1
|
Xu J, Li J, Wang T, Luo X, Zhu Z, Wang Y, Wang Y, Zhang Z, Song R, Yang LZ, Wang H, Wong STC, Li H. Predicting treatment response and prognosis of immune checkpoint inhibitors-based combination therapy in advanced hepatocellular carcinoma using a longitudinal CT-based radiomics model: a multicenter study. BMC Cancer 2025; 25:602. [PMID: 40181337 PMCID: PMC11967134 DOI: 10.1186/s12885-025-13978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Identifying effective predictive strategies to assess the response of immune checkpoint inhibitors (ICIs)-based combination therapy in advanced hepatocellular carcinoma (HCC) is crucial. This study presents a new longitudinal CT-based radiomics model to predict treatment response and prognosis in advanced HCC patients undergoing ICIs-based combination therapy. METHODS Longitudinal CT images were collected before and during the treatment for HCC patients across three institutions from January 2019 to April 2022. A total of 1316 radiomic features were extracted from arterial and portal venous phase abdominal CT images for each patient. A model called Longitudinal Whole-liver CT-based Radiomics (LWCTR) was developed to categorize patients into responders or non-responders using radiomic features and clinical information through support vector machine (SVM) classifiers. The area under the curve (AUC) was used as the performance metric and subsequently applied for risk stratification and prognostic assessment. The Shapley Additive explanations (SHAP) method was used to calculate the Shapley value, which explains the contribution of each feature in the SVM model to the prediction. RESULTS This study included 395 eligible participants, with a median age of 57 years (IQR 51-66), comprising 344 males and 51 females. The LWCTR model performed well in predicting treatment response, achieving an AUC of 0.883 (95% confidence interval [CI] 0.881-0.888) in the training cohort, 0.876 (0.858-0.895) in the internal validation cohort, and 0.875 (0.860-0.887) in the external test cohort. The Rad-Nomo model, integrating the LWCTR model's prediction score (Rad-score) with the modified Response Evaluation Criteria in Solid Tumors (mRECIST), demonstrated strong prognostic performance. It achieved time-dependent AUC values of 0.902, 0.823, and 0.850 at 1, 2, and 3 years in the internal validation cohort and 0.893, 0.848, and 0.762 at the same intervals in the external test cohort. CONCLUSION The proposed LWCTR model performs well in predicting treatment response and prognosis in patients with HCC receiving ICIs-based combination therapy, potentially contributing to personalized and timely treatment decisions.
Collapse
Affiliation(s)
- Jun Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Intervention, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Junjun Li
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengfei Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Xin Luo
- Yangtze Delta Region Institute (Huzhou) & School of Resources and Environment, University of Electronic Science and Technology of China, Huzhou, Chengdu, 313099, 611731, China
| | - Zhangxiang Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Yimou Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yong Wang
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241001, People's Republic of China
| | - Zhenglin Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Ruipeng Song
- Department of Hepatobiliary Surgerydivision of Life Sciences and Medicineanhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, The First Affiliated Hospital of USTC, the University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Li-Zhuang Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Hai Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
- Department of Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
2
|
Kazmi F, Shrestha N, Liu TFD, Foord T, Heesen P, Booth S, Dodwell D, Lord S, Yeoh KW, Blagden SP. Next-generation sequencing for guiding matched targeted therapies in people with relapsed or metastatic cancer. Cochrane Database Syst Rev 2025; 3:CD014872. [PMID: 40122129 PMCID: PMC11930395 DOI: 10.1002/14651858.cd014872.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Matched targeted therapies (MTT) given alone or in combination with systemic anti-cancer therapies have delivered proven survival benefit for many people with newly diagnosed cancer. However, there is little evidence of their effectiveness in the recurrent or late-stage setting. With this uncertainty, alongside the perception that late-stage cancers are too genetically heterogenous or too mutationally diverse to benefit from matched targeted therapies, next-generation sequencing (NGS) of tumours in people with refractory cancer remains a low priority. As a result, next-generation sequencing testing of recurrent or late-stage disease is discouraged. We lack evidence to support the utility of next generation sequencing in guiding matched targeted therapies in this setting. OBJECTIVES To evaluate the benefits and harms of matched targeted therapies in people with advanced cancers in randomised controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organisation International Clinical Trials Registry Platform (WHO-ICTRP) search portal up to 30th October 2024. We also screened reference lists of included studies and also the publications that cited these studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that had enroled participants with advanced/refractory solid or haematological cancers who had progressed through at least one line of standard anti-cancer systemic therapy. To be eligible, all participants should have received matched targeted therapy based on next-generation sequencing carried out on their tumour (tumour tissue, blood or bone marrow). DATA COLLECTION AND ANALYSIS We systematically searched medical databases (e.g. MEDLINE, Embase) and trial registers for randomised controlled trials (RCTs). Outcomes of interest were progression-free survival (PFS), overall survival (OS), overall response rates (ORR), serious (grade 3 or 4) adverse events (AEs) and quality of life (QOL). We used a random-effects model to pool outcomes across studies and compared predefined subgroups using interaction tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment of certainty was