangement in patients with early-stage NSCLC was 9.3% (65/694). Patients with ALK rearrangement were significantly younger than those without ALK rearrangement (P = 0.033). The frequency of moderate cell differentiation was significantly lower in tumors with ALK rearrangement than in those without ALK rearrangement (46.2% vs. 59.8%, P = 0.034). The frequency of the mucinous subtype was significantly higher in the ALK-positive group than in the ALK-negative group (13.8% vs. 5.4%, P = 0.007). No significant differences were found in any CT signs between the ALK-positive and ALK-negative groups. CONCLUSIONS Patients with ALK-positive lung cancer may have specific clinicopathological features, including younger age, lower frequency of moderate cell differentiation, and higher frequency of the mucinous type. CT features may not correlate with ALK rearrangement in early-stage lung cancer. Immunohistochemistry or next-generation sequencing is needed to further clarify the genomic mutation status.
Collapse
Affiliation(s)
- Xiaoming Hou
- Department of Radiology, Hainan Hospital of PLA General Hospital, Sanya, 572013 China
| | - Han Chen
- Department of Information, Hainan Hospital of PLA General Hospital, Sanya, 572013 China
| | - You Liu
- Department of Pathology, Hainan Hospital of PLA General Hospital, Sanya, 572013 China
| | - Sandong Gong
- Department of Gastroenterology, Hainan Hospital of PLA General Hospital, Sanya, 572013 China
| | - Meizi Zhudai
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Jiang-Lin Road, Hai Tang District, Sanya, 572013 China
| | - Leilei Shen
- Department of Thoracic Surgery, Hainan Hospital of PLA General Hospital, Jiang-Lin Road, Hai Tang District, Sanya, 572013, China.
| |
Collapse
|
5
|
Hao P, Deng BY, Huang CT, Xu J, Zhou F, Liu ZX, Zhou W, Xu YK. Predicting anaplastic lymphoma kinase rearrangement status in patients with non-small cell lung cancer using a machine learning algorithm that combines clinical features and CT images. Front Oncol 2022; 12:994285. [PMID: 36338735 PMCID: PMC9630325 DOI: 10.3389/fonc.2022.994285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 12/01/2023] Open
Abstract
PURPOSE To develop an appropriate machine learning model for predicting anaplastic lymphoma kinase (ALK) rearrangement status in non-small cell lung cancer (NSCLC) patients using computed tomography (CT) images and clinical features. METHOD AND MATERIALS This study included 193 patients with NSCLC (154 in the training cohort, 39 in the validation cohort), 68 of whom tested positive for ALK rearrangements and 125 of whom tested negative. From the nonenhanced CT scans, 157 radiomic characteristics were extracted, and 8 clinical features were collected. Five machine learning (ML) models were assessed to find the best classification model for predicting ALK rearrangement status. A radiomic signature was developed using the least absolute shrinkage and selection operator (LASSO) algorithm. The predictive performance of the models based on radiomic features, clinical features, and their combination was assessed by receiver operating characteristic (ROC) curves. RESULTS The support vector machine (SVM) model had the highest AUC of 0.914 for classification. The clinical features model had an AUC=0.805 (95% CI 0.731-0.877) and an AUC=0.735 (95% CI 0.566-0.863) in the training and validation cohorts, respectively. The CT image-based ML model had an AUC=0.953 (95% CI 0.913-1.0) in the training cohort and an AUC=0.890 (95% CI 0.778-0.971) in the validation cohort. For predicting ALK rearrangement status, the ML model based on CT images and clinical features performed better than the model based on only clinical information or CT images, with an AUC of 0.965 (95% CI 0.826-0.882) in the primary cohort and an AUC of 0.914 (95% CI 0.804-0.893) in the validation cohort. CONCLUSION Our findings revealed that ALK rearrangement status could be accurately predicted using an ML-based classification model based on CT images and clinical data.
Collapse
Affiliation(s)
- Peng Hao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo-Yu Deng
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chan-Tao Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Zhou
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhe-Xing Liu
- School of Biomedical Engineering, Southern Medical Uinversity, Guangzhou, China
| | - Wu Zhou
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Kai Xu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Kobayashi Y, Oxnard GR, Cohen EF, Mahadevan NR, Alessi JV, Hung YP, Bertram AA, Heppner DE, Ribeiro MF, Sacardo KP, Saddi R, Macedo MP, Blasco RB, Li J, Kurppa KJ, Nguyen T, Voligny E, Ananda G, Chiarle R, Katz A, Tolstorukov MY, Sholl LM, Jänne PA. Genomic and biological study of fusion genes as resistance mechanisms to EGFR inhibitors. Nat Commun 2022; 13:5614. [PMID: 36153311 PMCID: PMC9509394 DOI: 10.1038/s41467-022-33210-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
The clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance. We further functionally validate fusion oncogenes in vitro using CRISPR-based editing of EGFR mutant cell lines and use these models to identify known and unknown drug resistance mechanisms to combination therapies. Collectively, our results partially reveal the complex nature of fusion oncogenes as potential drug resistance mechanisms and highlight approaches that can be undertaken to determine their functional significance.
Collapse
Affiliation(s)
- Yoshihisa Kobayashi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, 1040045, Japan
| | - Geoffrey R Oxnard
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elizabeth F Cohen
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Navin R Mahadevan
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Arrien A Bertram
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David E Heppner
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY, 14260-3000, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Mauricio F Ribeiro
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Karina P Sacardo
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Rodrigo Saddi
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Mariana P Macedo
- Department of Pathology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jiaqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA
| | - Kari J Kurppa
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Emma Voligny
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Guruprasad Ananda
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Artur Katz
- Department of Medical Oncology, Hospital Sírio-Libanês, São Paulo-SP, 01308-050, Brazil
| | - Michael Y Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02215, USA.
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Blood-based tumor mutational burden as a biomarker for atezolizumab in non-small cell lung cancer: the phase 2 B-F1RST trial. Nat Med 2022; 28:939-945. [PMID: 35422531 PMCID: PMC9117143 DOI: 10.1038/s41591-022-01754-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Tumor mutational burden (TMB) in circulating tumor DNA (ctDNA) has shown promise in predicting benefit from PD-L1/PD-1 inhibitors in retrospective studies. Aiming to assess blood TMB (bTMB) prospectively, we conducted B-F1RST (NCT02848651), an open-label, phase 2 trial that evaluated bTMB as a predictive biomarker for first-line atezolizumab monotherapy in locally advanced or metastatic stage IIIB–IVB non-small cell lung cancer (n = 152). The co-primary endpoints were investigator-assessed objective response rate (ORR) per RECIST version 1.1 and investigator-assessed progression-free survival (PFS) between high and low bTMB subgroups at the pre-defined bTMB ≥ 16 (14.5 mutations per megabase) cutoff. Secondary endpoints included investigator-assessed PFS, overall survival (OS) and duration of response at various bTMB cutoffs, as well as safety. Investigator-assessed PFS in the bTMB ≥ 16 versus bTMB < 16 groups was not statistically significant. However, bTMB ≥ 16 was associated with higher ORR, and ORR improved as bTMB cutoffs increased. No new safety signals were seen. In exploratory analyses, patients with maximum somatic allele frequency (MSAF) < 1% had higher ORR than patients with MSAF ≥ 1%. However, further analysis showed that this effect was driven by better baseline prognostics rather than by MSAF itself. At 36.5-month follow-up, an exploratory analysis of OS found that bTMB ≥ 16 was associated with longer OS than bTMB < 16. Further study and assay optimization will be required to develop bTMB as a predictive, standalone biomarker of immunotherapy or for use in conjunction with other biomarkers. The randomized B-F1RST trial evaluating the clinical utility of blood tumor mutational burden as a predictor of benefit from atezolizumab in patients with advanced lung cancer did not meet its pre-specified primary objective, underscoring the need to further investigate the significance of bTMB as a relevant biomarker for patient selection.
Collapse
|
8
|
Clinical Impact of High Throughput Sequencing on Liquid Biopsy in Advanced Solid Cancer. Curr Oncol 2022; 29:1902-1918. [PMID: 35323355 PMCID: PMC8947301 DOI: 10.3390/curroncol29030155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Cancer therapies targeting actionable molecular alterations (AMA) have developed, but the clinical routine impact of high-throughput molecular profiling remains unclear. We present a monocentric experience of molecular profiling based on liquid biopsy in patients with cancer. Methods: Patients included had solid cancer and underwent cfDNA genomic profiling with FoudationOne Liquid CDx (F1LCDx) test, analyzing 324 genes. Primary endpoint was to describe patients with an AMA for whom clinical decisions were impacted by F1LCDx test results. Results: 191 patients were included, mostly with lung cancer (46%). An AMA was found in 52%. The most common molecular alterations were: TP53 (52%), KRAS (14%) and DNMT3 (11%). The most common AMA were: CHEK2 (10%), PIK3CA (9%), ATM (7%). There was no difference in progression-free survival (2.66 months vs. 3.81 months, p = 0.17), overall survival (5.3 months vs. 7.1 months, p = 0.64), or PFS2/PFS1 ratio ≥ 1.3 (20% vs. 24%, p = 0.72) between patients receiving a molecularly matched therapy (MMT) or a non-MMT, respectively. Patients with a MMT had an overall response rate of 19% and a disease control of 32%. Conclusions: Routine cfDNA molecular profiling is feasible and can lead to the access of targeted therapies. However, no notable benefit in patient’s outcomes was shown in this unselected pan-cancer study.
Collapse
|
9
|
Fujibayashi Y, Tane S, Kitazume M, Kuroda S, Kimura K, Kitamura Y, Nishio W. Resected stage I anaplastic lymphoma kinase-positive lung adenocarcinoma has a negative impact on recurrence-free survival. Thorac Cancer 2022; 13:1109-1116. [PMID: 35274461 PMCID: PMC9013641 DOI: 10.1111/1759-7714.14365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background The clinical and prognostic implications of anaplastic lymphoma kinase (ALK) status in resected lung cancers remain unclear. In this study we analyzed the prognostic and predictive significance of ALK‐positive among patients with completely resected lung adenocarcinoma. Methods We retrospectively reviewed 197 patients with lung adenocarcinoma who underwent complete surgical resection and had been tested for their ALK status. We investigated the impact of an ALK‐positive status on the recurrence‐free survival (RFS) and overall survival (OS) and examined the predictive factors for an ALK‐positive status. Results ALK positivity was noted in 36 (18%) out of 197 patients, and when limited to stage I patients, in 24 (19%) out of 124. In the pathological‐stage I population, while the OS exhibited no significant difference between ALK‐positive and ALK‐negative patients (5‐year OS rate, 81.2% vs. 89.8%, p = 0.226), the RFS of ALK‐positive patients was significantly worse than that of ALK‐negative patients (5‐year RFS rate, 55.9% vs. 78.8%, p = 0.018). A multivariate analysis showed that ALK‐positive status (hazard ratio [HR] 3.431, p = 0.009) was an independent prognostic factor for the RFS. Regarding the relationship between clinicopathological factors and an ALK‐positive status, a high‐grade histological subtype, including solid and micropapillary subtypes (odds ratio [OR] 5.464, p < 0.001), and never‐smokers (OR 4.292, p = 0.018) were associated with ALK‐positive. Conclusion A high‐grade histological subtype and never‐smokers were associated with ALK positivity, and the RFS of ALK‐positive patients was worse than that of ALK‐negative patients among patients with completely resected stage I lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Shinya Tane
- Department of Thoracic Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Mai Kitazume
- Department of Thoracic Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Sanae Kuroda
- Department of Thoracic Surgery, Hyogo Cancer Center, Akashi, Japan
| | - Kenji Kimura
- Department of Thoracic Surgery, Hyogo Cancer Center, Akashi, Japan
| | | | - Wataru Nishio
- Department of Thoracic Surgery, Hyogo Cancer Center, Akashi, Japan
| |
Collapse
|
10
|
Wu Y, Luo J, Li H, Huang Y, Zhu Y, Chen Q. B3GNT3 as a prognostic biomarker and correlation with immune cell infiltration in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:295. [PMID: 35434016 PMCID: PMC9011202 DOI: 10.21037/atm-22-493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/01/2022] [Indexed: 11/06/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common malignant cancer in humans and because of low long-term survival rates, exploration of the molecular mechanisms underlying its progression, as well as novel prognostic predictors, is urgently needed. B3GNT3, a type II transmembrane protein located in the Golgi apparatus, is essential for forming extended core 1 oligosaccharides and is reportedly involved in malignant transformation. Methods The Cancer Genome Atlas (TCGA) and GSE68465 were used to analyze the expression of B3GNT3 in LUAD and normal tissues and overall survival. Real time quantitative polymerase chain reaction (qPCR) and western blot were conducted to measure the mRNA and protein levels of B3GNT3, respectively. Functional enrichment of differentially expressed genes was explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We performed univariate and multivariate Cox regression analyses and a meta-analysis to reveal an independent factor for LUAD. We evaluated the correlation between immune infiltration levels and cumulative survival in the TIMER database. The correlation between B3GNT3 and immune cell infiltration was assessed via Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT). The association of DNA methylation of B3GNT3 and prognosis was determined. A nomogram that incorporated expression and clinical features was additionally built for prognostic prediction. Cell proliferation, cloning, and invasion were conducted to validate the roles of B3GNT3 in LUAD. Results B3GNT3 was more highly expressed in LUAD tissues than in normal lung tissues, consistent with the mRNA and protein levels in LUAD cells. B3GNT3 was an independent factor for LUAD. Moreover, the levels of B3GNT3 were related to immune cell infiltration in LUAD microenvironments. DNA methylation of B3GNT3 correlated with the mRNA of B3GNT and overall survival of LUAD patients. The expression of B3GNT3 was highly valuable for the prediction of diagnosis. Knockdown of B3GNT3 inhibited LUAD cell viability and cloning ability, and hindered invasion. Conclusions B3GNT3 was highly associated with immune cell infiltration, acting as an important biomarker for the prognosis and diagnosis of LUAD.
