1
|
Mathur S, Chen S, Rejniak KA. Exploring chronic and transient tumor hypoxia for predicting the efficacy of hypoxia-activated pro-drugs. NPJ Syst Biol Appl 2024; 10:1. [PMID: 38182612 PMCID: PMC10770176 DOI: 10.1038/s41540-023-00327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Hypoxia, a low level of oxygen in the tissue, arises due to an imbalance between the vascular oxygen supply and oxygen demand by the surrounding cells. Typically, hypoxia is viewed as a negative marker of patients' survival, because of its implication in the development of aggressive tumors and tumor resistance. Several drugs that specifically target the hypoxic cells have been developed, providing an opportunity for exploiting hypoxia to improve cancer treatment. Here, we consider combinations of hypoxia-activated pro-drugs (HAPs) and two compounds that transiently increase intratumoral hypoxia: a vasodilator and a metabolic sensitizer. To effectively design treatment protocols with multiple compounds we used mathematical micro-pharmacology modeling and determined treatment schedules that take advantage of heterogeneous and dynamically changing oxygenation in tumor tissue. Our model was based on data from murine pancreatic cancers treated with evofosfamide (as a HAP) and either hydralazine (as a vasodilator), or pyruvate (as a metabolic sensitizer). Subsequently, this model was used to identify optimal schedules for different treatment combinations. Our simulations showed that schedules of HAPs with the vasodilator had a bimodal distribution, while HAPs with the sensitizer showed an elongated plateau. All schedules were more successful than HAP monotherapy. The three-compound combination had three local optima, depending on the HAPs clearance from the tissue interstitium, each two-fold more effective than baseline HAP treatment. Our study indicates that the three-compound therapy administered in the defined order will improve cancer response and that designing complex schedules could benefit from the use of mathematical modeling.
Collapse
Affiliation(s)
- Shreya Mathur
- H. Lee Moffitt Cancer Center and Research Institute, IMO High School Internship Program, Tampa, FL, USA
- University of Florida, Undergraduate Studies, Gainesville, FL, USA
| | - Shannon Chen
- H. Lee Moffitt Cancer Center and Research Institute, IMO High School Internship Program, Tampa, FL, USA
- University of Florida, Undergraduate Studies, Gainesville, FL, USA
| | - Katarzyna A Rejniak
- H. Lee Moffitt Cancer Center and Research Institute, Integrated Mathematical Oncology Department, Tampa, FL, USA.
- University of South Florida, Morsani College of Medicine, Department of Oncologic Sciences, Tampa, FL, USA.
| |
Collapse
|
2
|
Andriolo LG, Cammisotto V, Spagnoli A, Alunni Fegatelli D, Chicone M, Di Rienzo G, Dell’Anna V, Lobreglio G, Serio G, Pignatelli P. Overview of angiogenesis and oxidative stress in cancer. World J Meta-Anal 2023; 11:253-265. [DOI: 10.13105/wjma.v11.i6.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 09/13/2023] Open
Abstract
Neoplasms can be considered as a group of aberrant cells that need more vascular supply to fulfill all their functions. Therefore, they promote angiogenesis through the same neovascularization pathway used physiologically. Angiogenesis is a process characterized by a heterogeneous distribution of oxygen caused by the tumor and oxidative stress; the latter being one of the most powerful stimuli of angiogenesis. As a result of altered tumor metabolism due to hypoxia, acidosis occurs. The angiogenic process and oxidative stress can be detected by measuring serum and tissue biomarkers. The study of the mechanisms underlying angiogenesis and oxidative stress could lead to the identification of new biomarkers, ameliorating the selection of patients with neoplasms and the prediction of their response to possible anti-tumor therapies. In particular, in the treatment of patients with similar clinical tumor phenotypes but different prognoses, the new biomarkers could be useful. Moreover, they may lead to a better understanding of the mechanisms underlying drug resistance. Experimental studies show that blocking the vascular supply results in antiproliferative activity in vivo in neuroendocrine tumor cells, which require a high vascular supply.
Collapse
Affiliation(s)
- Luigi Gaetano Andriolo
- Department of General and Specialistic Surgery Paride Stefanini, Policlinico Umberto I, University of Rome Sapienza, Rome 06100, Italy
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| | - Alessandra Spagnoli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome 06100, Italy
| | - Michele Chicone
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Gaetano Di Rienzo
- Unità Operativa Complessa Chirurgia Toracica, Ospedale Vito Fazzi, Lecce 73100, Italy
| | | | - Giambattista Lobreglio
- Department of Clinical Pathology and Microbiology, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Giovanni Serio
- Pathological Anatomy Unit, Ospedale Vito Fazzi, Lecce 73100, Italy
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, University of Rome Sapienza, Rome 06100, Italy
| |
Collapse
|
3
|
Jia T, Miao R, Zhang J, Zhu H, Zhang C, Zeng L, Zhao Y, Cheng W, Shao J. Discovery of novel hypoxia-activated, nitroimidazole constructed multi-target kinase inhibitors on the basis of AZD9291 for the treatment of human lung cancer. Bioorg Med Chem 2023; 91:117384. [PMID: 37356356 DOI: 10.1016/j.bmc.2023.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
A group of 4-(1-methyl-1H-indol-3-yl)pyrimidin-2-amine derivatives containing a hypoxia-activated nitroimidazole group were designed as EGFR inhibitors. Among this series, A14 was identified as the optimal compound, exhibiting potent anti-proliferative activities against H1975 and HCC827 cells. Under hypoxic condition, the anti-proliferative activities of A14 improved by 4-6-fold (IC50 < 10 nM), indicating its hypoxia-selectivity. A14's high potency may be attributed to its inhibition against multiple kinases, including EGFR, JAK2, ROS1, FLT3, FLT4 and PDGFRα, which was confirmed by binding assays on a panel of 30 kinases. Furthermore, A14 exhibited good bio-reductive property and could bind with nucleophilic amino acids after being activated under hypoxic conditions. With its anti-proliferative activities and selectivity for hypoxia and oncogenic kinases, A14 shows promise as a multi-target kinase inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Tingting Jia
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China; Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiankang Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Huajian Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Chong Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Yanmei Zhao
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou 310023, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jiaan Shao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou 310015, China.