used to evaluate the quality of evidence. MAIN RESULTS We identified a total of 37 studies, out of which 35 studies (including 9819 participants) were included in the meta-analysis. All included studies compared a matched targeted therapy intervention to standard-of-care treatment, non-matched targeted therapies or no treatment (best supportive care): Matched targeted therapy versus standard-of-care treatment Matched targeted therapy (MTT) compared with standard systematic therapy probably reduces the risk of disease progression by 34% (hazard ratio (HR) = 0.66, 95% confidence interval (CI) 0.59 to 0.74; 14 studies, 3848 participants; moderate-certainty evidence). However, MTT might have little to no difference in risk of death (HR = 0.85, 95% CI 0.75 to 0.97; 14 studies, 3848 participants; low-certainty evidence) and may increase overall response rates (low-certainty evidence). There was no clear evidence of a difference in severe (grade 3/4) adverse events between matched targeted therapy and standard-of-care treatment (low-certainty evidence). There was limited evidence of a difference in quality of life between groups (very low-certainty of evidence). Matched targeted therapy in combination with standard-of-care treatment versus standard-of-care treatment alone Matched targeted therapy in combination with standard-of-care treatment compared with standard-of-care treatment alone probably reduces the risk of disease progression by 39% (HR = 0.61, 95% CI 0.53-0.70, 14 studies, 2,637 participants; moderate-certainty evidence) and risk of death by 21% (HR = 0.79, 95% CI 0.70 to 0.89; 11 studies, 2575 participants, moderate-certainty evidence). The combination of MTT and standard-of-care treatment may also increase overall response rates (low-certainty evidence). There was limited evidence of a difference in the incidence of severe adverse events (very low-certainty evidence) and quality of life between the groups (very low-certainty of evidence). Matched targeted therapy versus non-matched targeted therapy Matched targeted therapy compared with non-matched targeted therapy probably reduces the risk of disease progression by 24% (HR = 0.76, 95% CI 0.64 to 0.89; 3 studies, 1568 participants; moderate-certainty evidence) and may reduce the risk of death by 25% (HR = 0.75, 95% CI 0.65 to 0.86, 1307 participants; low-certainty evidence). There was little to no effect on overall response rates between MTT and non-MTT. There was no clear evidence of a difference in overall response rates (low-certainty evidence) and severe adverse events between MTT and non-MTT (low-certainty evidence). None of the studies comparing MTT and non-MTT reported quality of life. Matched targeted therapy versus best supportive care Matched targeted therapy compared with the best supportive care (BSC) i.e. no active treatment probably reduces the risk of disease progression by 63% (HR 0.37, 95% CI 0.28 to 0.50; 4 studies, 858 participants; moderate-certainty evidence). There was no clear evidence of a difference in overall survival between groups (HR = 0.88, 95% CI 0.73 to 1.06, 3 studies, 783 participants; low-certainty evidence). There was no clear evidence of a difference in overall response rates (very low-certainty of evidence) and incidence of severe adverse events (very low-certainty of evidence) between the groups. Quality of life was reported in a single study but did not provide composite scores. Risk of bias The overall risk of bias was judged low for eight studies, unclear for two studies, and the remaining 27 studies were high risk. AUTHORS' CONCLUSIONS Matched targeted therapies guided by next-generation sequencing in people with advanced cancer prolongs the time before cancer progresses compared to standard therapies. However, there is limited evidence to suggest that it prolongs overall survival, improves the quality of life or increases adverse events. Importantly, this review supports equitable access to next-generation sequencing technology for all people with advanced cancer and offers them the opportunity to access genotype-matched targeted therapies.
Collapse
Affiliation(s)
- Farasat Kazmi
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Nipun Shrestha
- Health Evidence Synthesis, Recommendations and Impact (HESRI), School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Tik Fung Dave Liu
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | | | | | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital, Reading, UK
| | - David Dodwell
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kheng-Wei Yeoh
- Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
3
|
Alizadeh H, Kerachian S, Jabbari K, Soltani BM. Phosphatidic acid as a cofactor of mTORC1 in platinum-based chemoresistance: Mechanisms and therapeutic potential. Eur J Pharmacol 2025; 988:177220. [PMID: 39716566 DOI: 10.1016/j.ejphar.2024.177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Platinum-based chemotherapeutics, such as cisplatin and carboplatin, are widely used to treat various malignancies. However, the development of chemoresistance remains a significant challenge, limiting their efficacy. This review explores the multifaceted mechanisms of platinum-based chemoresistance, with a particular focus on the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which plays a critical role in promoting tumor survival and resistance to platinum compounds. Additionally, we examined the role of phosphatidic acid (PA) and its synthesizing enzymes, phospholipase D (PLD) and lysophosphatidic acid acyltransferase (LPAAT), in the regulation of mTORC1 activity. Given the involvement of mTORC1 in chemoresistance, we evaluated the potential of mTOR inhibitors as a therapeutic strategy to overcome platinum resistance. Finally, we discuss combination therapies targeting the mTOR pathway alongside conventional chemotherapy to improve treatment outcomes. This review highlights the potential of targeting mTORC1 and related pathways to improve therapeutic strategies for chemoresistant cancers.
Collapse
Affiliation(s)
- Hadi Alizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Sana Kerachian
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Keyvan Jabbari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| | - Bahram Mohammad Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran.