Collapse
Affiliation(s)
- Yuanzhou Wu
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianmin Luo
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Li
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Huang
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yaru Zhu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qunqing Chen
- Department of Thoracic Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Treatment-driven tumour heterogeneity and drug resistance: lessons from solid tumours. Cancer Treat Rev 2022; 104:102340. [DOI: 10.1016/j.ctrv.2022.102340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
12
|
Kazdal D, Hofman V, Christopoulos P, Ilié M, Stenzinger A, Hofman P. Fusion-positive non-small cell lung carcinoma: Biological principles, clinical practice, and diagnostic implications. Genes Chromosomes Cancer 2022; 61:244-260. [PMID: 34997651 DOI: 10.1002/gcc.23022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Based on superior efficacy and tolerability, targeted therapy is currently preferred over chemotherapy and/or immunotherapy for actionable gene fusions that occur in late-stage non-small cell lung carcinoma (NSCLC). Consequently, current clinical practice guidelines mandate testing for ALK, ROS1, NTRK, and RET gene fusions in all patients with newly diagnosed advanced non-squamous NSCLC (NS-NSCLC). Gene fusions can be detected using different approaches, but today RNA next-generation sequencing (NGS) or combined DNA/RNA NGS is the method of choice. The discovery of other gene fusions (involving, eg, NRG1, NUT, FGFR1, FGFR2, MET, BRAF, EGFR, SMARC fusions) and their partners has increased progressively in recent years, leading to the development of new and promising therapies and mandating the development and implementation of comprehensive detection methods. The purpose of this review is to focus on recent data concerning the main gene fusions identified in NSCLC, followed by the discussion of major challenges in this domain.
Collapse
Affiliation(s)
- Daniel Kazdal
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,Thoraxklinik and National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, FHU OncoAge, Nice, France.,Centre Antoine Lacassagne Cancer Center, Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU OncoAge, Nice, France.,Hospital-Integrated Biobank BB-0033-00025, Université Côte d'Azur, CHU Nice, FHU OncoAge, Nice, France
| |
Collapse
|
13
|
Chen M, Huang W, Yang D, Huang J, Li G, Wang X, Xiao N, Zhang W, Guan J, Wang S, Liu L. ΔCT Value of Amplified Refractory Mutation System Predicts Efficacy of EGFR-TKIs in Advanced Non-Small-Cell Lung Cancer: A Multi-Center Retrospective Study. Front Mol Biosci 2021; 8:684661. [PMID: 34692766 PMCID: PMC8531541 DOI: 10.3389/fmolb.2021.684661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: This multi-center retrospective study determines whether the ΔCT value of the Amplified Refractory Mutation System (ARMS) predicts the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutant advanced non-small-cell lung cancer (NSCLC). Patients and methods: Patients who harbored an exon 19 deletion (19Del) or L858R mutation detected by the ARMS and previously received treatment of EGFR-TKIs as a monotherapy were enrolled. A total of 108 NSCLC patients in four hospitals were enrolled. We divided the patients into a high ΔCT group (Group H) and a low ΔCT group (Group L) by the Martingale residuals analysis and log-rank test. The primary outcome was progression-free survival (PFS). Univariate analysis and multivariable regression were applied to compare the PFS between the groups. Result: The Martingale residuals analysis and log-rank test were applied to find the cutoff ΔCT value (0.8). In the 108 patients we enrolled, 59 were in group L and 49 were in group H. Patients' demographics and clinical characteristics, including age, sex, smoking history, pathology, mutation sites, TNM stage, and line of TKIs therapy, were not significantly different between group L and group H. The median PFS was 11.1 months in group L and 6.9 months in group H, and the difference showed statistical significance (p < 0.001). Moreover, the objective response rates (ORRs) in group L was significantly higher than in group H (61.0 vs 34.7%, p = 0.002). The median OS was 25.0 months in group L and 20.0 months in group H (p = 0.046). Conclusion: The ΔCT value of ARMS could be an efficacy predictor for EGFR-TKI treatment in advanced EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenqi Huang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyong Yang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jincheng Huang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gong Li
- Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nanjie Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weijian Zhang
- Department of Radiation Oncology, The First Affiliation Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Laiyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Song Z, Lian S, Mak S, Chow MZY, Xu C, Wang W, Keung HY, Lu C, Kebede FT, Gao Y, Cheuk W, Cho WCS, Yang M, Zheng Z. Deep RNA Sequencing Revealed Fusion Junctional Heterogeneity May Predict Crizotinib Treatment Efficacy in ALK-Rearranged NSCLC. J Thorac Oncol 2021; 17:264-276. [PMID: 34626839 DOI: 10.1016/j.jtho.2021.09.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/13/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Gene fusion variants in ALK-rearranged NSCLC may predict patient outcomes, but previous results have been inconclusive. Fusion isoforms coexisting in the same tumor may affect the efficacy of targeted therapy, but they have not been investigated. METHODS Patients with ALK-rearranged NSCLC who received crizotinib treatments were recruited. Precrizotinib tumor tissues were analyzed by the anchored multiplex polymerase chain reaction for targeted RNA sequencing. Kaplan-Meier and Cox regression were used to compare overall and progression-free survivals. RESULTS Of the 51 studied subjects, EML4-ALK variant types v1, v2, v3, and others were detected in 23 (45.1%), five (9.8%), 19 (37.3%), and four patients (7.8%), respectively. Multiple EML4-ALK RNA isoforms were detected in 24 tumors (47.1%), and single isoform in 27 (52.9%). Most of the v3 tumors (16 of 19) harbored both v3a and v3b RNA isoforms. Multiple isoforms were also detected in eight non-v3 tumors (33.3% of all 24 multiple isoforms; five v1, two v5', and one v2). Compared with patients with single isoform, those with multiple isoforms had worse progression-free (hazard ratio and 95% confidence interval: 2.45 [1.06-5.69]) and overall (hazard ratio [95% confidence interval]: 3.74 [1.26-11.13]) survivals after adjusting for potential confounders including variant type. Using the patient-derived H2228 cells known to express v3a and v3b, our single-cell polymerase chain reaction detected either v3a or v3b in most single cells. Treatment of H2228 cells by three ALK inhibitors revealed increased ratios of v3a-to-v3b expression over time. CONCLUSIONS Intratumoral EML4-ALK isoforms may predict the efficacy of targeted therapy in ALK-rearranged NSCLC. Temporal changes of intratumoral fusion isoforms may result from differential selection pressures that a drug might have on one isoform over another. Larger studies on fusion heterogeneity using RNA sequencing are warranted.
Collapse
Affiliation(s)
- Zhengbo Song
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Shifeng Lian
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Mak
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong Special Administrative Region of the People's Republic of China
| | - Maggie Zi-Ying Chow
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong Special Administrative Region of the People's Republic of China
| | - Chunwei Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, People's Republic of China; Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Hoi Yee Keung
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, Zhejiang, People's Republic of China
| | - Chenyu Lu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Firaol Tamiru Kebede
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Yanqiu Gao
- Helitec Limited, Shenzhen, People's Republic of China
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong Special Administrative Region of the People's Republic of China; Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region of the People's Republic of China; Biotechnology and Health Centre, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
15
|
Di Capua D, Bracken-Clarke D, Ronan K, Baird AM, Finn S. The Liquid Biopsy for Lung Cancer: State of the Art, Limitations and Future Developments. Cancers (Basel) 2021; 13:cancers13163923. [PMID: 34439082 PMCID: PMC8391249 DOI: 10.3390/cancers13163923] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary During the development and progression of lung tumors, processes such as necrosis and vascular invasion shed tumor cells or cellular components into various fluid compartments. Liquid biopsies consist of obtaining a bodily fluid, typically peripheral blood, in order to isolate and investigate these shed tumor constituents. Circulating tumor cells (CTCs) are one such constituent, which can be isolated from blood and can act as a diagnostic aid and provide valuable prognostic information. Liquid-based biopsies may also have a potential future role in lung cancer screening. Circulating tumor DNA (ctDNA) is found in small quantities in blood and, with the recent development of sensitive molecular and sequencing technologies, can be used to directly detect actionable genetic alterations or monitor for resistance mutations and guide clinical management. While potential benefits of liquid biopsies are promising, they are not without limitations. In this review, we summarize the current state and limitations of CTCs and ctDNA and possible future directions. Abstract Lung cancer is a leading cause of cancer-related deaths, contributing to 18.4% of cancer deaths globally. Treatment of non-small cell lung carcinoma has seen rapid progression with targeted therapies tailored to specific genetic drivers. However, identifying genetic alterations can be difficult due to lack of tissue, inaccessible tumors and the risk of complications for the patient with serial tissue sampling. The liquid biopsy provides a minimally invasive method which can obtain circulating biomarkers shed from the tumor and could be a safer alternative to tissue biopsy. While tissue biopsy remains the gold standard, liquid biopsies could be very beneficial where serial sampling is required, such as monitoring disease progression or development of resistance mutations to current targeted therapies. Liquid biopsies also have a potential role in identifying patients at risk of relapse post treatment and as a component of future lung cancer screening protocols. Rapid developments have led to multiple platforms for isolating circulating tumor cells (CTCs) and detecting circulating tumor DNA (ctDNA); however, standardization is lacking, especially in lung carcinoma. Additionally, clonal hematopoiesis of uncertain clinical significance must be taken into consideration in genetic sequencing, as it introduces the potential for false positives. Various biomarkers have been investigated in liquid biopsies; however, in this review, we will concentrate on the current use of ctDNA and CTCs, focusing on the clinical relevance, current and possible future applications and limitations of each.