| |
Collapse
|
4
|
Chen SX, Zhang J, Xue F, Liu W, Kuang Y, Gu B, Song S, Chen H. In situ forming oxygen/ROS-responsive niche-like hydrogel enabling gelation-triggered chemotherapy and inhibition of metastasis. Bioact Mater 2023; 21:86-96. [PMID: 36093330 PMCID: PMC9417960 DOI: 10.1016/j.bioactmat.2022.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Though the development of the diverse hypoxia-activated prodrugs (HAPs) has made great progresses in the last several decades, current cancer therapy based on HAPs still suffers many obstacles, e.g., poor therapeutic outcome owing to hard deep reaching to hypoxic region, and the occurrence of metastasis due to hypoxia. Inspired by engineered niches, a novel functional chitosan polymer (CS-FTP) is synthesized for construction of a hydrogel-based bio-niche (CS-FTP-gel) in aiming at remodeling tumor hypoxic microenvironment. The CS-FTP polymers are crosslinked to form a niche-like hydrogel via enzyme-mediated oxygen-consumable dimerization after injected into tumor, in which a HAP (i.e., AQ4N) could be physically encapsulated, resulting in enhanced tumor hypoxia to facilitate AQ4N-AQ4 toxic transformation for maximizing efficacy of chemotherapy. Furthermore, Pazopanib (PAZ) conjugated onto the CS backbone via ROS-sensitive linker undergoes a stimuli-responsive release behavior to promote antiangiogenesis for tumor starvation, eventually contributing to the inhibition of lung metastasis and synergistic action with AQ4N-based chemotherapy for an orthotopic 4T1 breast tumor model. This study provides a promising strategy for hypoxia-based chemotherapy and demonstrates an encouraging clinical potential for multifunctional hydrogel applicable for antitumor treatment. CS-FTP shows enzyme-mediated hypoxia-inducible gelation and reactive oxygen species (ROS)-responsive drug release. CS-FTP gel formed intratumorally can be used as a bio-niche to enhance tumor hypoxic microenvironment. In vivo PET/CT directly monitors the tumor hypoxia changes and confirm the ability of CS-FTP to enhance tumor hypoxia. Oxygen-consumable gelation of ROS-responsive CS-FTP triggers chemotherapy and starvation therapy for antimetastasis.
Collapse
Affiliation(s)
- Shi-Xiong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ji Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Fengfeng Xue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Wei Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.,Center for Biomedical Imaging, Fudan University, Shanghai, 200032, PR China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, 200032, PR China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Sub-lane Xiangshan Road 1, Hangzhou, 310024, PR China
| |
Collapse
|
5
|
Sun T, Li J, Zeng C, Luo C, Luo X, Li H. Banoxantrone Coordinated Metal-Organic Framework for Photoacoustic Imaging-Guided High Intensity Focused Ultrasound Therapy. Adv Healthc Mater 2023; 12:e2202348. [PMID: 36281898 DOI: 10.1002/adhm.202202348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/18/2022] [Indexed: 01/18/2023]
Abstract
Photoacoustic (PA) imaging with high spatial resolution has great potential as desired monitoring means in the high-intensity focused ultrasound (HIFU) surgery of tumor. However, its penetration depth in the tissue is insufficient for achieving accurate intraoperative navigation, leading to residual tumor tissue. Nanomedicine provides a new opportunity for PA imaging to guide HIFU surgery. Studies have found that the hypoxic heterogeneity of tumor is effectively reversed by HIFU. Herein, a specific metal-organic framework nanosystem, constructed by coordination of banoxantrone (AQ4N) and Mn2+ , is designed based on HIFU to reverse the hypoxic heterogeneity of tumors. It can provide exogenous light-absorbing substances, thus improving the penetrability of PA imaging signal through the deep tissue and achieving clearer PA imaging for guiding HIFU surgery. In turn, AQ4N, in the hypoxic homogenous environment of the tumor provided by HIFU, is activated sequentially to specifically treat the residual hypoxic tumor cells. This combination treatment manifests higher tumor suppressors activation and lower expression of genes related to tumor progression. This strategy addresses the dissatisfaction with PA imaging-guided HIFU therapy and is promising for translation into a clinical combination regimen.
Collapse
Affiliation(s)
- Tingyu Sun
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jingnan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chao Zeng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chengyan Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xirui Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Huanan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
6
|
Zheng D, Li Y, Song L, Xu T, Jiang X, Yin X, He Y, Xu J, Ma X, Chai L, Xu J, Hu J, Mi P, Jing J, Shi H. Improvement of radiotherapy with an ozone-carried liposome nano-system for synergizing cancer immune checkpoint blockade. NANO TODAY 2022; 47:101675. [DOI: 10.1016/j.nantod.2022.101675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
7
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
8
|
Hao D, Meng Q, Jiang B, Lu S, Xiang X, Pei Q, Yu H, Jing X, Xie Z. Hypoxia-Activated PEGylated Paclitaxel Prodrug Nanoparticles for Potentiated Chemotherapy. ACS NANO 2022; 16:14693-14702. [PMID: 36112532 DOI: 10.1021/acsnano.2c05341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing controlled drug-release systems is imperative and valuable for increasing the therapeutic index. Herein, we synthesized hypoxia-responsive PEGylated (PEG = poly(ethylene glycol)) paclitaxel prodrugs by utilizing azobenzene (Azo) as a cleavable linker. The as-fabricated prodrugs could self-assemble into stable nanoparticles (PAP NPs) with high drug content ranging from 26 to 44 wt %. The Azo group in PAP NPs could be cleaved at the tumorous hypoxia microenvironment and promoted the release of paclitaxel for exerting cytotoxicity toward cancer cells. In addition, comparative researches revealed that the PAP NPs with the shorter methoxy-PEG chain (molecular weight = 750) possessed enhanced tumor suppression efficacy and alleviated off-target toxicity. Our work demonstrates a promising tactic to develop smart and simple nanomaterials for disease treatment.
Collapse
Affiliation(s)
- Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qian Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Haijun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
9
|
Jia T, Miao R, Lin J, Zhang C, Zeng L, Zhang J, Shao J, Pan Z, Wang H, Zhu H, Cheng W. Design, synthesis and biological evaluation of novel tumor hypoxia-activated EGFR tyrosine kinase inhibitors. Bioorg Chem 2022; 129:106138. [PMID: 36115310 DOI: 10.1016/j.bioorg.2022.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Hypoxia is widespread in solid tumors, such as NSCLC, and has become a very attractive target. On the basis of AZD9291 scaffold, novel hypoxia-targeted EGFR inhibitors without the acrylamide warhead but containing hypoxic reductive activation groups were described. Among them, compound JT21 exhibited impressive inhibitory activity (IC50 = 23 nM) against EGFRL858R/T790M and displayed about 21-fold inhibitory activity decrease against EGFRwt. Under hypoxia, JT21 exhibited more significant proliferation inhibitory activities against H1975 cells (IC50 = 7.39 ± 2.20 nM) and HCC827 cells (IC50 = 5.88 ± 0.85 nM) than that of AZD9291, which was about 5 times more effective than normoxia activities. Meanwhile, the weak inhibition effects on A549 and BEAS-2B cells suggested JT21 might be a selective inhibitor for EGFR mutations with low toxicity. Furthermore, JT21 could induce apoptosis of H1975 cells under hypoxia and showed good bio-reductive property.
Collapse
Affiliation(s)
- Tingting Jia
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China; Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Ruoyang Miao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jiaohua Lin
- Zhejiang Yongtai Technology Co. Ltd, Taizhou 317016, China
| | - Chong Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Linghui Zeng
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
| | - Haiping Wang
- Hangzhou Children's Hospital, Hangzhou, 310014, China.