| |
Collapse
|
4
|
Nikanjam M, Kato S, Allen T, Sicklick JK, Kurzrock R. Novel clinical trial designs emerging from the molecular reclassification of cancer. CA Cancer J Clin 2025. [PMID: 39841128 DOI: 10.3322/caac.21880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/23/2025] Open
Abstract
Next-generation sequencing has revealed the disruptive reality that advanced/metastatic cancers have complex and individually distinct genomic landscapes, necessitating a rethinking of treatment strategies and clinical trial designs. Indeed, the molecular reclassification of cancer suggests that it is the molecular underpinnings of the disease, rather than the tissue of origin, that mostly drives outcomes. Consequently, oncology clinical trials have evolved from standard phase 1, 2, and 3 tissue-specific studies; to tissue-specific, biomarker-driven trials; to tissue-agnostic trials untethered from histology (all drug-centered designs); and, ultimately, to patient-centered, N-of-1 precision medicine studies in which each patient receives a personalized, biomarker-matched therapy/combination of drugs. Innovative technologies beyond genomics, including those that address transcriptomics, immunomics, proteomics, functional impact, epigenetic changes, and metabolomics, are enabling further refinement and customization of therapy. Decentralized studies have the potential to improve access to trials and precision medicine approaches for underserved minorities. Evaluation of real-world data, assessment of patient-reported outcomes, use of registry protocols, interrogation of exceptional responders, and exploitation of synthetic arms have all contributed to personalized therapeutic approaches. With greater than 1 × 1012 potential patterns of genomic alterations and greater than 4.5 million possible three-drug combinations, the deployment of artificial intelligence/machine learning may be necessary for the optimization of individual therapy and, in the near future, also may permit the discovery of new treatments in real time.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California San Diego, La Jolla, California, USA
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
| | | | - Jason K Sicklick
- Moores Cancer Center, University of California San Diego Health, La Jolla, California, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, San Diego, California, USA
- Department of Pharmacology, University of California San Diego, San Diego, California, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
- Worldwide Innovative Networking in Personalized Cancer Medicine Consortium, Paris, France
| |
Collapse
|
5
|
Alsaiari AA. Recent advances in the methods and clinical applications of next-generation sequencing in genomic profiling and precision cancer therapy. EXCLI JOURNAL 2025; 24:15-33. [PMID: 39967910 PMCID: PMC11830917 DOI: 10.17179/excli2024-7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/17/2024] [Indexed: 02/20/2025]
Abstract
Cancer is a major cause of death worldwide. Next-generation sequencing (NGS) has dramatically increased the sequencing data output and transformed biomedical investigations. NGS enables the generations of genetic data specific to patients from tumor tissue samples so that targeted therapies can be used. The obtained data further allows the prioritization of effective therapies based on the tumor-specific genotype. Practitioners in the field of clinical genomics can make the best use of testing facilities while lessening the possible off-targets by choosing a priori gene set. Therefore, targeted sequencing has arisen as a more affordable technique for the genomic profiling of tumors. Drug resistance is commonly observed in cancer because of mutations. Thus, precise genetic and molecular profiling of tumors ought to be routinely done prior to the use of targeted therapy or precision cancer therapy. NGS already has the capacity to ameliorate genetic screening in families with previous histories of the high occurrence of various cancer-associated genes, including TP53, APC, BRCA2, and BRCA1. By using NGS system, researchers detected increased variants in cancer cells with greater specificity and sensitivity than conventional diagnostic approaches, which suggest the potential of NGS in diagnosis. The field of precision cancer therapy is continuously growing and because of their specificity at the molecular level has improved the management and treatment of numerous cancers. These therapies are less toxic and more efficient compared to conventional chemotherapies used in cancer treatment. The field of precision cancer therapy is likely to significantly expand as NGS system advances. This review provides extensive information regarding current advances in the NGS field in terms of methods, clinical applications, genomic profiling, and the role of NGS of precision cancer therapy.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Science, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
6
|
Shergina E, Richter KP, Zhang C, Mussulman L, Nazir N, Gajewski1 BJ. Implementation of statistical features of a Bayesian two-armed responsive adaptive randomization trial with post hoc analysis of time trend drift. J Biopharm Stat 2024:1-15. [PMID: 38847351 PMCID: PMC11624317 DOI: 10.1080/10543406.2024.2359149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/12/2024] [Indexed: 12/08/2024]
Abstract
Bayesian adaptive designs with response adaptive randomization (RAR) have the potential to benefit more participants in a clinical trial. While there are many papers that describe RAR designs and results, there is a scarcity of works reporting the details of RAR implementation from a statistical point exclusively. In this paper, we introduce the statistical methodology and implementation of the trial Changing the Default (CTD). CTD is a single-center prospective RAR comparative effectiveness trial to compare opt-in to opt-out tobacco treatment approaches for hospitalized patients. The design assumed an uninformative prior, conservative initial allocation ratio, and a higher threshold for stopping for success to protect results from statistical bias. A particular emerging concern of RAR designs is the possibility that time trends will occur during the implementation of a trial. If there is a time trend and the analytic plan does not prespecify an appropriate model, this could lead to a biased trial. Adjustment for time trend was not pre-specified in CTD, but post hoc time-adjusted analysis showed no presence of influential drift. This trial was an example of a successful two-armed confirmatory trial with a Bayesian adaptive design using response adaptive randomization.
Collapse
Affiliation(s)
- Elena Shergina
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kimber P. Richter
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Chuanwu Zhang
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Sanofi, 450 Water Street, Cambridge, MA, 02141, USA
| | - Laura Mussulman
- Clinical and Translational Science Unit Fairway, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Niaman Nazir
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Byron J. Gajewski1
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| |
Collapse
|
7
|
Bagnyukova T, Egleston BL, Pavlov VA, Serebriiskii IG, Golemis EA, Borghaei H. Synergy of EGFR and AURKA Inhibitors in KRAS-mutated Non-small Cell Lung Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:1227-1239. [PMID: 38639476 PMCID: PMC11078142 DOI: 10.1158/2767-9764.crc-23-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/29/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
The most common oncogenic driver mutations for non-small cell lung cancer (NSCLC) activate EGFR or KRAS. Clinical trials exploring treatments for EGFR- or KRAS-mutated (EGFRmut or KRASmut) cancers have focused on small-molecule inhibitors targeting the driver mutations. Typically, these inhibitors perform more effectively based on combination with either chemotherapies, or other targeted therapies. For EGFRmut NSCLC, a combination of inhibitors of EGFR and Aurora-A kinase (AURKA), an oncogene commonly overexpressed in solid tumors, has shown promising activity in clinical trials. Interestingly, a number of recent studies have indicated that EGFR activity supports overall viability of tumors lacking EGFR mutations, and AURKA expression is abundant in KRASmut cell lines. In this study, we have evaluated dual inhibition of EGFR and AURKA in KRASmut NSCLC models. These data demonstrate synergy between the EGFR inhibitor erlotinib and the AURKA inhibitor alisertib in reducing cell viability and clonogenic capacity in vitro, associated with reduced activity of EGFR pathway effectors, accumulation of enhanced aneuploid cell populations, and elevated cell death. Importantly, the erlotinib-alisertib combination also synergistically reduces xenograft growth in vivo. Analysis of signaling pathways demonstrated that the combination of erlotinib and alisertib was more effective than single-agent treatments at reducing activity of EGFR and pathway effectors following either brief or extended administration of the drugs. In sum, this study indicates value of inhibiting EGFR in KRASmut NSCLC, and suggests the specific value of dual inhibition of AURKA and EGFR in these tumors. SIGNIFICANCE The introduction of specific KRAS G12C inhibitors to the clinical practice in lung cancer has opened up opportunities that did not exist before. However, G12C alterations are only a subtype of all KRAS mutations observed. Given the high expression of AURKA in KRASmut NSCLC, our study could point to a potential therapeutic option for this subgroup of patients.