Collapse
Affiliation(s)
- Daniel Di Capua
- Department of Histopathology, St. James’s Hospital, D08NHY1 Dublin, Ireland;
| | - Dara Bracken-Clarke
- Department of Medical Oncology, St. James’ Hospital, D08NHY1 Dublin, Ireland;
| | - Karine Ronan
- Faculty of Medicine, University College Dublin, D04V1W8 Dublin, Ireland;
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College, D02PN40 Dublin, Ireland;
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08NHY1 Dublin, Ireland;
- Correspondence:
| |
Collapse
|
16
|
Liang J, Wu Q, Ma S, Zhang S. [Pathological and Molecular Features of Lung Micropapillary Adenocarcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:1007-1013. [PMID: 33203200 PMCID: PMC7679217 DOI: 10.3779/j.issn.1009-3419.2020.102.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
肺微乳头腺癌作为高级别肺腺癌,具频发转移、淋巴结浸润、复发率高和总体生存率低的临床特征。该亚型肿瘤中存在特征致癌因子通路的激活和肿瘤免疫微环境的建立。本文拟对近年来微乳头腺癌的病理学表现及分子学特征研究进展作一综述,旨在加深对微乳头型病变的认识,进而为制定特异性治疗策略奠定基础。
Collapse
Affiliation(s)
- Jiafeng Liang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China
| | - Qiong Wu
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China
| | - Shenglin Ma
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China.,Department of Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine,
Hangzhou 310006, China
| |
Collapse
|
17
|
Fountzilas C, Adjei A, Opyrchal M, Evans R, Ghasemi M, Attwood K, Groman A, Bshara W, Goey A, Wilton J, Ma WW, Iyer R. A phase I study of the anaplastic lymphoma kinase inhibitor ceritinib in combination with gemcitabine-based chemotherapy in patients with advanced solid tumors. Int J Cancer 2021; 149:2063-2074. [PMID: 34319586 DOI: 10.1002/ijc.33754] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/29/2021] [Indexed: 11/06/2022]
Abstract
In this phase I, dose-escalation study, we sought to determine the maximum tolerated dose (MTD) of the anaplastic lymphoma kinase/c-ROS oncogene 1 receptor (ALK/ROS1) inhibitor ceritinib in combination with gemcitabine-based chemotherapy in patients with advanced solid tumors. Secondary objectives were characterization of the safety profile, pharmacokinetics and preliminary efficacy of these combinations, and identification of potential biomarkers of efficacy. Ceritinib was combined with gemcitabine (Arm 1), gemcitabine/nab-paclitaxel (Arm 2) or gemcitabine/cisplatin (Arm 3). Drug concentrations in plasma were measured by tandem mass spectrometric detection (LC-MS/MS). We analyzed archival tumor tissue for ALK, ROS1, hepatocyte growth factor receptor (c-MET) and c-Jun N-terminal kinase (JNK) expression by immunohistochemistry. Arm 2 closed early secondary to toxicity. Twenty-one patients were evaluable for dose-limiting toxicity (DLT). There was one DLT in Arm 1 (grade 3 ALT increase) and three DLTs in Arm 3 (grade 3 acute renal failure, grade 3 thrombocytopenia, grade 3 dyspnea). The MTD of ceritinib was determined to be 600 mg (Arm 1) and 450 mg orally daily (Arm 3). Main toxicities were hematologic, constitutional and gastrointestinal as expected by the chemotherapy backbone. The apparent clearance for ceritinib decreased substantially after repeated dosing; cisplatin did not significantly affect the pharmacokinetics of ceritinib. The overall response rate was 20%; the median progression-free survival was 4.8 months. Three out of five response-evaluable cholangiocarcinoma patients had clinical benefit. Increased expression of c-MET was associated with a lack of clinical benefit. Ceritinib in combination with gemcitabine and gemcitabine/cisplatin has a manageable toxicity profile. Further development of this strategy in tumors with ALK or ROS1 fusions is warranted.
Collapse
Affiliation(s)
- Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alex Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mateusz Opyrchal
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rachel Evans
- Clinical Research Services, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mohammad Ghasemi
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Adrienne Groman
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Wiam Bshara
- Pathology Resource Network, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Andrew Goey
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - John Wilton
- Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Wen Wee Ma
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
18
|
Zhao Y, Wang S, Yang Z, Dong Y, Wang Y, Zhang L, Hu H, Han B. Co-Occurring Potentially Actionable Oncogenic Drivers in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:665484. [PMID: 34221980 PMCID: PMC8242190 DOI: 10.3389/fonc.2021.665484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022] Open
Abstract
Background Several oncogenic drivers in non-small cell lung cancer (NSCLC) are considered actionable with available or promising targeted therapies. Although targetable drivers rarely overlap with each other, there were a minority of patients harboring co-occurring actionable oncogenic targets, whose clinical characteristics and prognosis are not yet clear. Methods A total of 3,077 patients with NSCLC who underwent molecular analysis by NGS were included, and their demographic and clinical data were retrospectively collected. Results Our study found that the frequency of NSCLC patients harboring co-occurring potentially actionable alterations was approximately 1.5% (46/3077); after excluding patients with EGFR-undetermined mutations, the incidence was 1.3% (40/3077); 80% (37/46) harbored both EGFR mutations and other potentially actionable drivers such as MET amplification (21.6%; 8/37) and alterations in ERBB2 including mutations (27%; 10/37) and amplification (21.6%; 8/37); other combinations of potentially actionable drivers including alterations in ERBB2, KRAS, MET, ALK, and RET were also identified. Additionally, de novo MET/ERBB2 amplification in patients harboring EGFR-mutant NSCLC treated with first-generation EGFR tyrosine kinase inhibitors (TKIs) was associated with shorter PFS (p < 0.05). The efficacy of TKIs in NSCLC patients harboring other co-occurring potentially actionable drivers varied across different molecular subtypes. Conclusions Approximately 1.5% of NSCLCs harbored co-occurring potentially actionable oncogenic drivers, commonly involving EGFR mutations. Co-occurring actionable targets may impact the efficacy of TKIs; therefore, future clinical trials in these patients should be anticipated to tailor the combination or sequential treatment strategies.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyuan Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu Yang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Dong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lele Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Hu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Spatial distribution of immune checkpoint proteins in histological subtypes of lung adenocarcinoma. Neoplasia 2021; 23:584-593. [PMID: 34102454 PMCID: PMC8190489 DOI: 10.1016/j.neo.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
The most prevalent histological type of non-small cell lung cancer (NSCLC) is adenocarcinoma. The WHO classifies this tumor into subtypes according to the predominant growth pattern such as lepidic, acinar, papillary, solid or micropapillary, each harboring specific molecular features. NSCLC adenocarcinoma heterogeneity is discussed to be a reason for therapy failure using targeted therapy or immune checkpoint inhibitors. For successful therapy of immune checkpoint inhibitors the expression and distribution of the involved immune checkpoint proteins is essential. Therefore, we aimed to investigate the distribution of five prominent immune checkpoint proteins in regard of the histological growth patterns of lung adenocarcinoma. We performed immunohistochemical staining of 84 tumor segments from 22 resected tumor samples to evaluate the expression of PD-L1, PD-1, Nectin-2, PVR, and TIGIT in distinct growth patterns of lung adenocarcinoma. We determined a distinct heterogeneity between and within different tumor segments regarding morphological growth patterns. Furthermore, expression of immune checkpoint proteins varied between different growth pattern areas as well as within one distinct growth pattern. Expression of PVR was significantly higher in solid compared to acinar growth pattern (p= 0.00736). Of note, we detected TIGIT not only on tumor infiltrating lymphocytes but also on tumor cells, whereas non-neoplastic lung tissue was consistently TIGIT-negative. The immune checkpoint protein distribution in histologic subtypes of pulmonary adenocarcinoma displays an considerable intra- and intertumoral heterogeneity implying the requirement of either a multiregion or an adjusted analysis when determining the expression status of PD-1:PD-L1 and the TIGIT:PVR/Nectin-2 checkpoint proteins as predictive markers.
Collapse
|
20
|
Smolle E, Taucher V, Lindenmann J, Pichler M, Smolle-Juettner FM. Liquid biopsy in non-small cell lung cancer-current status and future outlook-a narrative review. Transl Lung Cancer Res 2021; 10:2237-2251. [PMID: 34164273 PMCID: PMC8182706 DOI: 10.21037/tlcr-21-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer ranks first as the cause of cancer-associated deaths gobally. The American Cancer Society estimates for 228,820 new cases and 135,720 deaths from lung cancer in the United States for the year 2020. Targeted treatment options have rapidly emerged for non-small cell lung cancer (NSCLC) within the past decade. Screening for molecular aberrations is mainly done by tissue biopsy. However, in some cases a biopsy is not possible, or patients do not consent to it. Hence, liquid biopsy remains the only option. Relevant data about the topic of liquid biopsy, with a special focus on NSCLC, was obtained via a PubMed search. We included mainly literature published from 2010 onwards, omitting older studies whenever possible. With this review of the literature, we give an overview of different liquid biopsy approaches, as well as their respective advantages and disadvantages. We have reviewed the assessment of epidermal growth factor receptor (EGFR) mutation status in particular, and go into detail with current use of liquid biopsy in everyday clinical practice. Today, liquid biopsy is still infrequently used, depending on the treatment center, but popularity is steadily increasing. Various different approaches are already available, but costs and level of sensitivity significantly differ between techniques. By using liquid biopsy more widely in selected patients, complication rates can be reduced, and constant disease monitoring is made considerably easier.
Collapse
Affiliation(s)
- Elisabeth Smolle
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Valentin Taucher
- Division of Cardiology, Department of Internal Medicine, Hospital Barmherzige Schwestern Ried, Ried, Austria
| | - Jörg Lindenmann
- Department of Thoracic Surgery, Medical University of Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Experimental Therapeutics, The UT MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
21
|
Zhao D, Fan J, Peng L, Huang B, Zhu Y, Shi H, Dai X, Nie X. Two different patterns of lung adenocarcinoma with concomitant EGFR mutation and ALK rearrangement. TUMORI JOURNAL 2021; 108:12-18. [PMID: 33818198 DOI: 10.1177/03008916211005546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements are considered mutually exclusive in non-small cell lung cancer (NSCLC), especially in lung adenocarcinoma (LUAC). However, sporadic cases harboring concomitant EGFR and ALK alterations have been increasingly reported. There is no consensus opinion regarding the treatment of patients positive for both molecular alterations. NSCLC with EGFR/ALK coalterations should be separated into two subtypes: unifocal and multifocal LUAC. Here, we present an overview of the available literature regarding this rare group of patients to provide useful suggestions for therapeutic strategies.