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China.
| | - Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Zi Y, Yang K, He J, Wu Z, Liu J, Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev 2022; 188:114449. [PMID: 35835353 DOI: 10.1016/j.addr.2022.114449] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 07/06/2022] [Indexed: 12/20/2022]
Abstract
The Enhanced Permeability and Retention (EPR) effect has been recognized as the central paradigm in tumor-targeted delivery in the last decades. In the wake of this concept, nanotechnologies have reached phenomenal levels in research. However, clinical tumors display a poor manifestation of EPR effect. Factors including tumor heterogeneity, complicating tumor microenvironment, and discrepancies between laboratory models and human tumors largely contribute to poor efficiency in tumor-targeted delivery and therapeutic failure in clinical translation. In this article, approaches for evaluation of EPR effect in human tumor were overviewed as guidance to employ EPR effect for cancer treatment. Strategies to augment EPR-mediated tumoral delivery are discussed in different dimensions including enhancement of vascular permeability, depletion of tumor extracellular matrix and optimization of nanoparticle design. Besides, the recent development in alternative tumor-targeted delivery mechanisms are highlighted including transendothelial pathway, endogenous cell carriers and non-immunogenic bacteria-mediated delivery. In addition, the emerging preclinical models better reflect human tumors are introduced. Finally, more rational applications of EPR effect in other disease and field are proposed. This article elaborates on fundamental reasons for the gaps between theoretical expectation and clinical outcomes, attempting to provide some perspective directions for future development of cancer nanomedicines in this still evolving landscape.
Collapse
Affiliation(s)
- Yixuan Zi
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Kaiyun Yang
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
11
|
Chinn HK, Gardell JL, Matsumoto LR, Labadie KP, Mihailovic TN, Lieberman NAP, Davis A, Pillarisetty VG, Crane CA. Hypoxia-inducible lentiviral gene expression in engineered human macrophages. J Immunother Cancer 2022; 10:jitc-2021-003770. [PMID: 35728871 PMCID: PMC9214393 DOI: 10.1136/jitc-2021-003770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Human immune cells, including monocyte-derived macrophages, can be engineered to deliver proinflammatory cytokines, bispecific antibodies, and chimeric antigen receptors to support immune responses in different disease settings. When gene expression is regulated by constitutively active promoters, lentiviral payload gene expression is unregulated, and can result in potentially toxic quantities of proteins. Regulated delivery of lentivirally encoded proteins may allow localized or conditional therapeutic protein expression to support safe delivery of adoptively transferred, genetically modified cells with reduced capacity for systemic toxicities. Methods In this study, we engineered human macrophages to express genes regulated by hypoxia responsive elements included in the lentiviral promoter region to drive conditional lentiviral gene expression only under hypoxic conditions. We tested transduced macrophages cultured in hypoxic conditions for the transient induced expression of reporter genes and the secreted cytokine, interleukin-12. Expression of hypoxia-regulated genes was investigated both transcriptionally and translationally, and in the presence of human tumor cells in a slice culture system. Finally, hypoxia-regulated gene expression was evaluated in a subcutaneous humanized-mouse cancer model. Results Engineered macrophages were shown to conditionally and tranisently express lentivirally encoded gene protein products, including IL-12 in hypoxic conditions in vitro. On return to normoxic conditions, lentiviral payload expression returned to basal levels. Reporter genes under the control of hypoxia response elements were upregulated under hypoxic conditions in the presence of human colorectal carcinoma cells and in the hypoxic xenograft model of glioblastoma, suggesting utility for systemic engineered cell delivery capable of localized gene delivery in cancer. Conclusions Macrophages engineered to express hypoxia-regulated payloads have the potential to be administered systemically and conditionally express proteins in tissues with hypoxic conditions. In contrast to immune cells that function or survive poorly in hypoxic conditions, macrophages maintain a proinflammatory phenotype that may support continued gene and protein expression when regulated by conditional hypoxia responsive elements and naturally traffic to hypoxic microenvironments, making them ideal vehicles for therapeutic payloads to hypoxic tissues, such as solid tumors. With the ability to fine-tune delivery of potent proteins in response to endogenous microenvironments, macrophage-based cellular therapies may therefore be designed for different disease settings.
Collapse
Affiliation(s)
- Harrison K Chinn
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Jennifer L Gardell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Mozart Therapeutics, Seattle, Washington, USA
| | - Lisa R Matsumoto
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Kevin P Labadie
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Tara N Mihailovic
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Nicole A P Lieberman
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Amira Davis
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | |
Collapse
|
12
|
Normalizing Tumor Vasculature to Reduce Hypoxia, Enhance Perfusion, and Optimize Therapy Uptake. Cancers (Basel) 2021; 13:cancers13174444. [PMID: 34503254 PMCID: PMC8431369 DOI: 10.3390/cancers13174444] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In order for solid tumors to grow, they need to develop new blood vessels in order to support their increasing metabolic requirements. To facilitate the novel vessel formation, the tumor initiates an aggressive pro-angiogenic program. As a result of the aggressive angiogenesis, blood vessels form very rapidly and are often malformed and dysfunctional. There is a reduction in perfusion to the tumor, and often the tumors exhibit significant areas of tumor hypoxia. This review paper discusses the pro-tumorigenic environment induced by tumor hypoxia and how this can be targeted through normalization of the tumor vasculature. Here, we review tumor angiogenesis, the development of a hypoxic phenotype, and how this contributes to sustained tumorigenesis and resistance to therapy. We further discuss the potential of vascular normalization to reduce tumor hypoxia and facilitate uptake and efficacy of a variety of therapies. Abstract A basic requirement of tumorigenesis is the development of a vascular network to support the metabolic requirements of tumor growth and metastasis. Tumor vascular formation is regulated by a balance between promoters and inhibitors of angiogenesis. Typically, the pro-angiogenic environment created by the tumor is extremely aggressive, resulting in the rapid vessel formation with abnormal, dysfunctional morphology. The altered morphology and function of tumor blood and lymphatic vessels has numerous implications including poor perfusion, tissue hypoxia, and reduced therapy uptake. Targeting tumor angiogenesis as a therapeutic approach has been pursued in a host of different cancers. Although some preclinical success was seen, there has been a general lack of clinical success with traditional anti-angiogenic therapeutics as single agents. Typically, following anti-angiogenic therapy, there is remodeling of the tumor microenvironment and widespread tumor hypoxia, which is associated with development of therapy resistance. A more comprehensive understanding of the biology of tumor angiogenesis and insights into new clinical approaches, including combinations with immunotherapy, are needed to advance vascular targeting as a therapeutic area.