Collapse
Affiliation(s)
- Tetyana Bagnyukova
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Brian L. Egleston
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Valerii A. Pavlov
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russian Federation
| | - Ilya G. Serebriiskii
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Kazan Federal University, Kazan, Russian Federation
| | - Erica A. Golemis
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Hossein Borghaei
- Program in Cell Signaling and Metastasis, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Division of Thoracic Medical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Cao W, Zhu H, Wang L, Zhang L, Yu J. Doubly adaptive biased coin design to improve Bayesian clinical trials with time-to-event endpoints. Stat Med 2024; 43:1743-1758. [PMID: 38387866 DOI: 10.1002/sim.10047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Clinical trialists often face the challenge of balancing scientific questions with other design features, such as improving efficiency, minimizing exposure to inferior treatments, and simultaneously comparing multiple treatments. While Bayesian response adaptive randomization (RAR) is a popular and effective method for achieving these objectives, it is known to have large variability and a lack of explicit theoretical results, making its use in clinical trials a subject of concern. It is desirable to propose a design that targets the same allocation proportion as Bayesian RAR and achieves the above objectives but addresses the concerns over Bayesian RAR. We propose the frequentist doubly adaptive biased coin designs (DBCD) targeting ethical allocation proportions from the Bayesian framework to satisfy different objectives in clinical trials with time-to-event endpoints. We derive the theoretical properties of the proposed adaptive randomization design and show through comprehensive numerical simulations that it can achieve ethical objectives without sacrificing efficiency. Our combined theoretical and numerical results offer a strong foundation for the practical use of RAR in real clinical trials.
Collapse
Affiliation(s)
- Wenhao Cao
- Division of Biostatistics and Health Data Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hongjian Zhu
- Statistical Innovation Group, AbbVie Inc., Virtual Office, Sugar Land, Texas, USA
| | - Li Wang
- Statistical Innovation Group, AbbVie Inc., North Chicago, Illinois, USA
| | - Lixin Zhang
- Center for Data Science and School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Yu
- Medical Affairs and Health Technology Assessment Statistics, AbbVie Inc., Virtual Office, Sugar Land, Texas, USA
| |
Collapse
|
9
|
Hendrixson M, Gladkiy Y, Thyagarajan A, Sahu RP. Efficacy of Sorafenib-Based Therapies for Non-Small Cell Lung Cancer. Med Sci (Basel) 2024; 12:20. [PMID: 38651414 PMCID: PMC11036230 DOI: 10.3390/medsci12020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths, with a poor prognosis. Of the two types, non-small cell lung cancer (NSCLC) is the major and most prevalent type and associated with low response rates to the current treatment options. Sorafenib, a multitargeted tyrosine kinase inhibitor used for various malignancies, gained attention for its potential efficacy in NSCLC. This review paper focuses on the findings of recent in vitro, in vivo, and clinical studies regarding the efficacy of sorafenib. Overall, sorafenib has shown definitive therapeutic potential in NSCLC cell lines, xenografts, and human subjects. Novel approaches to sorafenib delivery may improve its efficacy and should be the focus of further studies.
Collapse
Affiliation(s)
- Morgann Hendrixson
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (M.H.); (Y.G.)
| | - Yevgeniy Gladkiy
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA; (M.H.); (Y.G.)
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA;
| |
Collapse
|
10
|
van der Maas NG, Versluis J, Nasserinejad K, van Rosmalen J, Pabst T, Maertens J, Breems D, Manz M, Cloos J, Ossenkoppele GJ, Floisand Y, Gradowska P, Löwenberg B, Huls G, Postmus D, Pignatti F, Cornelissen JJ. Bayesian interim analysis for prospective randomized studies: reanalysis of the acute myeloid leukemia HOVON 132 clinical trial. Blood Cancer J 2024; 14:56. [PMID: 38538587 PMCID: PMC10973506 DOI: 10.1038/s41408-024-01037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Randomized controlled trials (RCTs) are the gold standard to establish the benefit-risk ratio of novel drugs. However, the evaluation of mature results often takes many years. We hypothesized that the addition of Bayesian inference methods at interim analysis time points might accelerate and enforce the knowledge that such trials may generate. In order to test that hypothesis, we retrospectively applied a Bayesian approach to the HOVON 132 trial, in which 800 newly diagnosed AML patients aged 18 to 65 years were randomly assigned to a "7 + 3" induction with or without lenalidomide. Five years after the first patient was recruited, the trial was negative for its primary endpoint with no difference in event-free survival (EFS) between experimental and control groups (hazard ratio [HR] 0.99, p = 0.96) in the final conventional analysis. We retrospectively simulated interim analyses after the inclusion of 150, 300, 450, and 600 patients using a Bayesian methodology to detect early lack of efficacy signals. The HR for EFS comparing the lenalidomide arm with the control treatment arm was 1.21 (95% CI 0.81-1.69), 1.05 (95% CI 0.86-1.30), 1.00 (95% CI 0.84-1.19), and 1.02 (95% CI 0.87-1.19) at interim analysis 1, 2, 3 and 4, respectively. Complete remission rates were lower in the lenalidomide arm, and early deaths more frequent. A Bayesian approach identified that the probability of a clinically relevant benefit for EFS (HR < 0.76, as assumed in the statistical analysis plan) was very low at the first interim analysis (1.2%, 0.6%, 0.4%, and 0.1%, respectively). Similar observations were made for low probabilities of any benefit regarding CR. Therefore, Bayesian analysis significantly adds to conventional methods applied for interim analysis and may thereby accelerate the performance and completion of phase III trials.