Collapse
Affiliation(s)
- Dashi Zhao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Peng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yili Zhu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Chang C, Sun X, Wang G, Yu H, Zhao W, Ge Y, Duan S, Qian X, Wang R, Lei B, Wang L, Liu L, Ruan M, Yan H, Liu C, Chen J, Xie W. A Machine Learning Model Based on PET/CT Radiomics and Clinical Characteristics Predicts ALK Rearrangement Status in Lung Adenocarcinoma. Front Oncol 2021; 11:603882. [PMID: 33738250 PMCID: PMC7962599 DOI: 10.3389/fonc.2021.603882] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Anaplastic lymphoma kinase (ALK) rearrangement status examination has been widely used in clinic for non-small cell lung cancer (NSCLC) patients in order to find patients that can be treated with targeted ALK inhibitors. This study intended to non-invasively predict the ALK rearrangement status in lung adenocarcinomas by developing a machine learning model that combines PET/CT radiomic features and clinical characteristics. Methods Five hundred twenty-six patients of lung adenocarcinoma with PET/CT scan examination were enrolled, including 109 positive and 417 negative patients for ALK rearrangements from February 2016 to March 2019. The Artificial Intelligence Kit software was used to extract radiomic features of PET/CT images. The maximum relevance minimum redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression were further employed to select the most distinguishable radiomic features to construct predictive models. The mRMR is a feature selection method, which selects the features with high correlation to the pathological results (maximum correlation), meanwhile retain the features with minimum correlation between them (minimum redundancy). LASSO is a statistical formula whose main purpose is the feature selection and regularization of data model. LASSO method regularizes model parameters by shrinking the regression coefficients, reducing some of them to zero. The feature selection phase occurs after the shrinkage, where every non-zero value is selected to be used in the model. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the models, and the performance of different models was compared by the DeLong test. Results A total of 22 radiomic features were extracted from PET/CT images for constructing the PET/CT radiomic model, and majority of these features used were based on CT features (20 out of 22), only 2 PET features were included (PET percentile 10 and PET difference entropy). Moreover, three clinical features associated with ALK mutation (age, burr and pleural effusion) were also employed to construct a combined model of PET/CT and clinical model. We found that this combined model PET/CT-clinical model has a significant advantage to predict the ALK mutation status in the training group (AUC = 0.87) and the testing group (AUC = 0.88) compared with the clinical model alone in the training group (AUC = 0.76) and the testing group (AUC = 0.74) respectively. However, there is no significant difference between the combined model and PET/CT radiomic model. Conclusions This study demonstrated that PET/CT radiomics-based machine learning model has potential to be used as a non-invasive diagnostic method to help diagnose ALK mutation status for lung adenocarcinoma patients in the clinic.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoyan Sun
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Wang
- Statistical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Yu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenlu Zhao
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaqiong Ge
- Pharmaceutical Diagnostic Department, GE Healthcare China, Shanghai, China
| | - Shaofeng Duan
- Pharmaceutical Diagnostic Department, GE Healthcare China, Shanghai, China
| | - Xiaohua Qian
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei Lei
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lihua Wang
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liu Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Yan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ciyi Liu
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Ultrasound, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhui Xie
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Clinical and Translational Center in Shanghai Chest Hospital, Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
23
|
He B, Song Y, Wang L, Wang T, She Y, Hou L, Zhang L, Wu C, Babu BA, Bagci U, Waseem T, Yang M, Xie D, Chen C. A machine learning-based prediction of the micropapillary/solid growth pattern in invasive lung adenocarcinoma with radiomics. Transl Lung Cancer Res 2021; 10:955-964. [PMID: 33718035 PMCID: PMC7947386 DOI: 10.21037/tlcr-21-44] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Micropapillary/solid (MP/S) growth patterns of lung adenocarcinoma are vital for making clinical decisions regarding surgical intervention. This study aimed to predict the presence of a MP/S component in lung adenocarcinoma using radiomics analysis. METHODS Between January 2011 and December 2013, patients undergoing curative invasive lung adenocarcinoma resection were included. Using the "PyRadiomics" package, we extracted 90 radiomics features from the preoperative computed tomography (CT) images. Subsequently, four prediction models were built by utilizing conventional machine learning approaches fitting into radiomics analysis: a generalized linear model (GLM), Naïve Bayes, support vector machine (SVM), and random forest classifiers. The models' accuracy was assessed using a receiver operating curve (ROC) analysis, and the models' stability was validated both internally and externally. RESULTS A total of 268 patients were included as a primary cohort, and 36.6% (98/268) of them had lung adenocarcinoma with an MP/S component. Patients with an MP/S component had a higher rate of lymph node metastasis (18.4% versus 5.3%) and worse recurrence-free and overall survival. Five radiomics features were selected for model building, and in the internal validation, the four models achieved comparable performance of MP/S prediction in terms of area under the curve (AUC): GLM, 0.74 [95% confidence interval (CI): 0.65-0.83]; Naïve Bayes, 0.75 (95% CI: 0.65-0.85); SVM, 0.73 (95% CI: 0.61-0.83); and random forest, 0.72 (95% CI: 0.63-0.81). External validation was performed using a test cohort with 193 patients, and the AUC values were 0.70, 0.72, 0.73, and 0.69 for Naïve Bayes, SVM, random forest, and GLM, respectively. CONCLUSIONS Radiomics-based machine learning approach is a very strong tool for preoperatively predicting the presence of MP/S growth patterns in lung adenocarcinoma, and can help customize treatment and surveillance strategies.
Collapse
Affiliation(s)
- Bingxi He
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yongxiang Song
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical College, Guizhou, China
| | - Lili Wang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingting Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Benson A. Babu
- Department of Internal Medicine, Lenox Hill Northwell Health, New York, NY, USA
| | - Ulas Bagci
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Tayab Waseem
- Department of Molecular Biology and Cell Biology, Eastern Virginia Medical School Norfolk, VA, USA
| | - Minglei Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ningbo No. 2 Hospital, Chinese Academy of Sciences, Ningbo, China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Agazzi GM, Ravanelli M, Roca E, Medicina D, Balzarini P, Pessina C, Vermi W, Berruti A, Maroldi R, Farina D. CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol Med 2021; 126:786-794. [PMID: 33512651 DOI: 10.1007/s11547-020-01323-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/03/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE To develop a CT texture-based model able to predict epidermal growth factor receptor (EGFR)-mutated, anaplastic lymphoma kinase (ALK)-rearranged lung adenocarcinomas and distinguish them from wild-type tumors on pre-treatment CT scans. MATERIALS AND METHODS Texture analysis was performed using proprietary software TexRAD (TexRAD Ltd, Cambridge, UK) on pre-treatment contrast-enhanced CT scans of 84 patients with metastatic primary lung adenocarcinoma. Textural features were quantified using the filtration-histogram approach with different spatial scale filters on a single 5-mm-thick central slice considered representative of the whole tumor. In order to deal with class imbalance regarding mutational status percentages in our population, the dataset was optimized using the synthetic minority over-sampling technique (SMOTE) and correlations with textural features were investigated using a generalized boosted regression model (GBM) with a nested cross-validation approach (performance averaged over 1000 resampling episodes). RESULTS ALK rearrangements, EGFR mutations and wild-type tumors were observed in 19, 28 and 37 patients, respectively, in the original dataset. The balanced dataset was composed of 171 observations. Among the 29 original texture variables, 17 were employed for model building. Skewness on unfiltered images and on fine texture was the most important features. EGFR-mutated tumors showed the highest skewness while ALK-rearranged tumors had the lowest values with wild-type tumors showing intermediate values. The average accuracy of the model calculated on the independent nested validation set was 81.76% (95% CI 81.45-82.06). CONCLUSION Texture analysis, in particular skewness values, could be promising for noninvasive characterization of lung adenocarcinoma with respect to EGFR and ALK mutations.
Collapse
Affiliation(s)
- Giorgio Maria Agazzi
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Marco Ravanelli
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Elisa Roca
- Department of Oncology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Daniela Medicina
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Piera Balzarini
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Carlotta Pessina
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Alfredo Berruti
- Department of Oncology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Roberto Maroldi
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Davide Farina
- Department of Radiology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| |
Collapse
|
25
|
Guo Y, Song J, Wang Y, Huang L, Sun L, Zhao J, Zhang S, Jing W, Ma J, Han C. Concurrent Genetic Alterations and Other Biomarkers Predict Treatment Efficacy of EGFR-TKIs in EGFR-Mutant Non-Small Cell Lung Cancer: A Review. Front Oncol 2020; 10:610923. [PMID: 33363040 PMCID: PMC7758444 DOI: 10.3389/fonc.2020.610923] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) greatly improve the survival and quality of life of non-small cell lung cancer (NSCLC) patients with EGFR mutations. However, many patients exhibit de novo or primary/early resistance. In addition, patients who initially respond to EGFR-TKIs exhibit marked diversity in clinical outcomes. With the development of comprehensive genomic profiling, various mutations and concurrent (i.e., coexisting) genetic alterations have been discovered. Many studies have revealed that concurrent genetic alterations play an important role in the response and resistance of EGFR-mutant NSCLC to EGFR-TKIs. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on EGFR-TKI treatment efficacy is necessary. Further exploration of other biomarkers that can predict EGFR-TKI efficacy will help clinicians identify patients who may not respond to TKIs and allow them to choose appropriate treatment strategies. Here, we review the literature on specific gene alterations that coexist with EGFR mutations, including common alterations (intra-EGFR [on target] co-mutation, TP53, PIK3CA, and PTEN) and driver gene alterations (ALK, KRAS, ROS1, and MET). We also summarize data for other biomarkers (e.g., PD-L1 expression and BIM polymorphisms) associated with EGFR-TKI efficacy.
Collapse
Affiliation(s)
- Yijia Guo
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Song
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanru Wang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianzhu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Jing
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Song L, Zhu Z, Wu H, Han W, Cheng X, Li J, Du H, Lei J, Sui X, Song W, Jin ZY. Individualized nomogram for predicting ALK rearrangement status in lung adenocarcinoma patients. Eur Radiol 2020; 31:2034-2047. [PMID: 33146791 DOI: 10.1007/s00330-020-07331-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/02/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To develop a nomogram to identify anaplastic lymphoma kinase (ALK) mutations in lung adenocarcinoma patients using clinical, CT, PET/CT, and histopathological features. METHODS This retrospective study included 399 lung adenocarcinoma patients (129 ALK-rearranged patients and 270 ALK-negative patients) that were randomly divided into a training cohort and an internal validation cohort (4:1 ratio). Clinical factors, radiologist-defined CT features, maximum standard uptake values (SUVmax), and histopathological features were used to construct predictive models with stepwise backward-selection multivariate logistic regression (MLR). The models were then evaluated using the AUC. The integrated model was compared to the clinico-radiological model using the DeLong test to evaluate the role of histopathological features. An associated individualized nomogram was established. RESULTS The integrated model reached an AUC of 0.918 (95% CI, 0.886-0.950), sensitivity of 0.774, and specificity of 0.934 in the training cohort and an AUC of 0.857 (95% CI, 0.777-0.937), sensitivity of 0.739, and specificity of 0.810 in the validation cohort. The MLR analysis showed that younger age, never smoker, lymph node enlargement, the presence of cavity, high SUVmax, solid or micropapillary predominant histology subtype, and local invasiveness were strong and independent predictors of ALK rearrangements. The nomogram calculated the risk of harboring ALK mutation for lung adenocarcinoma patients and exhibited a good generalization ability. CONCLUSION Our study demonstrates that histopathological features added value to the imaging characteristics-based model. The nomogram with clinical, imaging, and histopathological features can serve as a supplementary non-invasive tool to evaluate the probability of ALK rearrangement in lung adenocarcinoma. KEY POINTS • The developed nomogram can accurately predict the probability of lung adenocarcinoma harboring ALK-fused gene. • Pathological analysis is important to predict ALK rearrangement in lung adenocarcinoma. • Lung adenocarcinoma with lepidic predominant growth pattern and TTF-1 negativity is unlikely to have ALK rearrangement.
Collapse
Affiliation(s)
- Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Zhenchen Zhu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.,4+4 MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Xin Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huayang Du
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jing Lei
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xin Sui
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Zheng-Yu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
27
|
Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS One 2020; 15:e0237802. [PMID: 32976510 PMCID: PMC7518588 DOI: 10.1371/journal.pone.0237802] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
As availability of precision therapies expands, a well-validated circulating cell-free DNA (cfDNA)-based comprehensive genomic profiling assay has the potential to provide considerable value as a complement to tissue-based testing to ensure potentially life-extending therapies are administered to patients most likely to benefit. Additional data supporting the clinical validity of cfDNA-based testing is necessary to inform optimal use of these assays in the clinic. The FoundationOne®Liquid CDx assay is a pan-cancer cfDNA-based comprehensive genomic profiling assay that was recently approved by FDA. Validation studies included >7,500 tests and >30,000 unique variants across >300 genes and >30 cancer types. Clinical validity results across multiple tumor types are presented. Additionally, results demonstrated a 95% limit of detection of 0.40% variant allele fraction for select substitutions and insertions/deletions, 0.37% variant allele fraction for select rearrangements, 21.7% tumor fraction for copy number amplifications, and 30.4% TF for copy number losses. The limit of detection for microsatellite instability and blood tumor mutational burden were also determined. The false positive variant rate was 0.013% (approximately 1 in 8,000). Reproducibility of variant calling was 99.59%. In comparison with an orthogonal method, an overall positive percent agreement of 96.3% and negative percent agreement of >99.9% was observed. These study results demonstrate that FoundationOne Liquid CDx accurately and reproducibly detects the major types of genomic alterations in addition to complex biomarkers such as microsatellite instability, blood tumor mutational burden, and tumor fraction. Critically, clinical validity data is presented across multiple cancer types.
Collapse
|
28
|
Sebastião MM, Ho RS, de Carvalho JPV, Nussbaum M. Diagnostic Accuracy of Next Generation Sequencing Panel using Circulating Tumor DNA in Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. JOURNAL OF HEALTH ECONOMICS AND OUTCOMES RESEARCH 2020; 7:158-163. [PMID: 33043062 PMCID: PMC7539761 DOI: 10.36469/jheor.2020.17088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND/OBJECTIVES Until now, no meta-analysis has been published to evaluate the diagnostic performance of next-generation sequencing (NGS) panel using circulating tumor (ctDNA) in patients with advanced non-small cell lung cancer (aNSCLC). The aim of the study was to carry out a systematic review and a meta-analysis in order to determine the accuracy of NGS of ctDNA to detect six oncogenic driver alterations: epidermal growth factor receptor (EGFR); anaplastic lymphoma kinase (ALK); ROS proto-oncogene 1, receptor tyrosine kinase (ROS-1); serine/threonine-protein kinase B-RAF (BRAF); RET proto-oncogene (RET); and MET proto-oncogene, receptor tyrosine kinase (MET) exon 14 in patients with aNSCLC. METHODS MEDLINE/PubMed, Cochrane Library, Latin American and Caribbean Health Sciences Literature (LILACS), and Centre for Reviews and Dissemination databases and articles obtained from other sources were searched for relevant studies that evaluate the accuracy (sensitivity and specificity) of NGS using ctDNA in patients with aNSCLC. The studies were eligible when NGS of ctDNA was compared with tissue tests to detect at least one of the six oncogenic driver alterations. Diagnostic measures (sensitivity and specificity) were pooled with a bivariate diagnostic random effect. All statistical analyses were performed with software R, v.4.0.0. RESULTS Ten studies were eligible for data extraction. The overall pooled estimates of sensitivity and specificity were 0.766 (95% CI: 0.678-0.835); 0.999 (95% CI: 0.990-1.000), respectively. CONCLUSIONS The analysis has demonstrated that the NGS panel using ctDNA has a high accuracy to identify the six actionable oncogenic driver alterations in patients with aNSCLC. Therefore, it can be considered a reliable alternative to guide the patients with aNSCLC to the right treatment who cannot undergo an invasive procedure or have insufficient tissue material for molecular tests.