Collapse
|
13
|
Evofosfamide Is Effective against Pediatric Aggressive Glioma Cell Lines in Hypoxic Conditions and Potentiates the Effect of Cytotoxic Chemotherapy and Ionizing Radiations. Cancers (Basel) 2021; 13:cancers13081804. [PMID: 33918823 PMCID: PMC8070185 DOI: 10.3390/cancers13081804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Despite many therapeutic approaches attempted over the last years, the prognosis of children with high-grade glioma or diffuse intrinsic pontine glioma remains dismal. Hypoxia-activated prodrugs (HAPs) were developed to target hypoxic areas within solid tumors as gliomas. Evofosfamide (Evo) is a 2nd generation HAP exhibiting significant preclinical and clinical activities against adult glioblastoma. We thus investigated the potential of Evo in six pediatric glioma cell lines. Interestingly, we showed that the growth of all cell lines was inhibited by Evo, mainly under hypoxia as expected. We also evidenced a significant synergism between Evo and three drugs widely used in pediatric oncology. Finally, Evo appeared able to potentiate the effect of ionizing radiations. Since these tumors are highly hypoxic and Evo appears effective in hypoxic glioma cells as a single drug and in combination with radio- and chemotherapy, hypoxia-activated prodrugs could represent a promising therapeutic option for children with brain tumors. Abstract Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.
Collapse
|
14
|
Cangelosi D, Morini M, Zanardi N, Sementa AR, Muselli M, Conte M, Garaventa A, Pfeffer U, Bosco MC, Varesio L, Eva A. Hypoxia Predicts Poor Prognosis in Neuroblastoma Patients and Associates with Biological Mechanisms Involved in Telomerase Activation and Tumor Microenvironment Reprogramming. Cancers (Basel) 2020; 12:E2343. [PMID: 32825087 PMCID: PMC7563184 DOI: 10.3390/cancers12092343] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
The biological and clinical heterogeneity of neuroblastoma (NB) demands novel biomarkers and therapeutic targets in order to drive the most appropriate treatment for each patient. Hypoxia is a condition of low-oxygen tension occurring in poorly vascularized tumor tissues. In this study, we aimed to assess the role of hypoxia in the pathogenesis of NB and at developing a new clinically relevant hypoxia-based predictor of outcome. We analyzed the gene expression profiles of 1882 untreated NB primary tumors collected at diagnosis and belonging to four existing data sets. Analyses took advantage of machine learning methods. We identified NB-hop, a seven-gene hypoxia biomarker, as a predictor of NB patient prognosis, which is able to discriminate between two populations of patients with unfavorable or favorable outcome on a molecular basis. NB-hop retained its prognostic value in a multivariate model adjusted for established risk factors and was able to additionally stratify clinically relevant groups of patients. Tumors with an unfavorable NB-hop expression showed a significant association with telomerase activation and a hypoxic, immunosuppressive, poorly differentiated, and apoptosis-resistant tumor microenvironment. NB-hop defines a new population of NB patients with hypoxic tumors and unfavorable prognosis and it represents a critical factor for the stratification and treatment of NB patients.
Collapse
Affiliation(s)
- Davide Cangelosi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Nicolò Zanardi
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Angela Rita Sementa
- Laboratory of Pathology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy;
| | - Marco Muselli
- Institute of Electronics, Computer and Telecommunication Engineering, Italian National Research Council, 16149 Genova, Italy;
| | - Massimo Conte
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Alberto Garaventa
- Pediatric Oncology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.C.); (A.G.)
| | - Ulrich Pfeffer
- Integrated Oncology Therapies Department, Molecular Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Maria Carla Bosco
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Luigi Varesio
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy; (M.M.); (N.Z.); (L.V.); (A.E.)
| |
Collapse
|
15
|
Hypoxia Impairs NK Cell Cytotoxicity through SHP-1-Mediated Attenuation of STAT3 and ERK Signaling Pathways. J Immunol Res 2020; 2020:4598476. [PMID: 33123602 PMCID: PMC7584946 DOI: 10.1155/2020/4598476] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/09/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors with potent antitumor activity. However, tumor cells can create an immunosuppressive microenvironment to escape immune surveillance. Although accumulating evidence indicates that microenvironmental hypoxia plays an important role in favoring tumor development and immune evasion, it remains unclear by what means hypoxia directly impairs NK cell antitumor activity. In this study, we confirmed that hypoxic NK cells showed significantly lower cytotoxicity against tumor cells. Consistent with this finding, we found that the reduction in NK cell cytotoxicity resulting from hypoxia correlated to the lower expression of granzyme B, IFN-γ, and degranulation marker CD107a, as well as activating receptors including NKp30, NKp46, and NKG2D expressed on the surface of NK cells. More importantly, we further demonstrated that a reduction in the phosphorylation levels of ERK and STAT3 secondary to hypoxia was strongly associated with the attenuated NK cell cytotoxicity. Focusing on the mechanism responsible for reduced phosphorylation levels of ERK and STAT3, we reveal that the activation of protein tyrosine phosphatase SHP-1 (Src homology region 2 domain-containing phosphatase-1) following hypoxia might play an essential role in this process. By knocking down SHP-1 or blocking its activity using a specific inhibitor TPI-1, we were able to partially restore NK cell cytotoxicity under hypoxia. Taken together, we demonstrate that hypoxia could impair NK cell cytotoxicity by decreasing the phosphorylation levels of ERK and STAT3 in a SHP-1-dependent manner. Therefore, targeting SHP-1 could provide an approach to enhance NK cell-based tumor immunotherapy.
Collapse
|
16
|
DiGiacomo JW, Gilkes DM. Tumor Hypoxia As an Enhancer of Inflammation-Mediated Metastasis: Emerging Therapeutic Strategies. Target Oncol 2019; 13:157-173. [PMID: 29423593 DOI: 10.1007/s11523-018-0555-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metastasis is the leading cause of cancer-related deaths. Recent research has implicated tumor inflammation as a promoter of metastasis. Myeloid, lymphoid, and mesenchymal cells in the tumor microenvironment promote inflammatory signaling amongst each other and together with cancer cells to modulate sustained inflammation, which may enhance cancer invasiveness. Tumor hypoxia, a state of reduced available oxygen present in the majority of solid tumors, acts as a prognostic factor for a worse outcome and is known to have a role in tumor inflammation through the regulation of inflammatory mediator signals in both cancer and neighboring cells in the microenvironment. Multiple methods to target tumor hypoxia have been developed and tested in clinical trials, and still more are emerging as the impacts of hypoxia become better understood. These strategies include mechanistic inhibition of the hypoxia inducible factor signaling pathway and hypoxia activated pro-drugs, leading to both anti-tumor and anti-inflammatory effects. This prompts a need for further research on the prevention of hypoxia-mediated inflammation in cancer. Hypoxia-targeting strategies seem to have the most potential for therapeutic benefit when combined with traditional chemotherapy agents. This paper will serve to summarize the role of the inflammatory response in metastasis, to discuss how hypoxia can enable or enhance inflammatory signaling, and to review established and emerging strategies to target the hypoxia-inflammation-metastasis axis.