Collapse
Affiliation(s)
- Niek G van der Maas
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jurjen Versluis
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kazem Nasserinejad
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus MC, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Pabst
- University Hospital, Inselspital, Bern, Switzerland
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | | | | | - Markus Manz
- Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
- University Hospital Zurich, Zurich, Switzerland
| | - Jacqueline Cloos
- Amsterdam UMC, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Gert J Ossenkoppele
- Amsterdam UMC, location VUMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | - Patrycja Gradowska
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
- HOVON Foundation, Rotterdam, the Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerwin Huls
- University Medical Center, University Groningen, Groningen, the Netherlands
| | - Douwe Postmus
- Oncology and Hematology Office, European Medicines Agency, Amsterdam, the Netherlands
| | - Francesco Pignatti
- Oncology and Hematology Office, European Medicines Agency, Amsterdam, the Netherlands
| | - Jan J Cornelissen
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Oncology and Hematology Office, European Medicines Agency, Amsterdam, the Netherlands.
| |
Collapse
|
11
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Silverman JB, Vega PN, Tyska MJ, Lau KS. Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health. Annu Rev Physiol 2024; 86:479-504. [PMID: 37863104 PMCID: PMC11193883 DOI: 10.1146/annurev-physiol-042022-030310] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.
Collapse
Affiliation(s)
- Jennifer B Silverman
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Paige N Vega
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Matthew J Tyska
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; ,
| |
Collapse
|
13
|
Pickles A, Edwards D, Horvath L, Emsley R. Research Reviews: Advances in methods for evaluating child and adolescent mental health interventions. J Child Psychol Psychiatry 2023; 64:1765-1775. [PMID: 37793673 DOI: 10.1111/jcpp.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
BACKROUND The evidence base for interventions for child mental health and neurodevelopment is weak and the current capacity for rigorous evaluation limited. We describe some of the challenges that make this field particularly difficult and expensive for evaluation studies. METHODS We describe and review the use of novel study designs and analysis methodology for their potential to improve this situation. RESULTS While several novel designs appeared ill-suited to our field, systematic review found others that offered potential but had yet to be widely adopted, some not at all. CONCLUSIONS While funding is inevitably a constraint, we argue that improvements in the evidence base of both current and new treatments will only be achieved by the adoption of a number of these new technologies and study designs, the consistent application of rigorous constructive but demanding standards, and the engagement of the public, patients, clinical and research services to build a design, recruitment, and analysis infrastructure.
Collapse
Affiliation(s)
- Andrew Pickles
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Danielle Edwards
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Levente Horvath
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Richard Emsley
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| |
Collapse
|
14
|
Quintana M, Saville BR, Vestrucci M, Detry MA, Chibnik L, Shefner J, Berry JD, Chase M, Andrews J, Sherman AV, Yu H, Drake K, Cudkowicz M, Paganoni S, Macklin EA. Design and Statistical Innovations in a Platform Trial for Amyotrophic Lateral Sclerosis. Ann Neurol 2023; 94:547-560. [PMID: 37245090 DOI: 10.1002/ana.26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Platform trials allow efficient evaluation of multiple interventions for a specific disease. The HEALEY ALS Platform Trial is testing multiple investigational products in parallel and sequentially in persons with amyotrophic lateral sclerosis (ALS) with the goal of rapidly identifying novel treatments to slow disease progression. Platform trials have considerable operational and statistical efficiencies compared with typical randomized controlled trials due to their use of shared infrastructure and shared control data. We describe the statistical approaches required to achieve the objectives of a platform trial in the context of ALS. This includes following regulatory guidance for the disease area of interest and accounting for potential differences in outcomes of participants within the shared control (potentially due to differences in time of randomization, mode of administration, and eligibility criteria). Within the HEALEY ALS Platform Trial, the complex statistical objectives are met using a Bayesian shared parameter analysis of function and survival. This analysis serves to provide a common integrated estimate of treatment benefit, overall slowing in disease progression, as measured by function and survival while accounting for potential differences in the shared control group using Bayesian hierarchical modeling. Clinical trial simulation is used to provide a better understanding of this novel analysis method and complex design. ANN NEUROL 2023;94:547-560.