Collapse
|
29
|
Hernandez A, Brandler TC, Chen F, Zhou F, Xia Y, Zhong J, Moreira AL, Simms A, Sun W, Wei XJ, Simsir A. Scoring of Programmed Death-Ligand 1 Immunohistochemistry on Cytology Cell Block Specimens in Non-Small Cell Lung Carcinoma. Am J Clin Pathol 2020; 154:517-524. [PMID: 32589185 DOI: 10.1093/ajcp/aqaa073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVES Recent investigations have shown strong correlations between cytology and surgical non-small cell lung carcinoma (NSCLC) specimens in programmed death-ligand 1 (PD-L1) immunohistochemical (IHC) evaluations. Our study aims to evaluate the reproducibility of PD-L1 IHC scoring in NSCLC cytology cell blocks (CBs) and to assess the impact of CB cellularity, method of sample collection, and observer subspecialty on scoring agreement. METHODS PD-L1 IHC was performed on 54 NSCLC cytology CBs and was scored independently by seven cytopathologists (three of seven with expertise in pulmonary pathology). Three-tier scoring of negative (<1%), low positive (1%-49%), and high positive (≥50%) and interrater agreement were assessed. RESULTS Total and majority agreement among cytopathologists was achieved in 48% and 98% of cases, respectively, with κ = 0.608 (substantial agreement; 95% confidence interval, 0.50-0.72). Cytopathologists with pulmonary pathology expertise agreed in 67% of cases (κ = 0.633, substantial agreement), whereas the remaining cytopathologists agreed in 56% of cases (κ = 0.62, substantial agreement). CB cellularity (P = .36) and sample collection type (P = .59) had no statistically significant difference between raters. CONCLUSIONS There is substantial agreement in PD-L1 IHC scoring in cytology CB specimens among cytopathologists. Additional expertise in pulmonary pathology, sample collection type, and CB cellularity have no statistically significant impact on interobserver agreement.
Collapse
Affiliation(s)
- Andrea Hernandez
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Tamar C Brandler
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Fei Chen
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Fang Zhou
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Yuhe Xia
- Division of Biostatistics, Department of Population Health, NYU Langone Health, New York, NY
| | - Judy Zhong
- Division of Biostatistics, Department of Population Health, NYU Langone Health, New York, NY
| | - Andre L Moreira
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Anthony Simms
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Wei Sun
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Xiao Jun Wei
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| | - Aylin Simsir
- Department of Pathology, Department of Population Health, NYU Langone Health, New York, NY
| |
Collapse
|
30
|
Minari R, Gnetti L, Lagrasta CA, Squadrilli A, Bordi P, Azzoni C, Bottarelli L, Cosenza A, Ferri L, Caruso G, Silini EM, Tiseo M. Emergence of a HER2-amplified clone during disease progression in an ALK-rearranged NSCLC patient treated with ALK-inhibitors: a case report. Transl Lung Cancer Res 2020; 9:787-792. [PMID: 32676339 PMCID: PMC7354139 DOI: 10.21037/tlcr.2020.04.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anaplastic lymphoma kinase tyrosine kinase inhibitors (ALK-TKIs) are the standard treatment for advanced ALK-positive non-small cell lung cancer (NSCLC) allowing survivals up to 5 years. However, duration of responses is limited by the almost certain occurrence of drug resistance. Here, we report a case of a never smoker, 59-year-old female with metastatic ALK-positive adenocarcinoma, solid and signet ring patterns, who developed resistance to alectinib, a second-generation ALK-TKI, mediated by HER2 gene amplification. The patient received 22 months of crizotinib as first-line and subsequently 1-year of alectinib therapy. A study of resistance mechanism was performed with next generation sequencing (NGS) on tissue re-biopsy. A HER2-amplified emerging clone was identified by NGS in a liver metastasis and confirmed by fluorescent in situ hybridization (FISH) analysis. The resistant clone was detectable 2 months before disease progression in plasma cell-free DNA (cfDNA) using digital droplet PCR (ddPCR) copy number variation (CNV) assay and it was retrospectively traced in rare cells of the lung primary by FISH. To our best knowledge, this is first evidence of HER2 gene amplification as a resistance mechanism to ALK-TKI in a NSCLC. Future strategies against oncogene-addicted NSCLC might benefit of combined drug treatments, such as ALK and HER2 inhibition.
Collapse
Affiliation(s)
- Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy
| | - Costanza Annamaria Lagrasta
- Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Anna Squadrilli
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Paola Bordi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Cinzia Azzoni
- Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Lorena Bottarelli
- Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Agnese Cosenza
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Leonarda Ferri
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Giuseppe Caruso
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Enrico Maria Silini
- Unit of Pathological Anatomy, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
31
|
Fan J, Wu J, Huang B, Zhu Y, Shi H, Dai X, Nie X. Concomitant EGFR mutation and ALK rearrangement in multifocal lung adenocarcinoma: a case report. Diagn Pathol 2020; 15:42. [PMID: 32375829 PMCID: PMC7201944 DOI: 10.1186/s13000-020-00969-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/29/2020] [Indexed: 01/21/2023] Open
Abstract
Background The prevalence of EGFR/ALK co-alterations in patients with NSCLC was low. The several previous studies focused on the simultaneous occurrence of EGFR mutations and ALK rearrangements in a unifocal lung cancer. However, the incidence of multifocal pulmonary adenocarcinomas was increasingly encountered in clinical practice, due to the increased availability and improvement of the thoracic imaging. The clinical relevance of EGFR/ALK co-alterations in multifocal adenocarcinomas required detailed investigation as well. Case presentation We present the case of a 57-year-old woman with solid nodule in the left upper lung and a ground glass nodule in the left lower lobe, who underwent radical operation. Pathological examination confirmed multifocal adenocarcinoma, molecular tests revealed that the left upper lung lesion was positive for ALK rearrangement but the left lower lobe displayed EGFR mutation positive separately. The patient pulmonary lesions were well controlled by adjuvant chemotherapy and radiation therapy. When brain metastases occurred, EGFR-TKI was not effective after firstly administration, while subsequent ALK inhibitors were efficient. We retrospective evaluated the oncogenic status of metastatic lymph nodes and found that the driver gene was ALK rearrangement rather than EGFR mutation. Conclusions The status of the oncogenic mutations in lymph node metastasis may provide some effective hints for metastasis lesion in other organ or tissue. Therefore, it is recommended to fully evaluate the driver genes in lymph node metastasis after radical resection.
Collapse
Affiliation(s)
- Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Junhua Wu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Yili Zhu
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
32
|
Abstract
BACKGROUNDS Lung adenocarcinoma (LUAD) is one of the most common malignancies, and is a serious threat to human health. The aim of the present study was to assess potential biomarkers for the prognosis of LUAD through the analysis of gene expression microarrays. METHODS The gene expression data for GSE118370 was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between normal lung and LUAD samples were screened using the R language. The DAVID database was used to analyze the functions and pathways of DEGs. The STRING database was used to the map protein-protein interaction (PPI) networks, and these were visualized with the Cytoscape software. Finally, the prognostic analysis of the hub gene in the PPI network was performed using the Kaplan-Meier tool. RESULTS A total of 406 downregulated and 203 upregulated DEGs were identified. The GO analysis results revealed that downregulated DEGs were significantly enriched in angiogenesis, calcium ion binding and cell adhesion. The upregulated DEGs were significantly enriched in the extracellular matrix disassembly, collagen catabolic process, chemokine-mediated signaling pathway and endopeptidase inhibitor activity. The KEGG pathway analysis revealed that downregulated DEGs were enriched in neuroactive ligand-receptor interaction, hematopoietic cell lineage and vascular smooth muscle contraction, while upregulated DEGs were enriched in phototransduction. In addition, the top 10 hub genes and the most closely interacting modules of the top 3 proteins in the PPI network were screened. Finally, the independent prognostic value of each hub gene in LUAD patients was analyzed through the Kaplan-Meier plotter. Seven hub genes (ADCY4, S1PR1, FPR2, PPBP, NMU, PF4, and GCG) were closely correlated to overall survival time. CONCLUSION The discovery of these candidate genes and pathways reveals the etiology and molecular mechanisms of LUAD, providing ideas and guidance for the development of new therapeutic approaches to LUAD.
Collapse
|
33
|
Song L, Zhu Z, Mao L, Li X, Han W, Du H, Wu H, Song W, Jin Z. Clinical, Conventional CT and Radiomic Feature-Based Machine Learning Models for Predicting ALK Rearrangement Status in Lung Adenocarcinoma Patients. Front Oncol 2020; 10:369. [PMID: 32266148 PMCID: PMC7099003 DOI: 10.3389/fonc.2020.00369] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/03/2020] [Indexed: 12/25/2022] Open
Abstract
Objectives: To predict the anaplastic lymphoma kinase (ALK) mutations in lung adenocarcinoma patients non-invasively with machine learning models that combine clinical, conventional CT and radiomic features. Methods: This retrospective study included 335 lung adenocarcinoma patients who were randomly divided into a primary cohort (268 patients; 90 ALK-rearranged; and 178 ALK wild-type) and a test cohort (67 patients; 22 ALK-rearranged; and 45 ALK wild-type). One thousand two hundred and eighteen quantitative radiomic features were extracted from the semi-automatically delineated volume of interest (VOI) of the entire tumor using both the original and the pre-processed non-enhanced CT images. Twelve conventional CT features and seven clinical features were also collected. Normalized features were selected using a sequential of the F-test-based method, the density-based spatial clustering of applications with noise (DBSCAN) method, and the recursive feature elimination (RFE) method. Selected features were then used to build three predictive models (radiomic, radiological, and integrated models) for the ALK-rearranged phenotype by a soft voting classifier. Models were evaluated in the test cohort using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity, and the performances of three models were compared using the DeLong test. Results: Our results showed that the addition of clinical information and conventional CT features significantly enhanced the validation performance of the radiomic model in the primary cohort (AUC = 0.83–0.88, P = 0.01), but not in the test cohort (AUC = 0.80–0.88, P = 0.29). The majority of radiomic features associated with ALK mutations reflected information around and within the high-intensity voxels of lesions. The presence of the cavity and left lower lobe location were new imaging phenotypic patterns in association with ALK-rearranged tumors. Current smoking was strongly correlated with non-ALK-mutated lung adenocarcinoma. Conclusions: Our study demonstrates that radiomics-derived machine learning models can potentially serve as a non-invasive tool to identify ALK mutation of lung adenocarcinoma.