Collapse
Affiliation(s)
- Josh W DiGiacomo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Daniele M Gilkes
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA. .,Breast & Ovarian Cancer Program, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
17
|
Su MX, Zhang LL, Huang ZJ, Shi JJ, Lu JJ. Investigational Hypoxia-Activated Prodrugs: Making Sense of Future Development. Curr Drug Targets 2019; 20:668-678. [DOI: 10.2174/1389450120666181123122406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023]
Abstract
Hypoxia, which occurs in most cancer cases, disrupts the efficacy of anticarcinogens. Fortunately,
hypoxia itself is a potential target for cancer treatment. Hypoxia-activated prodrugs (HAPs)
can be selectively activated by reductase under hypoxia. Some promising HAPs have been already
achieved, and many clinical trials of HAPs in different types of cancer are ongoing. However, none of
them has been approved in clinic to date. From the studies on HAPs began, some achievements are
obtained but more challenges are put forward. In this paper, we reviewed the research progress of
HAPs to discuss the strategies for HAPs development. According to the research status and results of
these studies, administration pattern, reductase activity, and patient selection need to be taken into
consideration to further improve the efficacy of existing HAPs. As the requirement of new drug research
and development, design of optimal preclinical models and clinical trials are quite important in
HAPs development, while different drug delivery systems and anticancer drugs with different mechanisms
can be sources of novel HAPs.
Collapse
Affiliation(s)
- Min-Xia Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Le-Le Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, China
| | - Jia-Jie Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
18
|
Synthesis, characterization and biological evaluation of Zn(II) and Co(II) complexes of N-allylimidazole as potential hypoxia-targeting agents. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B. Click and release: bioorthogonal approaches to “on-demand” activation of prodrugs. Chem Soc Rev 2019; 48:1077-1094. [PMID: 30724944 DOI: 10.1039/c8cs00395e] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This review summarizes recent developments in using bioorthogonal chemistry in prodrug design for the delivery of traditional small molecule- and gasotransmitter-based therapeutics.
Collapse
Affiliation(s)
- Xingyue Ji
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bingchen Yu
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Ladie Kimberly De La Cruz
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| | - Bowen Ke
- Laboratory of Anesthesia and Critical Care Medicine
- Department of Anesthesiology
- Translational Neuroscience Center
- West China Hospital and State Key Laboratory of Biotherapy
- Sichuan University
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics
- Georgia State University
- Atlanta
- USA
| |
Collapse
|
20
|
Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine 2018; 13:6049-6058. [PMID: 30323592 PMCID: PMC6177375 DOI: 10.2147/ijn.s140462] [Citation(s) in RCA: 368] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hypoxia exists to some degree in most solid tumors due to inadequate oxygen delivery of the abnormal vasculature which cannot meet the demands of the rapidly proliferating cancer cells. The levels of oxygenation within the same tumor are highly variable from one area to another and can change over time. Tumor hypoxia is an important impediment to effective cancer therapy. In radiotherapy, the primary mechanism is the creation of reactive oxygen species; hypoxic tumors are therefore radiation resistant. A number of chemotherapeutic drugs have been shown to be less effective when exposed to a hypoxic environment which can lead to further disease progression. Hypoxia is also a potent barrier to effective immunotherapy in cancer treatment. Because of the recognition of hypoxia as an important barrier to cancer treatment, a variety of approaches have been undertaken to overcome or reverse tumor hypoxia. Such approaches have included breathing hyperbaric oxygen, artificial hemoglobins, allosteric hemoglobin modifiers, hypoxia activated prodrugs and fluorocarbons (FCs). These approaches have largely failed due to limited efficacy and/or adverse side effects. Oxygen therapeutics, based on liquid FCs, can potentially increase the oxygen-carrying capacity of the blood to reverse tumor hypoxia. Currently, at least two drugs are in clinical trials to reverse tumor hypoxia; one of these is designed to improve permeability of oxygen into the tumor tissue and the other is based upon a low boiling point FC that transports higher amounts of oxygen per gram than previously tested FCs.
Collapse
|
21
|
Sahu A, Choi WI, Tae G. Recent Progress in the Design of Hypoxia-Specific Nano Drug Delivery Systems for Cancer Therapy. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Abhishek Sahu
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; 123 Cheomdan-gwagiro, Buk-gu Gwangju 61005 Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials; Convergence R&D Division; Korea Institute of Ceramic Engineering and Technology; 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu Cheongju Chungbuk 28160 Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering; Gwangju Institute of Science and Technology; 123 Cheomdan-gwagiro, Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
22
|
Wang M, Law ME, Castellano RK, Law BK. The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol 2018; 127:66-79. [DOI: 10.1016/j.critrevonc.2018.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
|
23
|
Karolak A, Rejniak KA. Micropharmacology: An In Silico Approach for Assessing Drug Efficacy Within a Tumor Tissue. Bull Math Biol 2018; 81:3623-3641. [PMID: 29423880 DOI: 10.1007/s11538-018-0402-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/30/2018] [Indexed: 12/25/2022]
Abstract
Systemic chemotherapy is one of the main anticancer treatments used for most kinds of clinically diagnosed tumors. However, the efficacy of these drugs can be hampered by the physical attributes of the tumor tissue, such as tortuous vasculature, dense and fibrous extracellular matrix, irregular cellular architecture, tumor metabolic gradients, and non-uniform expression of the cell membrane receptors. This can impede the transport of therapeutic agents to tumor cells in sufficient quantities. In addition, tumor microenvironments undergo dynamic spatio-temporal changes during tumor progression and treatment, which can also obstruct drug efficacy. To examine ways to improve drug delivery on a cell-to-tissue scale (single-cell pharmacology), we developed the microscale pharmacokinetics/pharmacodynamics (microPKPD) modeling framework. Our model is modular and can be adjusted to include only the mathematical equations that are crucial for a biological problem under consideration. This modularity makes the model applicable to a broad range of pharmacological cases. As an illustration, we present two specific applications of the microPKPD methodology that help to identify optimal drug properties. The hypoxia-activated drugs example uses continuous drug concentrations, diffusive-advective transport through the tumor interstitium, and passive transmembrane drug uptake. The targeted therapy example represents drug molecules as discrete particles that move by diffusion and actively bind to cell receptors. The proposed modeling approach takes into account the explicit tumor tissue morphology, its metabolic landscape and/or specific receptor distribution. All these tumor attributes can be assessed from patients' diagnostic biopsies; thus, the proposed methodology can be developed into a tool suitable for personalized medicine, such as neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Aleksandra Karolak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Katarzyna A Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA. .,Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
24
|
Biswas S, Rajesh Y, Barman S, Bera M, Paul A, Mandal M, Pradeep Singh ND. A dual-analyte probe: hypoxia activated nitric oxide detection with phototriggered drug release ability. Chem Commun (Camb) 2018; 54:7940-7943. [DOI: 10.1039/c8cc01854e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for the detection of hypoxia and NO succeeded by photocontrolled delivery of an anticancer agent has been demonstrated.