Collapse
Affiliation(s)
| | - Benjamin R Saville
- Berry Consultants, Austin, Texas, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Lori Chibnik
- Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marianne Chase
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jinsy Andrews
- Neurological Institute of New York, Columbia University, New York, New York, USA
| | - Alexander V Sherman
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Merit Cudkowicz
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS at Mass General, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| | - Eric A Macklin
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
15
|
Konen JM, Rodriguez BL, Wu H, Fradette JJ, Gibson L, Diao L, Wang J, Schmidt S, Wistuba II, Zhang J, Gibbons DL. Autotaxin suppresses cytotoxic T cells via LPAR5 to promote anti-PD-1 resistance in non-small cell lung cancer. J Clin Invest 2023; 133:e163128. [PMID: 37655662 PMCID: PMC10471170 DOI: 10.1172/jci163128] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2023] [Indexed: 09/02/2023] Open
Abstract
Non-small cell lung cancers that harbor concurrent KRAS and TP53 (KP) mutations are immunologically warm tumors with partial responsiveness to anti-PD-(L)1 blockade; however, most patients observe little or no durable clinical benefit. To identify novel tumor-driven resistance mechanisms, we developed a panel of KP murine lung cancer models with intrinsic resistance to anti-PD-1 and queried differential gene expression between these tumors and anti-PD-1-sensitive tumors. We found that the enzyme autotaxin (ATX), and the metabolite it produces, lysophosphatidic acid (LPA), were significantly upregulated in resistant tumors and that ATX directly modulated antitumor immunity, with its expression negatively correlating with total and effector tumor-infiltrating CD8+ T cells. Pharmacological inhibition of ATX, or the downstream receptor LPAR5, in combination with anti-PD-1 was sufficient to restore the antitumor immune response and efficaciously control lung tumor growth in multiple KP tumor models. Additionally, ATX was significantly correlated with inflammatory gene signatures, including a CD8+ cytolytic score in multiple lung adenocarcinoma patient data sets, suggesting that an activated tumor-immune microenvironment upregulates ATX and thus provides an opportunity for cotargeting to prevent acquired resistance to anti-PD-1 treatment. These data reveal the ATX/LPA axis as an immunosuppressive pathway that diminishes the immune checkpoint blockade response in lung cancer.
Collapse
Affiliation(s)
- Jessica M. Konen
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, USA
| | - B. Leticia Rodriguez
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Haoyi Wu
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jared J. Fradette
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laura Gibson
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Surgical Oncology
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology
| | - Jing Wang
- Department of Bioinformatics and Computational Biology
| | | | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, and
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Don L. Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Zhang Y, Zeng F, Peng S, Chen Y, Jiang W, Wang Z, Deng L, Huang Z, Qin H, Yan H, Zhang X, Zhang L, Yang N, Gong Q, Zeng L, Zhang Y. Stratification of patients with KRAS-mutated advanced non-small cell lung cancer: improving prognostics. Expert Rev Respir Med 2023; 17:743-751. [PMID: 37776047 DOI: 10.1080/17476348.2023.2265810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023]
Abstract
INTRODUCTION KRAS is the most frequently mutated oncogene in cancer and encodes a key signaling protein in tumors. Due to its high affinity for GTP and the lack of a large binding pocket that allosteric inhibitors can occupy, KRAS has long been considered 'non-druggable.' Finding effective treatment measures for patients with KRAS mutations is our top priority. AREAS COVERED In this article, we will provide an overview of the KRAS pathway and review the current state of therapeutic strategies for targeting oncogenic KRAS, as well as their potential to improve outcomes in patients with KRAS-mutant malignancies. We will also discuss the development of these strategies and gave an outlook on prospects. EXPERT OPINION KRAS mutations have posed a significant challenge in the treatment of advanced non-small cell lung cancer (NSCLC) over the past few decades. However, the emergence of immunotherapy and KRAS inhibitors, such as Sotorasib (AMG 510) and Adagrasib (MRTX849), has marked a new era in cancer therapy. As more research and clinical trials continue, we anticipate the development of more effective treatment strategies and better options for lung cancer patients.
Collapse
Affiliation(s)
- Yuda Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fanxu Zeng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shixuan Peng
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Oncology, Graduate Collaborative Training Base of The First People's Hospital of Xiangtan City, Hengyang Medical school, University of South China, Hengyang, Hunan, China
| | - Yangqian Chen
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenjuan Jiang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhan Wang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Li Deng
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhe Huang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haoyue Qin
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huan Yan
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xing Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Zhang
- Department of Radiotherapy, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Nong Yang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qian Gong
- Early Clinical Trial Center, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liang Zeng
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongchang Zhang
- Department of Oncology, Graduate Collaborative Training Base of Hunan Cancer Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Early Clinical Trial Center, Office of National Drug Clinical Trial Institution, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Buffart LM, Bassi A, Stuiver MM, Aaronson NK, Sonke GS, Berkhof J, van de Ven PM. A Bayesian-adaptive decision-theoretic approach can reduce the sample sizes for multiarm exercise oncology trials. J Clin Epidemiol 2023; 159:190-198. [PMID: 37245703 DOI: 10.1016/j.jclinepi.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVES Adaptive designs may reduce trial sample sizes and costs. This study illustrates a Bayesian-adaptive decision-theoretic design applied to a multiarm exercise oncology trial. STUDY DESIGN AND SETTING In the Physical exercise during Adjuvant Chemotherapy Effectiveness Study (PACES) trial, 230 breast cancer patients receiving chemotherapy were randomized to supervised resistance and aerobic exercise (OnTrack), home-based physical activity (OncoMove) or usual care (UC). Data were reanalyzed as an adaptive trial using both Bayesian decision-theoretic and a frequentist group-sequential approach incorporating interim analyses after every 36 patients. Endpoint was chemotherapy treatment modifications (any vs. none). Bayesian analyses were performed for different continuation thresholds and settings with and without arm dropping and both in a 'pick-the-winner' and a 'pick-all-treatments-superior-to-control' setting. RESULTS Treatment modifications occurred in 34% of patients in UC and OncoMove vs. 12% in OnTrack (P = 0.002). Using a Bayesian-adaptive decision-theoretic design, OnTrack was identified as most effective after 72 patients in the 'pick-the-winner' setting and after 72-180 patients in the 'pick-all-treatments-superior-to-control' setting. In a frequentist setting, the trial would have been stopped after 180 patients, and the proportion of patients with treatment modifications was significantly lower for OnTrack than UC. CONCLUSION A Bayesian-adaptive decision-theoretic approach substantially reduced the sample size required for this three-arm exercise trial, especially in the 'pick-the-winner' setting.