Collapse
Affiliation(s)
- Lan Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenchen Zhu
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,4+4 MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Mao
- Deepwise AI Lab, Deepwise Inc., Beijing, China
| | - Xiuli Li
- Deepwise AI Lab, Deepwise Inc., Beijing, China
| | - Wei Han
- Department of Epidemiology and Biostatistics, Institute of Basic Medicine Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Huayang Du
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Cai Y, Wu H, Shi X, Dong Y, Chang X, Zhang L, Zhou L, Su D, Yang M. Heterogeneous components of lung adenocarcinomas confer distinct EGFR mutation and PD-L1 expression. BMC Cancer 2020; 20:148. [PMID: 32093629 PMCID: PMC7041262 DOI: 10.1186/s12885-020-6631-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Lung adenocarcinoma (LAC) is composed of lepidic, papillary, mucinous, micropapillary and solid components in its parenchyma. Complex responses to therapeutics result from intratumoral heterogeneity. However, it remains confused that what components in a mixed LAC tumor are responsible to the heterogeneous EGFR mutation and PD-L1 expression. Methods We investigated EGFR status via laser microdissection to capture spatially separated cancer cell subpopulations and digital droplet PCR to determine the abundance of EGFR sensitizing mutation and naïve T790M. Whilst, PD-L1 expression level via tumor proportion score (TPS) was evaluated by Ventana immunohistochemistry using SP263 antibody. PD-L1 expression levels were tiered in < 1, 1–49% and > =50% groups. Results EGFR mutation harbored in 154 (59%) of 261 LAC patients and more frequently occurred in papillary, lepidic and micropapillary constituents. Higher levels of PD-L1 were found in LACs at stage III and IV (68.3%) versus those at stage I and II (31.7%) (P = 0.04). Solid predominant LACs (41.3%) expressed PD-L1 with TPS > =50%, versus mucinous and lepidic LACs (P < 0.01). LACs with solid constituents also had more positive proportion of PD-L1 protein. Cut-offs < 1, 1–49% or > =50% were associated with patients’ progression-free survival and longer in the < 1% group (22.9 month, 95% CI 17.6–28.2) (P < 0.05). LACs consisting of two constituents with PD-L1 TPS < 1% had a better prognosis than the groups with single component and more than two components (P < 0.05). Eighteen LACs (6.9%) had concomitantly deletion in exon 19 or L858R and naïve T790M mutation. The abundance of T790M varied diversely with sensitizing mutation. PD-L1 expression was not concordant in same components and usually negative in the EGFR-mutated constituents. Heterogeneous PD-L1 expression occurred in the vicinity of stromal tissues. 58.8, 29.4 and 11.8% in ALK positive LACs (N = 17) were found PD-L1 expression via cutoffs of < 1, 1–49% and > =50%, respectively (P > 0.05). Conclusion Intratumoral genetic heterogeneity of LACs was demonstrated associated with histological patterns. Heterogeneous PD-L1 expression in higher level usually occurred in solid component both in EGFR mutated and EGFR wild-typed LACs. EGFR mutated LACs heterogeneously had sensitizing and resistant mutation and was accompanied with PD-L1 expression, but discordant among histological constituents. Immune checkpoint inhibitor combined with third generation EGFR tyrosine kinase inhibitor should be more effective to these LACs.
Collapse
Affiliation(s)
- Yiran Cai
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China. .,Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Hongkou District, Shanghai, 200080, China.
| | - Hongbo Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Xiaoqin Shi
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Rd, Hongkou District, Shanghai, 200080, China
| | - Yujie Dong
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Xiujun Chang
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Li Zhang
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Lijuan Zhou
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Dan Su
- Department of Pathology, Beijing Chest Hospital, Capital Medical University, 97 Beiguan Machang Rd. Tongzhou District, Beijing, 101147, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, 440 Jiyan Rd. Huaiyin District, Jinan, China.
| |
Collapse
|
35
|
Clinical Management of Non-Small Cell Lung Cancer with Concomitant EGFR Mutations and ALK Rearrangements: Efficacy of EGFR Tyrosine Kinase Inhibitors and Crizotinib. Target Oncol 2020; 14:169-178. [PMID: 30888598 DOI: 10.1007/s11523-019-00628-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients harboring concomitant epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) arrangements constitute a small subgroup of non-small-cell lung cancer (NSCLC) patients. The efficacy of EGFR tyrosine kinase inhibitors (TKIs) and the ALK-specific TKI crizotinib in these patients has not been well-established. OBJECTIVE This study investigated the efficacy of targeted therapies in these patients compared with patients with EGFR or ALK alterations alone. METHODS Patients were screened for EGFR mutation and ALK rearrangement at the Shanghai Chest Hospital (2011-2017). Progression-free survival (PFS), objective response rate (ORR), and overall survival (OS) were retrospectively analyzed. RESULTS A total of 5816 patients were screened, and 26 patients were identified as having concomitant EGFR mutations and ALK rearrangements; 22 patients were eligible for survival analysis. Additionally, 95 EGFR-mutant patients and 60 ALK-rearranged patients were randomly selected for analysis. The ORR to EGFR TKIs was 63.2% (12/19) for EGFR/ALK co-altered patients and 62.1% (59/95) for EGFR-mutant patients (p = 0.93) with a median PFS of 10.3 and 11.4 months, respectively (hazard ratio [HR] 0.96; 95% confidence interval [CI] 0.59-1.57; p = 0.87). The ORR to crizotinib was 66.7% (8/12) for double-positive patients and 65.0% (39/60) for ALK-rearranged patients (p = 1.00), with a median PFS of 11.1 and 12.5 months, respectively (HR 1.39; 95% CI 0.69-2.80; p = 0.28). OS was 27.1, 36.2, and 36.8 months for EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered patients, respectively, and the EGFR/ALK co-existing subgroup tended to have a longer survival period than EGFR-mutant cohorts, though no statistical difference was found (p = 0.12). The median PFS of crizotinib as a sequential therapy after failure of EGFR TKIs was 15.0 months, which exhibited no statistically significant difference compared with the median PFS of ALK-altered patients who received crizotinib (p = 0.80). CONCLUSIONS Both first-generation EGFR TKIs and the ALK TKI crizotinib were effective in these patients. Sequential treatment with EGFR TKIs and crizotinib should be considered as a management option.
Collapse
|
36
|
Tang Y, Che N, Yu Y, Gao Y, Shi H, Feng Q, Wei B, Ma L, Gao M, Ma J, Lin D. Co-occurring genetic alterations and primary EGFR T790M mutations detected by NGS in pre-TKI-treated NSCLCs. J Cancer Res Clin Oncol 2019; 146:407-416. [DOI: 10.1007/s00432-019-03065-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
|
37
|
Zhou X, Shou J, Sheng J, Xu C, Ren S, Cai X, Chu Q, Wang W, Zhen Q, Zhou Y, Li W, Pan H, Li H, Sun T, Cheng H, Wang H, Lou F, Rao C, Cao S, Pan H, Fang Y. Molecular and clinical analysis of Chinese patients with anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer. Cancer Sci 2019; 110:3382-3390. [PMID: 31444835 PMCID: PMC6778633 DOI: 10.1111/cas.14177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) fusions have been recognized as a therapeutic target in non‐small cell lung cancer (NSCLC). However, molecular signatures and clinical characteristics of the Chinese population with ALK‐rearranged NSCLC are not well elucidated. In the present study, we carried out targeted next‐generation sequencing on tissue and plasma ctDNA samples in 1688 patients with NSCLC. Overall, ALK fusions were detected in 70 patients (4.1%), and the frequencies of ALK fusions detected in tissue and plasma samples were 5.1% and 3.3%, respectively. Additionally, the prevalence of breakpoint locations for EML4‐ALK fusions in ctDNA was significantly correlated with that in tumor tissues (R2 = .91, P = .045). According to age, the incidence rates of ALK fusions among young (age <45 years), middle‐aged (between 45 and 70 years) and elderly (>70 years) patients were significantly different (P < .001). In 70 ALK‐rearranged cases, coexistence of epidermal growth factor receptor (EGFR) alterations and ALK fusions was detected in 12 cases (17.1%) and EGFR mutations tended to coexist with non‐EML4‐ALK rearrangements. Notably, novel ALK fusion partners, including TRIM66,SWAP70,WNK3,ERC1,TCF12 and FBN1 were identified in the present study. Among EML4‐ALK fusion variants, patients with variant V1 were younger than patients with variant V3 (P = .023), and TP53 mutations were more frequently concurrent with variant V3 compared with variant V1 (P = .009). In conclusion, these findings provide new insights into the molecular‐clinical profiles of patients with ALK‐rearranged NSCLC that may improve the treatment strategy of this population.
Collapse
Affiliation(s)
- Xiaoyun Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiawei Shou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jin Sheng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University, Fuzhou, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiuyu Cai
- Sun Yet-Sen University Cancer Center, Guangzhou, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxian Wang
- Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qinhong Zhen
- Department of Medical Oncology, Quzhou People's Hospital, Quzhou, China
| | - Yuefen Zhou
- Department of Medical Oncology, Lishui Municipal Central Hospital, Lishui, China
| | - Wenfeng Li
- Department of Medical Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Hongsen Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Tao Sun
- Department of Surgery, University of Chicago, Chicago, USA
| | | | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Feng Lou
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Chuangzhou Rao
- Department of Radiation and Chemotherapy, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shanbo Cao
- Acornmed Biotechnology Co., Ltd., Beijing, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Zhang M, He J, Li T, Hu H, Li X, Xing H, Wang J, Yang F, Ma Q, Liu B, Tang C, Abliz Z, Liu X. Accurate Classification of Non-small Cell Lung Cancer (NSCLC) Pathology and Mapping of EGFR Mutation Spatial Distribution by Ambient Mass Spectrometry Imaging. Front Oncol 2019; 9:804. [PMID: 31555581 PMCID: PMC6722907 DOI: 10.3389/fonc.2019.00804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
Objectives: Tumor pathology examination especially epidermal growth factor receptor (EGFR) mutations molecular testing has been integral part of lung cancer clinical practices. However, the EGFR mutations spatial distribution characteristics remains poorly investigated, which is critical to tumor heterogeneity analysis and precision diagnosis. Here, we conducted an exploratory study for label-free lung cancer pathology diagnosis and mapping of EGFR mutation spatial distribution using ambient mass spectrometry imaging (MSI). Materials and Methods: MSI analysis were performed in 55 post-operative non-small cell lung cancer (NSCLC) tumor and paired normal tissues to distinguish tumor from normal and classify pathology. We then compared diagnostic sensitivity of MSI and ADx-amplification refractory mutation system (ARMS) for the detection of EGFR mutation in pathological confirmed lung adenocarcinoma (AC) and explored EGFR mutations associated biomarkers to depict EGFR spatial distribution base on ambient MSI. Results: Of 55 pathological confirmed NSCLC, MSI achieved a diagnostic sensitivity of 85.2% (23/27) and 82.1% (23/28) for AC and squamous cell carcinoma (SCC), respectively. Among 27 AC, there were 17 EGFR-wild-type and 10 EGFR-mutated-positive samples detected by ARMS, and MSI achieved a diagnostic sensitivity of 82.3% (14/17) and 80% (8/10) for these two groups. Several phospholipids were specially enriched in AC compared with SCC tissues, with the higher ions intensity of phospholipids in EGFR-mutated-positive compared with EGFR-wild-type AC tissues. We also found EGFR mutations distribution was heterogeneous in different regions of same tumor by multi-regions ARMS detection, and only the regions with higher ions intensity of phospholipids were EGFR-mutated-positive. Conclusion: MSI method could accurately distinguish tumor pathology and subtypes, and phospholipids were reliable EGFR mutations associated biomarkers, phospholipids imaging could intuitively visualize EGFR mutations spatial distribution, may facilitate our understanding of tumor heterogeneity.