Collapse
Affiliation(s)
- Sandipan Biswas
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Y. Rajesh
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- Kharagpur
- India
| | - Shrabani Barman
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Manoranjan Bera
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Amrita Paul
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Mahitosh Mandal
- School of Medical Science and Technology
- Indian Institute of Technology
- Kharagpur
- Kharagpur
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
25
|
Knox HJ, Hedhli J, Kim TW, Khalili K, Dobrucki LW, Chan J. A bioreducible N-oxide-based probe for photoacoustic imaging of hypoxia. Nat Commun 2017; 8:1794. [PMID: 29176550 PMCID: PMC5702603 DOI: 10.1038/s41467-017-01951-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022] Open
Abstract
Hypoxia occurs when limited oxygen supply impairs physiological functions and is a pathological hallmark of many diseases including cancer and ischemia. Thus, detection of hypoxia can guide treatment planning and serve as a predictor of patient prognosis. Unfortunately, current methods suffer from invasiveness, poor resolution and low specificity. To address these limitations, we present Hypoxia Probe 1 (HyP-1), a hypoxia-responsive agent for photoacoustic imaging. This emerging modality converts safe, non-ionizing light to ultrasound waves, enabling acquisition of high-resolution 3D images in deep tissue. HyP-1 features an N-oxide trigger that is reduced in the absence of oxygen by heme proteins such as CYP450 enzymes. Reduction of HyP-1 produces a spectrally distinct product, facilitating identification via photoacoustic imaging. HyP-1 exhibits selectivity for hypoxic activation in vitro, in living cells, and in multiple disease models in vivo. HyP-1 is also compatible with NIR fluorescence imaging, establishing its versatility as a multimodal imaging agent. Hypoxia is a hallmark of many diseases including cancer and ischemia, and detection can be invasive and of low resolution and specificity. Here the authors show a hypoxia probe that converts non-ionizing light to ultrasound, which enables the acquisition of high-resolution 3D images in deep tissue.
Collapse
Affiliation(s)
- Hailey J Knox
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA
| | - Jamila Hedhli
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL, 61801, USA
| | - Tae Wook Kim
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kian Khalili
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Lawrence W Dobrucki
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 W. Springfield Ave, Urbana, IL, 61801, USA
| | - Jefferson Chan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Bondanese VP, Lamboux A, Simon M, Lafont JE, Albalat E, Pichat S, Vanacker JM, Telouk P, Balter V, Oger P, Albarède F. Hypoxia induces copper stable isotope fractionation in hepatocellular carcinoma, in a HIF-independent manner. Metallomics 2017; 8:1177-1184. [PMID: 27500357 DOI: 10.1039/c6mt00102e] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer, with increasing incidence worldwide. The unrestrained proliferation of tumour cells leads to tumour hypoxia which in turn promotes cancer aggressiveness. While changes in the concentration of copper (Cu) have long been observed upon cancerization, we have recently reported that the isotopic composition of copper is also altered in several types of cancer. In particular, we showed that in hepatocellular carcinoma, tumour tissue contains heavier copper compared to the surrounding parenchyma. However, the reasons behind such isotopic signature remained elusive. Here we show that hypoxia causes heavy copper enrichment in several human cell lines. We also demonstrate that this effect of hypoxia is pH, HIF-1 and -2 independent. Our data identify a previously unrecognized cellular process associated with hypoxia, and suggests that in vivo tumour hypoxia determines copper isotope fractionation in HCC and other solid cancers.
Collapse
Affiliation(s)
- Victor P Bondanese
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Aline Lamboux
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Melanie Simon
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Jérôme E Lafont
- Institute for Biology and Chemistry of Proteins, CNRS, UMR 5305 Laboratory of Tissue Biology and Therapeutic Engineering, Université Claude Bernard-Lyon 1 and University of Lyon, France
| | - Emmanuelle Albalat
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Sylvain Pichat
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philippe Telouk
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Vincent Balter
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Philippe Oger
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| | - Francis Albarède
- Univ Lyon, ENS de Lyon, Université Lyon 1, CNRS, UMR 5276 LGL-TPE, F-69342, Lyon, France.
| |
Collapse
|
27
|
Abstract
Pancreatic cancer is an aggressive malignancy with poor survival and high mortality rate with 250 000 deaths per year worldwide. The unique pancreatic cancer microenvironment serves as a major obstacle in the effective treatment of this malignancy. The microenvironment consists not only of pancreatic ductal adenocarcinoma cells but also comprises cells of pancreatic cancer stellate, vascular, and immune origin combined with a dense extracellular matrix containing collagen. The aforementioned pathology leads to an increased intratumor pressure combined with an erratic vascular proliferation within the tumor causing hypoxia and decreased drug delivery. This has led both scientists and clinicians to develop and study drugs with unique mechanisms of action to target the pancreatic cancer microenvironment. Herein, we discuss the pancreatic cancer hypoxic microenvironment, development of hypoxia-activated prodrugs, and results of trials utilizing those drugs to target pancreatic cancer.
Collapse
|
28
|
Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: The promise of immune priming with epigenetic agents. Oncoimmunology 2017; 6:e1315486. [PMID: 29123948 PMCID: PMC5665084 DOI: 10.1080/2162402x.2017.1315486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitors, monoclonal antibodies that inhibit PD-1 or CTLA-4, have revolutionized the treatment of multiple cancers. Despite the enthusiasm for the clinical successes of checkpoint inhibitors, and immunotherapy, in general, only a minority of patients with specific tumor types actually benefit from treatment. Emerging evidence implicates epigenetic alterations as a mechanism of clinical resistance to immunotherapy. This review presents evidence for that association, summarizes the epi-based mechanisms by which tumors evade immunogenic cell death, discusses epigenetic modulation as a component of an integrated strategy to boost anticancer T cell effector function in relation to a tumor immunosuppression cycle and, finally, makes the case that the success of this no-patient-left-behind strategy critically depends on the toxicity profile of the epigenetic agent(s).