Collapse
Affiliation(s)
- Laurien M Buffart
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Andrea Bassi
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn M Stuiver
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands; Center for Quality of Life, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Neil K Aaronson
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Peter M van de Ven
- Department of Data Science and Biostatistics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Robertson DS, Lee KM, López-Kolkovska BC, Villar SS. Response-adaptive randomization in clinical trials: from myths to practical considerations. Stat Sci 2023; 38:185-208. [PMID: 37324576 PMCID: PMC7614644 DOI: 10.1214/22-sts865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Response-Adaptive Randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are typically used as a motivating application. In that context, patient allocation to treatments is determined by randomization probabilities that change based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930's and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by well-known practical examples and its widespread use in machine learning. Papers on the subject present different views on its usefulness, and these are not easy to reconcile. This work aims to address this gap by providing a unified, broad and fresh review of methodological and practical issues to consider when debating the use of RAR in clinical trials.
Collapse
Affiliation(s)
- David S. Robertson
- MRC Biostatistics Unit, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0SR, United Kingdom
| | | | | | | |
Collapse
|
19
|
Karimi N, Moghaddam SJ. KRAS-Mutant Lung Cancer: Targeting Molecular and Immunologic Pathways, Therapeutic Advantages and Restrictions. Cells 2023; 12:749. [PMID: 36899885 PMCID: PMC10001046 DOI: 10.3390/cells12050749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
RAS mutations are among the most common oncogenic mutations in human cancers. Among RAS mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis. High mortality rates have been the reason behind numerous investigations and clinical trials to discover proper therapeutic agents targeting KRAS. These approaches include the following: direct KRAS targeting; synthetic lethality partner inhibitors; targeting of KRAS membrane association and associated metabolic rewiring; autophagy inhibitors; downstream inhibitors; and immunotherapies and other immune-modalities such as modulating inflammatory signaling transcription factors (e.g., STAT3). The majority of these have unfortunately encountered limited therapeutic outcomes due to multiple restrictive mechanisms including the presence of co-mutations. In this review we plan to summarize the past and most recent therapies under investigation, along with their therapeutic success rate and potential restrictions. This will provide useful information to improve the design of novel agents for treatment of this deadly disease.
Collapse
Affiliation(s)
- Nastaran Karimi
- Faculty of Medicine, Marmara University, Istanbul 34899, Turkey
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
20
|
Huang Y, Huang Y, Zhu G, Zhang B, Zhu Y, Chen B, Gao X, Yuan J. A Meroterpenoid from Tibetan Medicine Induces Lung Cancer Cells Apoptosis through ROS-Mediated Inactivation of the AKT Pathway. Molecules 2023; 28:molecules28041939. [PMID: 36838927 PMCID: PMC9963024 DOI: 10.3390/molecules28041939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
As a traditional Tibetan medicine in China, Meconopsis grandis Prain has been used to treat a variety of illnesses by local people for thousands of years. However, the active ingredients contained in Meconopsis grandis Prain and its pharmacodynamic mechanisms have scarcely been reported. We isolated a meroterpenoid named D1399 from Meconopsis grandis Prain endophytic fungi with strong antitumor activity. The structure analysis showed that D1399 is an alkaloid containing a 13-membered macrocyclic structure. The IC50 of D1399 for human lung cancer cells' viability ranged from 0.88 to 2.45 μM. Furthermore, we utilized TUNEL assay and western blotting to investigate the antitumor effectiveness of D1399. The results have shown that D1399 induced the apoptosis of lung cancer cells on the extrinsic and intrinsic pathways by boosting ROS generation and repressing AKT activity. In the mouse xenograft model, the average tumor weight with 30 mg·kg-1 D1399 treatment exhibited 73.19% inhibition compared with the untreated control, without affecting body weight loss. Above all, for the first time, our study provides a possible mechanism for the antitumor activity of D1399 in vitro and in vivo as a natural product from Tibetan medicine with Meconopsis grandis Prain, which may be a potentially promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yun Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ge Zhu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bingzhi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yujia Zhu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Chen
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
- Correspondence: (B.C.); (X.G.); (J.Y.)
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (B.C.); (X.G.); (J.Y.)
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Correspondence: (B.C.); (X.G.); (J.Y.)
| |
Collapse
|
21
|
Zhu HD, Li HL, Huang MS, Yang WZ, Yin GW, Zhong BY, Sun JH, Jin ZC, Chen JJ, Ge NJ, Ding WB, Li WH, Huang JH, Mu W, Gu SZ, Li JP, Zhao H, Wen SW, Lei YM, Song YS, Yuan CW, Wang WD, Huang M, Zhao W, Wu JB, Wang S, Zhu X, Han JJ, Ren WX, Lu ZM, Xing WG, Fan Y, Lin HL, Zhang ZS, Xu GH, Hu WH, Tu Q, Su HY, Zheng CS, Chen Y, Zhao XY, Fang ZT, Wang Q, Zhao JW, Xu AB, Xu J, Wu QH, Niu HZ, Wang J, Dai F, Feng DP, Li QD, Shi RS, Li JR, Yang G, Shi HB, Ji JS, Liu YE, Cai Z, Yang P, Zhao Y, Zhu XL, Lu LG, Teng GJ. Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma (CHANCE001). Signal Transduct Target Ther 2023; 8:58. [PMID: 36750721 PMCID: PMC9905571 DOI: 10.1038/s41392-022-01235-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 02/09/2023] Open
Abstract
There is considerable potential for integrating transarterial chemoembolization (TACE), programmed death-(ligand)1 (PD-[L]1) inhibitors, and molecular targeted treatments (MTT) in hepatocellular carcinoma (HCC). It is necessary to investigate the therapeutic efficacy and safety of TACE combined with PD-(L)1 inhibitors and MTT in real-world situations. In this nationwide, retrospective, cohort study, 826 HCC patients receiving either TACE plus PD-(L)1 blockades and MTT (combination group, n = 376) or TACE monotherapy (monotherapy group, n = 450) were included from January 2018 to May 2021. The primary endpoint was progression-free survival (PFS) according to modified RECIST. The secondary outcomes included overall survival (OS), objective response rate (ORR), and safety. We performed propensity score matching approaches to reduce bias between two groups. After matching, 228 pairs were included with a predominantly advanced disease population. Median PFS in combination group was 9.5 months (95% confidence interval [CI], 8.4-11.0) versus 8.0 months (95% CI, 6.6-9.5) (adjusted hazard ratio [HR], 0.70, P = 0.002). OS and ORR were also significantly higher in combination group (median OS, 19.2 [16.1-27.3] vs. 15.7 months [13.0-20.2]; adjusted HR, 0.63, P = 0.001; ORR, 60.1% vs. 32.0%; P < 0.001). Grade 3/4 adverse events were observed at a rate of 15.8% and 7.5% in combination and monotherapy groups, respectively. Our results suggest that TACE plus PD-(L)1 blockades and MTT could significantly improve PFS, OS, and ORR versus TACE monotherapy for Chinese patients with predominantly advanced HCC in real-world practice, with an acceptable safety profile.