Collapse
Affiliation(s)
- Min Zhang
- Academy of Military Medical Science, Beijing, China.,Department of Lung Cancer, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiegang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Haixu Hu
- Laboratory of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Hao Xing
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Jun Wang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Fan Yang
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Qunfeng Ma
- Department of Thoracic Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Liu
- Laboratory of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chuanhao Tang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Center for Imaging and Systems Biology, Minzu University of China, Beijing, China
| | - Xiaoqing Liu
- Department of Lung Cancer, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
39
|
Pailler E, Faugeroux V, Oulhen M, Mezquita L, Laporte M, Honoré A, Lecluse Y, Queffelec P, NgoCamus M, Nicotra C, Remon J, Lacroix L, Planchard D, Friboulet L, Besse B, Farace F. Acquired Resistance Mutations to ALK Inhibitors Identified by Single Circulating Tumor Cell Sequencing in ALK-Rearranged Non-Small-Cell Lung Cancer. Clin Cancer Res 2019; 25:6671-6682. [PMID: 31439588 DOI: 10.1158/1078-0432.ccr-19-1176] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 08/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) inevitably develop resistance to ALK inhibitors. New diagnostic strategies are needed to assess resistance mechanisms and provide patients with the most effective therapy. We asked whether single circulating tumor cell (CTC) sequencing can inform on resistance mutations to ALK inhibitors and underlying tumor heterogeneity in ALK-rearranged NSCLC. EXPERIMENTAL DESIGN Resistance mutations were investigated in CTCs isolated at the single-cell level from patients at disease progression on crizotinib (n = 14) or lorlatinib (n = 3). Three strategies including filter laser-capture microdissection, fluorescence activated cell sorting, and the DEPArray were used. One hundred twenty-six CTC pools and 56 single CTCs were isolated and sequenced. Hotspot regions over 48 cancer-related genes and 14 ALK mutations were examined to identify ALK-independent and ALK-dependent resistance mechanisms. RESULTS Multiple mutations in various genes in ALK-independent pathways were predominantly identified in CTCs of crizotinib-resistant patients. The RTK-KRAS (EGFR, KRAS, BRAF genes) and TP53 pathways were recurrently mutated. In one lorlatinib-resistant patient, two single CTCs out of 12 harbored ALK compound mutations. CTC-1 harbored the ALK G1202R/F1174C compound mutation virtually similar to ALK G1202R/F1174L present in the corresponding tumor biopsy. CTC-10 harbored a second ALK G1202R/T1151M compound mutation not detected in the tumor biopsy. By copy-number analysis, CTC-1 and the tumor biopsy had similar profiles, whereas CTC-10 harbored multiple copy-number alterations and whole-genome duplication. CONCLUSIONS Our results highlight the genetic heterogeneity and clinical utility of CTCs to identify therapeutic resistance mutations in ALK-rearranged patients. Single CTC sequencing may be a unique tool to assess heterogeneous resistance mechanisms and help clinicians for treatment personalization and resistance options to ALK-targeted therapies.
Collapse
Affiliation(s)
- Emma Pailler
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France.,INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Vincent Faugeroux
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France.,INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Marianne Oulhen
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France.,INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France
| | - Laura Mezquita
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Mélanie Laporte
- Gustave Roussy, Université Paris-Saclay, Genomic Platform and Biobank, Department of Medical Biology and Pathology, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France
| | - Aurélie Honoré
- Gustave Roussy, Université Paris-Saclay, Genomic Platform and Biobank, Department of Medical Biology and Pathology, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France
| | - Yann Lecluse
- Gustave Roussy, Université Paris-Saclay, "Flow Cytometry and Imaging" Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France
| | - Pauline Queffelec
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France.,INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France
| | - Maud NgoCamus
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Claudio Nicotra
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Jordi Remon
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Ludovic Lacroix
- Gustave Roussy, Université Paris-Saclay, Genomic Platform and Biobank, Department of Medical Biology and Pathology, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France
| | - David Planchard
- Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Luc Friboulet
- INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| | - Benjamin Besse
- Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France.,Gustave Roussy, Université Paris-Saclay, Department of Medicine, Villejuif, France
| | - Françoise Farace
- Gustave Roussy, Université Paris-Saclay, "Rare Circulating Cells" Translational Platform, CNRS UMS3655 - INSERM US23 AMMICA, Villejuif, France. .,INSERM, U981 "Identification of Molecular Predictors and New Targets for Cancer Treatment," Villejuif, France.,Univ Paris Sud, Université Paris-Saclay, Faculty of Medicine, Le Kremlin-Bicêtre, France
| |
Collapse
|
40
|
Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, Vignali M, Park JO, Daniel SK, Pollack SM, Kim TS, Yeung R, Crispe IN, Pierce RH, Robins H, Pillarisetty VG. Mobilization of CD8 + T Cells via CXCR4 Blockade Facilitates PD-1 Checkpoint Therapy in Human Pancreatic Cancer. Clin Cancer Res 2019; 25:3934-3945. [PMID: 30940657 PMCID: PMC6606359 DOI: 10.1158/1078-0432.ccr-19-0081] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDA) is rarely cured, and single-agent immune checkpoint inhibition has not demonstrated clinical benefit despite the presence of large numbers of CD8+ T cells. We hypothesized that tumor-infiltrating CD8+ T cells harbor latent antitumor activity that can be reactivated using combination immunotherapy. EXPERIMENTAL DESIGN Preserved human PDA specimens were analyzed using multiplex IHC (mIHC) and T-cell receptor (TCR) sequencing. Fresh tumor was treated in organotypic slice culture to test the effects of combination PD-1 and CXCR4 blockade. Slices were analyzed using IHC, flow cytometry, and live fluorescent microscopy to assess tumor kill, in addition to T-cell expansion and mobilization. RESULTS mIHC demonstrated fewer CD8+ T cells in juxtatumoral stroma containing carcinoma cells than in stroma devoid of them. Using TCR sequencing, we found clonal expansion in each tumor; high-frequency clones had multiple DNA rearrangements coding for the same amino acid binding sequence, which suggests response to common tumor antigens. Treatment of fresh human PDA slices with combination PD-1 and CXCR4 blockade led to increased tumor cell death concomitant with lymphocyte expansion. Live microscopy after combination therapy demonstrated CD8+ T-cell migration into the juxtatumoral compartment and rapid increase in tumor cell apoptosis. CONCLUSIONS Endogenous tumor-reactive T cells are present within the human PDA tumor microenvironment and can be reactivated by combined blockade of PD-1 and CXCR4. This provides a new basis for the rational selection of combination immunotherapy for PDA.See related commentary by Medina and Miller, p. 3747.
Collapse
Affiliation(s)
- Yongwoo David Seo
- Department of Surgery, University of Washington, Seattle, Washington
| | - Xiuyun Jiang
- Department of Surgery, University of Washington, Seattle, Washington
| | - Kevin M Sullivan
- Department of Surgery, University of Washington, Seattle, Washington
| | | | | | - Arezou Abbasi
- Department of Surgery, University of Washington, Seattle, Washington
| | | | - James O Park
- Department of Surgery, University of Washington, Seattle, Washington
| | - Sara K Daniel
- Department of Surgery, University of Washington, Seattle, Washington
| | - Seth M Pollack
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington
| | - Raymond Yeung
- Department of Surgery, University of Washington, Seattle, Washington
| | | | | | - Harlan Robins
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Adaptive Biotechnologies, Seattle, Washington
| | | |
Collapse
|
41
|
Santoni-Rugiu E, Melchior LC, Urbanska EM, Jakobsen JN, Stricker KD, Grauslund M, Sørensen JB. Intrinsic resistance to EGFR-Tyrosine Kinase Inhibitors in EGFR-Mutant Non-Small Cell Lung Cancer: Differences and Similarities with Acquired Resistance. Cancers (Basel) 2019; 11:E923. [PMID: 31266248 PMCID: PMC6678669 DOI: 10.3390/cancers11070923] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Activating mutations in the epidermal growth factor receptor gene occur as early cancer-driving clonal events in a subset of patients with non-small cell lung cancer (NSCLC) and result in increased sensitivity to EGFR-tyrosine-kinase-inhibitors (EGFR-TKIs). Despite very frequent and often prolonged clinical response to EGFR-TKIs, virtually all advanced EGFR-mutated (EGFRM+) NSCLCs inevitably acquire resistance mechanisms and progress at some point during treatment. Additionally, 20-30% of patients do not respond or respond for a very short time (<3 months) because of intrinsic resistance. While several mechanisms of acquired EGFR-TKI-resistance have been determined by analyzing tumor specimens obtained at disease progression, the factors causing intrinsic TKI-resistance are less understood. However, recent comprehensive molecular-pathological profiling of advanced EGFRM+ NSCLC at baseline has illustrated the co-existence of multiple genetic, phenotypic, and functional mechanisms that may contribute to tumor progression and cause intrinsic TKI-resistance. Several of these mechanisms have been further corroborated by preclinical experiments. Intrinsic resistance can be caused by mechanisms inherent in EGFR or by EGFR-independent processes, including genetic, phenotypic or functional tumor changes. This comprehensive review describes the identified mechanisms connected with intrinsic EGFR-TKI-resistance and differences and similarities with acquired resistance and among clinically implemented EGFR-TKIs of different generations. Additionally, the review highlights the need for extensive pre-treatment molecular profiling of advanced NSCLC for identifying inherently TKI-resistant cases and designing potential combinatorial targeted strategies to treat them.
Collapse
Affiliation(s)
- Eric Santoni-Rugiu
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Linea C Melchior
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Edyta M Urbanska
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Jan N Jakobsen
- Department of Oncology and Palliative Units, Zealand University Hospital, DK-4700 Næstved, Denmark
| | - Karin de Stricker
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Morten Grauslund
- Department of Clinical Genetics and Pathology, Skåne University Hospital, SE-221 85 Lund, Sweden
| | - Jens B Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Sakakibara-Konishi J, Kitai H, Ikezawa Y, Hatanaka Y, Sasaki T, Yoshida R, Chiba S, Matsumoto S, Goto K, Mizugaki H, Shinagawa N. Response to Crizotinib Re-administration After Progression on Lorlatinib in a Patient With ALK-rearranged Non-small-cell Lung Cancer. Clin Lung Cancer 2019; 20:e555-e559. [PMID: 31307938 DOI: 10.1016/j.cllc.2019.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/13/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Affiliation(s)
| | - Hidenori Kitai
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Yasuyuki Ikezawa
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan; Department of Respiratory Medicine, Oji General Hospital, Tomakomai, Japan
| | - Yutaka Hatanaka
- Research Division of Genome Companion Diagnostics, Hokkaido University Hospital, Sapporo, Japan
| | - Takaaki Sasaki
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Ryohei Yoshida
- Respiratory Center, Asahikawa Medical University, Asahikawa, Japan
| | - Shinichi Chiba
- Center for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan; Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hidenori Mizugaki
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| | - Naofumi Shinagawa
- First Department of Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
43
|
Recondo G, Facchinetti F, Olaussen KA, Besse B, Friboulet L. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat Rev Clin Oncol 2019; 15:694-708. [PMID: 30108370 DOI: 10.1038/s41571-018-0081-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The traditional approach to the treatment of patients with advanced-stage non-small-cell lung carcinoma (NSCLC) harbouring ALK rearrangements or EGFR mutations has been the sequential administration of therapies (sequential treatment approach), in which patients first receive first-generation tyrosine-kinase inhibitors (TKIs), which are eventually replaced by next-generation TKIs and/or chemotherapy upon disease progression, in a decision optionally guided by tumour molecular profiling. In the past few years, this strategy has been challenged by clinical evidence showing improved progression-free survival, improved intracranial disease control and a generally favourable toxicity profile when next-generation EGFR and ALK TKIs are used in the first-line setting. In this Review, we describe the existing preclinical and clinical evidence supporting both treatment strategies - the 'historical' sequential treatment strategy and the use of next-generation TKIs - as frontline therapies and discuss the suitability of both strategies for patients with EGFR-driven or ALK-driven NSCLC.
Collapse
Affiliation(s)
- Gonzalo Recondo
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | | | - Ken A Olaussen
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Benjamin Besse
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.
| |
Collapse
|
44
|
Ramón Y Cajal S, Hümmer S, Peg V, Guiu XM, De Torres I, Castellvi J, Martinez-Saez E, Hernandez-Losa J. Integrating clinical, molecular, proteomic and histopathological data within the tissue context: tissunomics. Histopathology 2019; 75:4-19. [PMID: 30667539 PMCID: PMC6851567 DOI: 10.1111/his.13828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Malignant tumours show a marked degree of morphological, molecular and proteomic heterogeneity. This variability is closely related to microenvironmental factors and the location of the tumour. The activation of genetic alterations is very tissue‐dependent and only few tumours have distinct genetic alterations. Importantly, the activation state of proteins and signaling factors is heterogeneous in the primary tumour and in metastases and recurrences. The molecular diagnosis based only on genetic alterations can lead to treatments with unpredictable responses, depending on the tumour location, such as the tumour response in melanomas versus colon carcinomas with BRAF mutations. Therefore, we understand that the correct evaluation of tumours requires a system that integrates both morphological, molecular and protein information in a clinical and pathological context, where intratumoral heterogeneity can be assessed. Thus, we propose the term ‘tissunomics’, where the diagnosis will be contextualised in each tumour based on the complementation of the pathological, molecular, protein expression, environmental cells and clinical data.