Collapse
Affiliation(s)
- Corey A Carter
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | - Joseph Roswarski
- Walter Reed National Military Medical Center, Murtha Cancer Center, Bethesda, MD, USA
| | | | | | | | - Harry Lybeck
- University of Helsinki, Department of Physiology, Helsinki, Finland
| | - Michelle M Kim
- University of Michigan, Department of Radiation Oncology, Ann Arbor, MI, USA
| | | | - Tony R Reid
- University of California San Diego, Moores Cancer Center, La Jolla, CA, USA
| |
Collapse
|
29
|
Grkovski M, Lee NY, Schöder H, Carlin SD, Beattie BJ, Riaz N, Leeman JE, O'Donoghue JA, Humm JL. Monitoring early response to chemoradiotherapy with 18F-FMISO dynamic PET in head and neck cancer. Eur J Nucl Med Mol Imaging 2017; 44:1682-1691. [PMID: 28540417 DOI: 10.1007/s00259-017-3720-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
PURPOSE There is growing recognition that biologic features of the tumor microenvironment affect the response to cancer therapies and the outcome of cancer patients. In head and neck cancer (HNC) one such feature is hypoxia. We investigated the utility of 18F-fluoromisonidazole (FMISO) dynamic positron emission tomography (dPET) for monitoring the early microenvironmental response to chemoradiotherapy in HNC. EXPERIMENTAL DESIGN Seventy-two HNC patients underwent FMISO dPET scans in a customized immobilization mask (0-30 min dynamic acquisition, followed by 10 min static acquisitions starting at ∼95 min and ∼160 min post-injection) at baseline and early into treatment where patients have already received one cycle of chemotherapy and anywhere from five to ten fractions of 2 Gy per fraction radiation therapy. Voxelwise pharmacokinetic modeling was conducted using an irreversible one-plasma two-tissue compartment model to calculate surrogate biomarkers of tumor hypoxia (k 3 and Tumor-to-Blood Ratio (TBR)), perfusion (K 1 ) and FMISO distribution volume (DV). Additionally, Tumor-to-Muscle Ratios (TMR) were derived by visual inspection by an experienced nuclear medicine physician, with TMR > 1.2 defining hypoxia. RESULTS One hundred and thirty-five lesions in total were analyzed. TBR, k 3 and DV decreased on early response scans, while no significant change was observed for K 1 . The k 3 -TBR correlation decreased substantially from baseline scans (Pearson's r = 0.72 and 0.76 for mean intratumor and pooled voxelwise values, respectively) to early response scans (Pearson's r = 0.39 and 0.40, respectively). Both concordant and discordant examples of changes in intratumor k 3 and TBR were identified; the latter partially mediated by the change in DV. In 13 normoxic patients according to visual analysis (all having lesions with TMR = 1.2), subvolumes were identified where k 3 indicated the presence of hypoxia. CONCLUSION Pharmacokinetic modeling of FMISO dynamic PET reveals a more detailed characterization of the tumor microenvironment and assessment of response to chemoradiotherapy in HNC patients than a single static image does. In a clinical trial where absence of hypoxia in primary tumor and lymph nodes would lead to de-escalation of therapy, the observed disagreement between visual analysis and pharmacokinetic modeling results would have affected patient management in <20% cases. While simple static PET imaging is easily implemented for clinical trials, the clinical applicability of pharmacokinetic modeling remains to be investigated.
Collapse
Affiliation(s)
- Milan Grkovski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean D Carlin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bradley J Beattie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jonathan E Leeman
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
30
|
Dong J, Aulestia FJ, Assad Kahn S, Zeniou M, Dubois LG, El-Habr EA, Daubeuf F, Tounsi N, Cheshier SH, Frossard N, Junier MP, Chneiweiss H, Néant I, Moreau M, Leclerc C, Haiech J, Kilhoffer MC. Bisacodyl and its cytotoxic activity on human glioblastoma stem-like cells. Implication of inositol 1,4,5-triphosphate receptor dependent calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1018-1027. [PMID: 28109792 DOI: 10.1016/j.bbamcr.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 01/15/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma is the most common malignant brain tumor. The heterogeneity at the cellular level, metabolic specificities and plasticity of the cancer cells are a challenge for glioblastoma treatment. Identification of cancer cells endowed with stem properties and able to propagate the tumor in animal xenografts has opened a new paradigm in cancer therapy. Thus, to increase efficacy and avoid tumor recurrence, therapies need to target not only the differentiated cells of the tumor mass, but also the cancer stem-like cells. These therapies need to be effective on cells present in the hypoxic, slightly acidic microenvironment found within tumors. Such a microenvironment is known to favor more aggressive undifferentiated phenotypes and a slow-growing "quiescent state" that preserves the cells from chemotherapeutic agents, which mostly target proliferating cells. Based on these considerations, we performed a differential screening of the Prestwick Chemical Library of approved drugs on both proliferating and quiescent glioblastoma stem-like cells and identified bisacodyl as a cytotoxic agent with selectivity for quiescent glioblastoma stem-like cells. In the present study we further characterize bisacodyl activity and show its efficacy in vitro on clonal macro-tumorospheres, as well as in vivo in glioblastoma mouse models. Our work further suggests that bisacodyl acts through inhibition of Ca2+ release from the InsP3 receptors.
Collapse
Affiliation(s)
- Jihu Dong
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Suzana Assad Kahn
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Maria Zeniou
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Luiz Gustavo Dubois
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Elias A El-Habr
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - François Daubeuf
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Nassera Tounsi
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Samuel H Cheshier
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Neurosurgery, Division of Pediatric Neurosurgery, Lucile Packard Children's Hospital Stanford University, California, USA
| | - Nelly Frossard
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| | - Marie-Pierre Junier
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Hervé Chneiweiss
- CNRS UMR8246, Inserm U1130, UPMC, Neuroscience Paris Seine-IBPS, Sorbonne Universities, 75005 Paris, France
| | - Isabelle Néant
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Marc Moreau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Catherine Leclerc
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | - Jacques Haiech
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France.
| | - Marie-Claude Kilhoffer
- Laboratoire d'Excellence Medalis, Université de Strasbourg, CNRS, LIT UMR 7200, F-67000 Strasbourg, France
| |
Collapse
|
31
|
Lindsay D, Garvey CM, Mumenthaler SM, Foo J. Leveraging Hypoxia-Activated Prodrugs to Prevent Drug Resistance in Solid Tumors. PLoS Comput Biol 2016; 12:e1005077. [PMID: 27560187 PMCID: PMC4999195 DOI: 10.1371/journal.pcbi.1005077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/25/2016] [Indexed: 11/21/2022] Open
Abstract
Experimental studies have shown that one key factor in driving the emergence of drug resistance in solid tumors is tumor hypoxia, which leads to the formation of localized environmental niches where drug-resistant cell populations can evolve and survive. Hypoxia-activated prodrugs (HAPs) are compounds designed to penetrate to hypoxic regions of a tumor and release cytotoxic or cytostatic agents; several of these HAPs are currently in clinical trial. However, preliminary results have not shown a survival benefit in several of these trials. We hypothesize that the efficacy of treatments involving these prodrugs depends heavily on identifying the correct treatment schedule, and that mathematical modeling can be used to help design potential therapeutic strategies combining HAPs with standard therapies to achieve long-term tumor control or eradication. We develop this framework in the specific context of EGFR-driven non-small cell lung cancer, which is commonly treated with the tyrosine kinase inhibitor erlotinib. We develop a stochastic mathematical model, parametrized using clinical and experimental data, to explore a spectrum of treatment regimens combining a HAP, evofosfamide, with erlotinib. We design combination toxicity constraint models and optimize treatment strategies over the space of tolerated schedules to identify specific combination schedules that lead to optimal tumor control. We find that (i) combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, (ii) sequentially alternating single doses of each drug leads to minimal tumor burden and maximal reduction in probability of developing resistance, and (iii) strategies minimizing the length of time after an evofosfamide dose and before erlotinib confer further benefits in reduction of tumor burden. These results provide insights into how hypoxia-activated prodrugs may be used to enhance therapeutic effectiveness in the clinic. It has been suggested that one key factor driving the emergence of drug resistance is the spatial heterogeneity in the distribution of drug and oxygen throughout a tumor due to disorganized tumor vasculatures. Researchers have developed a class of novel drugs that penetrate to hypoxic regions where they are activated to kill tumor cells. The inclusion of these drugs, called hypoxia-activated prodrugs (HAPs) alongside standard therapies in combination may be the key to long-term tumor control or eradication. However, identifying the right timing and administration sequence of combination therapies is an extremely difficult task, and the time and human costs of clinical trials to investigate even a few options is often prohibitive. In this work we design a mathematical model based upon evolutionary principles to investigate the potential of combining HAPs with standard targeted therapy for a specific example in non-small cell lung cancer. We formulate novel toxicity constraints from existing clinical data to estimate the shape of the tolerated drug combination treatment space. We find that (i) combining these therapies delays resistance longer than any monotherapy schedule with either evofosfamide or erlotinib alone, and (ii) the best strategy for combination involves single doses of each drug sequentially administered in an alternating sequence. These model predictions of tumor dynamics during treatment provide insight into the role of the tumor microenvironment in combination therapy and identify treatment hypotheses for further experimental and clinical testing.
Collapse
Affiliation(s)
- Danika Lindsay
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Colleen M. Garvey
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shannon M. Mumenthaler
- Lawrence J. Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail: (SMM); (JF)
| | - Jasmine Foo
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail: (SMM); (JF)
| |
Collapse
|
32
|
Emerging targets for radioprotection and radiosensitization in radiotherapy. Tumour Biol 2016; 37:11589-11609. [DOI: 10.1007/s13277-016-5117-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/09/2016] [Indexed: 01/12/2023] Open
|
33
|
Xu Z, Sun Y, Guo Y, Qin G, Mu S, Fan R, Wang B, Gao W, Wu H, Wang G, Zhang Z. NF-YA promotes invasion and angiogenesis by upregulating EZH2-STAT3 signaling in human melanoma cells. Oncol Rep 2016; 35:3630-8. [PMID: 27109360 DOI: 10.3892/or.2016.4761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
Abstract
The process of angiogenesis is essential for tumor development and metastasis. Vascular endothelial growth factor (VEGF), which is overexpressed in most human cancers, has been demonstrated to be a major modulator of angiogenesis. Thus, inhibition of VEGF signaling has the potential for tumor anti-angiogenic therapy. Signal transducer and activator of transcription-3 (STAT3) is a key regulator for angiogenesis by directly binding to the VEGF promoter to upregulate its transcription. Several factors can enhance STAT3 activity to affect angiogenesis. Here, we found that overexpression of nuclear transcription factor-Y alpha (NF-YA) gene could promote cell invasion and angiogenesis accompanying the increase of STAT3 signaling in human melanoma cells. Moreover, the expression and secretion of VEGF was also found to be upregulated by the overexpression of NF-YA gene in melanoma cells. The STAT3 inhibitor was able to attenuate the upregulation of VEGF induced by NF-YA overexpression. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb repressive complex 2, enhances STAT3 activity by mediating its lysine methylation. We also showed that NF-YA upregulated the expression of EZH2 and NF-YA‑induced angiogenesis could be inhibited by EZH2 knockdown. Taken together, these findings indicate that overexpression of NF-YA contributes to tumor angiogenesis through EZH2-STAT3 signaling in human melanoma cells, highlighting NF-YA as a potential therapeutic target in human melanoma.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yaowen Sun
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Yadong Guo
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Gaoping Qin
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Shengzhi Mu
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ronghui Fan
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Benfeng Wang
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Wenjie Gao
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Hangli Wu
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Guodong Wang
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Zhenxin Zhang
- Department of Burns and Plastic Surgery, Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
34
|
Iontophoretic device delivery for the localized treatment of pancreatic ductal adenocarcinoma. Proc Natl Acad Sci U S A 2016; 113:2200-5. [PMID: 26858448 DOI: 10.1073/pnas.1600421113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Poor delivery and systemic toxicity of many cytotoxic agents, such as the recent promising combination chemotherapy regimen of folinic acid (leucovorin), fluorouracil, irinotecan, and oxaliplatin (FOLFIRINOX), restrict their full utility in the treatment of pancreatic cancer. Local delivery of chemotherapies has become possible using iontophoretic devices that are implanted directly onto pancreatic tumors. We have fabricated implantable iontophoretic devices and tested the local iontophoretic delivery of FOLFIRINOX for the treatment of pancreatic cancer in an orthotopic patient-derived xenograft model. Iontophoretic delivery of FOLFIRINOX was found to increase tumor exposure by almost an order of magnitude compared with i.v. delivery with substantially lower plasma concentrations. Mice treated for 7 wk with device FOLFIRINOX experienced significantly greater tumor growth inhibition compared with i.v. FOLFIRINOX. A marker of cell proliferation, Ki-67, was stained, showing a significant reduction in tumor cell proliferation. These data capitalize on the unique ability of an implantable iontophoretic device to deliver much higher concentrations of drug to the tumor compared with i.v. delivery. Local iontophoretic delivery of cytotoxic agents should be considered for the treatment of patients with unresectable nonmetastatic disease and for patients with the need for palliation of local symptoms, and may be considered as a neoadjuvant approach to improve resection rates and outcome in patients with localized and locally advanced pancreatic cancer.
Collapse
|
35
|
Hypoxia, Epithelial-Mesenchymal Transition, and TET-Mediated Epigenetic Changes. J Clin Med 2016; 5:jcm5020024. [PMID: 26861406 PMCID: PMC4773780 DOI: 10.3390/jcm5020024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/15/2016] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Tumor hypoxia is a pathophysiologic outcome of disrupted microcirculation with inadequate supply of oxygen, leading to enhanced proliferation, epithelial-mesenchymal transition (EMT), metastasis, and chemo-resistance. Epigenetic changes induced by hypoxia are well documented, and they lead to tumor progression. Recent advances show that DNA demethylation mediated by the Ten-eleven translocation (TET) proteins induces major epigenetic changes and controls key steps of cancer development. TET enzymes serve as 5mC (5-methylcytosine)-specific dioxygenases and cause DNA demethylation. Hypoxia activates the expression of TET1, which also serves as a co-activator of HIF-1α transcriptional regulation to modulate HIF-1α downstream target genes and promote epithelial-mesenchymal transition. As HIF is a negative prognostic factor for tumor progression, hypoxia-activated prodrugs (HAPs) may provide a favorable therapeutic approach to lessen hypoxia-induced malignancy.
Collapse
|