Collapse
Affiliation(s)
- Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Vicente Peg
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Xavier M Guiu
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain.,Department of Pathology, Bellvitge University Hospital, Barcelona, Spain
| | - Inés De Torres
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Josep Castellvi
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Elena Martinez-Saez
- Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernandez-Losa
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Department of Pathology, Vall d'Hebron University Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
45
|
de Fraipont F, Gazzeri S, Cho WC, Eymin B. Circular RNAs and RNA Splice Variants as Biomarkers for Prognosis and Therapeutic Response in the Liquid Biopsies of Lung Cancer Patients. Front Genet 2019; 10:390. [PMID: 31134126 PMCID: PMC6514155 DOI: 10.3389/fgene.2019.00390] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023] Open
Abstract
Lung cancer, including non-small cell lung carcinoma (NSCLC), is the most frequently diagnosed cancer. It is also the leading cause of cancer-related mortality worldwide because of its late diagnosis and its resistance to therapies. Therefore, the identification of biomarkers for early diagnosis, prognosis, and monitoring of therapeutic response is urgently needed. Liquid biopsies, especially blood, are considered as promising tools to detect and quantify circulating cancer biomarkers. Cell-free circulating tumor DNA has been extensively studied. Recently, the possibility to detect and quantify RNAs in tumor biopsies, notably circulating cell-free RNAs, has gained great attention. RNA alternative splicing contributes to the proteome diversity through the biogenesis of several mRNA splice variants from the same pre-mRNA. Circular RNA (circRNA) is a new class of RNAs resulting from pre-mRNA back splicing. Owing to the development of high-throughput transcriptomic analyses, numerous RNA splice variants and, more recently, circRNAs have been identified and found to be differentially expressed in tumor patients compared to healthy controls. The contribution of some of these RNA splice variants and circRNAs to tumor progression, dissemination, or drug response has been clearly demonstrated in preclinical models. In this review, we discuss the potential of circRNAs and mRNA splice variants as candidate biomarkers for the prognosis and the therapeutic response of NSCLC in liquid biopsies.
Collapse
Affiliation(s)
- Florence de Fraipont
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
- Grenoble Hospital, La Tronche, France
| | - Sylvie Gazzeri
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Beatrice Eymin
- INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France
| |
Collapse
|
46
|
Fan J, Dai X, Wang Z, Huang B, Shi H, Luo D, Zhang J, Cai W, Nie X, Hirsch FR. Concomitant EGFR Mutation and EML4-ALK Rearrangement in Lung Adenocarcinoma Is More Frequent in Multifocal Lesions. Clin Lung Cancer 2019; 20:e517-e530. [PMID: 31138506 DOI: 10.1016/j.cllc.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The coexistence of epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement in patients with multifocal lung adenocarcinomas (LUAC) constitutes a rare molecular subtype of lung cancer. We aimed to investigate the intertumoral heterogeneity of pathologic and genetic characteristics of multifocal LUAC with EGFR/ALK co-alterations. PATIENTS AND METHODS A total of 1059 LUAC patients who underwent resection were investigated to screen for EGFR or ALK alterations using amplification refractory mutation system polymerase chain reaction and immunohistochemistry/fluorescence in situ hybridization. Molecular testing was extensively performed in patients with synchronous multifocal LUAC. Clonal evolution analysis was implemented using next-generation sequencing. RESULTS A total of 97 multiple synchronous lesions were observed among 1059 LUAC patients. Patients with at least 1 sample harboring EGFR mutation or ALK rearrangement were 62.89% (61/97) and 14.43% (14/97), respectively. Patients with concomitant EGFR and ALK alterations were 4.71% (4/97). Comparatively, patients with unifocal LUAC harboring EGFR mutation, ALK rearrangement, and EGFR/ALK co-alterations were 58.25% (570/962), 6.44% (62/962), and 0.83% (8/962), respectively. The prevalence of EGFR/ALK co-alterations in the multifocal LUAC was significantly higher than that in the unifocal LUAC (4.71% (4/97) vs. 0.83% (8/962)). Furthermore, we present 4 cases of EGFR/ALK co-altered multifocal LUAC with different morphological and molecular patterns. In addition to radiographic, pathological, and molecular testing results, clonal evolutional analysis could also be used to distinguish intertumoral heterogeneity. CONCLUSION The results highlight the importance of distinguishing synchronous primary tumors from intrapulmonary metastases, and of assessing the relative abundance of EGFR mutation and ALK rearrangement in patients with multifocal adenocarcinomas with EGFR/ALK co-alterations.
Collapse
Affiliation(s)
- Jun Fan
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenkao Wang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heshui Shi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danju Luo
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijing Cai
- Shanghai Tongshu Biotechnology Co, Ltd, Shanghai, China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fred R Hirsch
- Clinical Institute for Lung Cancer, Mount Sinai Cancer, Mount Sinai Health System, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
47
|
Zhuang X, Zhao C, Li J, Su C, Chen X, Ren S, Li X, Zhou C. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF. Cancer Med 2019; 8:2858-2866. [PMID: 31016879 PMCID: PMC6558647 DOI: 10.1002/cam4.2183] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/19/2022] Open
Abstract
Background Although oncogenic driver mutations were thought to be mutually exclusive in non‐small cell lung cancer (NSCLC), certain tumors harbor co‐occurring mutations and represent a rare molecular subtype. The evaluation of the clinical features and therapeutic response associated with this NSCLC subtype will be vital for understanding the heterogeneity of treatment response and improving the management of these patients. Methods This retrospective study included 3774 samples from patients diagnosed with NSCLC. All samples were screened for EGFR, ALK, ROS1, KRAS, and BRAF mutation using the amplification‐refractory mutation system. The relationship between concomitant driver mutations and clinicopathologic characteristics, and patient clinical outcomes were evaluated. Results Sixty‐three (1.7%) samples had more than one driver gene mutation. Among these, 43 were coalterations with an EGFR mutation, 20 with an ALK rearrangement, and eight with an ROS1 rearrangement. Except for ROS1 concomitant mutations that were more frequent in male patients (87.5%, P = 0.020), the clinicopathological features of the concomitant mutation patients were not significantly different from those harboring a single EGFR, ALK, or ROS1 mutation. Furthermore, first‐line EGFR‐TKI treatment did not significantly improve the progression‐free survival (PFS) of patients harboring EGFR concomitant mutation, compared to patients harboring a single EGFR mutation. However, for EGFR concomitant mutation patients, TKI therapy was more effective than chemotherapy (median PFS of 10.8 vs 5.2 months, P = 0.023). Lastly, KRAS mutations did not influence the EGFR‐TKI therapy treatment effect. Conclusion In this study, concomitant mutations were found in 1.7% of the NSCLC. EGFR‐TKI therapy was more effective than chemotherapy for patients harboring EGFR concomitant mutation, and ROS1 concomitant mutations were more frequent in male patients. For patients harboring coalterations with an ALK or ROS1 rearrangement, we should be cautious when considering the therapeutic options.
Collapse
Affiliation(s)
- Xibin Zhuang
- Department of Respiratory Medicine, Quanzhou First Hospital, Quanzhou, China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jiayu Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Caicun Zhou
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| |
Collapse
|
48
|
Bai W, Ma J, Liu Y, Liang J, Wu Y, Yang X, Xu E, Li Y, Xi Y. Screening of MSI detection loci and their heterogeneity in East Asian colorectal cancer patients. Cancer Med 2019; 8:2157-2166. [PMID: 30945461 PMCID: PMC6536949 DOI: 10.1002/cam4.2111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE This study aims to screen the MSI detection loci suitable for the East Asian colorectal cancer patients. and explore its intratumoral heterogeneity. METHODS A total of 271 pathological tissues specimens of colorectal cancer were collected. The MSI status was detected using different PCR reagent kits with different detection loci. Then, the results were compared with the immunohistochemical (IHC) staining results. Microdissection of pathological tissues specimens detected to be MSI-H was performed to examine whether there was intratumoral heterogeneity of MSI status. RESULTS Thirty-nine out of 271 cases were dMMR. dMMR occurred mostly in patients with right-hemi colon cancer (P < 0.0001). Compared with dMMR patients, the clinical stages of pMMR patients were more inclined to be in the late stage with lymph node metastasis (P < 0.0001). MSI-H tumors were significantly associated with KRAS mutation (P = 0.036) and PD-L1 expression (P = 0.038). Compared with Promega panel and 24-locus detection, the consistency between NCI MSI panel and IHC staining results were the highest with the Kappa value of 0.850. The sensitivity of detection decreased from 87.18% to 56.41% with the increase in detection loci. Single locus analysis showed that the first two loci with the highest sensitivity were both mononucleotide loci, namely, BAT-26 (95.45%) and BAT-25 (86.36%). The dinucleotide locus with highest sensitivity was D2S123 (50%). The main detection loci of MSI-H showed no intratumoral heterogeneity. CONCLUSION The combination of 2 mononucleotide loci (BAT25, BAT26) and 3 dinucleotide loci (D2S123, D5S346, D17S250) might be the most suitable loci for MSI detection in East Asian population. There is no intratumoral heterogeneity in the main MSI loci.
Collapse
Affiliation(s)
- Wenqi Bai
- Department of Colorectal Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Jinfeng Ma
- Department of General Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Yangyang Liu
- Department of Oncology, Union hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Jing Liang
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Yueqin Wu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Xuanqin Yang
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| | - Yan Li
- Department of Pathology, Union hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi, P.R. China
| |
Collapse
|
49
|
Lin C, Shi X, Yang S, Zhao J, He Q, Jin Y, Yu X. Comparison of ALK detection by FISH, IHC and NGS to predict benefit from crizotinib in advanced non-small-cell lung cancer. Lung Cancer 2019; 131:62-68. [PMID: 31027700 DOI: 10.1016/j.lungcan.2019.03.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 10/28/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Anaplastic lymphoma kinase (ALK) is now a validated kinase target in non-small cell lung cancer (NSCLC). We implemented three ALK laboratory methodologies: fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and next-generation sequencing (NGS) to detect EML4-ALK fusions and compared the predictive value for Crizotinib efficacy in ALK-positive patients. METHODS 55 ALK positive patients confirmed by at least one method were enrolled in the present study, of whom 45 cases were assessed by FISH, IHC and NGS concurrently, and another 10 cases only received IHC and NGS assessment for ALK status. RESULTS IHC presented the uppermost positive rate (94.5%), followed by NGS (92.7%) and FISH(82.4%), among which IHC and NGS had the highest concordance rate of 87.3%. No difference was detected in ORR, DCR and PFS of ALK positive cases defined in three groups. Notably, NGS positive patients were correlated with a higher DCR and longer PFS compared to NGS negative cases (P = 0.02 and P = 0.09), while FISH and IHC status were not distinguishing in predicting the outcome of Crizotinib. TP53 concurrent mutation might reduce responsiveness to Crizotinib and worsen prognosis in ALK-rearranged NSCLC. CONCLUSION FISH present a certain false-negative rate although considered the gold standard. Ventana-D5F3 IHC is qualified as a screening tool, while NGS positive may predict clinical benefit of Crizotinib more accurately, allowing efficient test for specific variants and concurrent genomic alterations.
Collapse
Affiliation(s)
- Chen Lin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Xun Shi
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Shao Yang
- Nanjing Geneseeq Technology Inc., Nangjing, China
| | - Jun Zhao
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Qiong He
- Department of Medical Oncology, Zhejiang Cancer Hospital, China
| | - Ying Jin
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Radiation Oncology, China.
| | - Xinmin Yu
- Department of Medical Oncology, Zhejiang Cancer Hospital, China; Zhejiang Key Laboratory of Diagnosis and Treatment Technology of Thoracic Oncology, China.
| |
Collapse
|
50
|
Yang M, Zheng E, Xu X, Ni J, Li J, Zhao G. Regionally surgical resection of stage-IV adenocarcinoma acquired tyrosine kinases inhibitor-resistance. J Thorac Dis 2019; 11:255-258. [PMID: 30863599 DOI: 10.21037/jtd.2018.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minglei Yang
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| | - Enkuo Zheng
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| | - Xiang Xu
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| | - Junjun Ni
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| | - Junfang Li
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| | - Guofang Zhao
- Department of Cardiothoracic Surgery, Ningbo No. 2 Hospital, Ningbo 315012, China
| |
Collapse
|