Collapse
Affiliation(s)
- Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Hai-Liang Li
- Department of Minimally invasive Intervention, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Ming-Sheng Huang
- Department of Interventional Radiology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Wei-Zhu Yang
- Department of Interventional Radiology, Union Hospital of Fujian Medical University, Fuzhou, 350001, China
| | - Guo-Wen Yin
- Department of Interventional Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Bin-Yan Zhong
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
| | - Jun-Hui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhi-Cheng Jin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jian-Jian Chen
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Nai-Jian Ge
- Department of Interventional Radiology, Eastern Hospital of Hepatobiliary Surgery, Navy Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Wen-Bin Ding
- Department of Interventional Radiology, Nantong First People's Hospital, Nantong, 226001, China
| | - Wen-Hui Li
- Department of Interventional Radiology, Yancheng Third People's Hospital, Yancheng, 224008, China
| | - Jin-Hua Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Mu
- Department of Vascular Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shan-Zhi Gu
- Department of Interventional Radiology, Hunan Cancer Hospital, Changsha, 410031, China
| | - Jia-Ping Li
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Zhao
- Department of Interventional Radiology, The Hospital of Nantong University, Nantong, 226001, China
| | - Shu-Wei Wen
- Department of Interventional Therapy, Shanxi Tumor Hospital, Taiyuan, 030001, China
| | - Yan-Ming Lei
- Department of Interventional Radiology, Tibet Autonomous Region People's Hospital, Lhasa, 850000, China
| | - Yu-Sheng Song
- Department of Interventional Radiology, Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Chun-Wang Yuan
- Center of Interventional Oncology and Liver Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Wei-Dong Wang
- Department of Interventional Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Ming Huang
- Department of Minimally Invasive Interventional Therapy, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Wei Zhao
- Department of Radiology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jian-Bing Wu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Song Wang
- Department of Interventional Radiology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xu Zhu
- Department of Interventional Therapy, Peking University Cancer Hospital and Institute, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing, 100142, China
| | - Jian-Jun Han
- Department of Interventional Radiology, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, 250117, China
| | - Wei-Xin Ren
- Interventional Therapy Center, The first Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China
| | - Zai-Ming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 830011, China
| | - Wen-Ge Xing
- Department of Interventional Oncology, Tianjin Medical University Cancer Hospital, Tianjin, 300060, China
| | - Yong Fan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hai-Lan Lin
- Department of Tumor Interventional Therapy, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zi-Shu Zhang
- Department of Radiology, The Second Xiangya Hospital, Changsha, 410011, China
| | - Guo-Hui Xu
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Chengdu, 610041, China
| | - Wen-Hao Hu
- Department of Interventional Radiology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiang Tu
- Department of Hepatobiliary Oncology Surgery, Department of Interventional Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, 330029, China
| | - Hong-Ying Su
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Chuan-Sheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 110001, China
| | - Yong Chen
- Department of Interventional Radiology, General hospital of Ningxia Medical University, Yinchuan, 110001, China
| | - Xu-Ya Zhao
- Department of Interventional Radiology, Guizhou Cancer Hospital, Guiyang, 550000, China
| | - Zhu-Ting Fang
- Department of Interventional Radiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
| | - Qi Wang
- Department of Interventional Radiology, Third Affiliated Hospital of Soochow University, Changzhou First Hospital, Changzhou, 213004, China
| | - Jin-Wei Zhao
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
| | - Ai-Bing Xu
- Department of Interventional Therapy, Nantong Tumor Hospital, Nantong, 226006, China
| | - Jian Xu
- Department of Interventional Therapy, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Qing-Hua Wu
- Department of Interventional Radiology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Huan-Zhang Niu
- Department of Interventional Radiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Feng Dai
- Department of Interventional Radiology, The Second Hospital of Nanjing, Nanjing, 210000, China
| | - Dui-Ping Feng
- Department of Oncology and Vascular Intervention, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qing-Dong Li
- Vascular and Interventional Department, Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Rong-Shu Shi
- Department of Interventional Radiology, The Affiliated Hospital of Zunyi Medical College, Zunyi, 563000, China
| | - Jia-Rui Li
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun, 130000, China
| | - Guang Yang
- Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian-Song Ji
- Department of Radiology, Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yu-E Liu
- Department of Interventional Radiology, Shanxi Provincial People's Hospital, Taiyuan, 030012, China
| | - Zheng Cai
- Department of Interventional Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Po Yang
- Department of Interventional & Vascular Surgery, The Fourth Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yang Zhao
- Department of Biostatistics, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao-Li Zhu
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China.
| | - Li-Gong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Gao-Jun Teng
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
22
|
Fintelmann FJ, Martin NA, Tahir I, Quinn EM, Allen TC, Joseph L, Nikolic B, Lee C. Optimizing molecular testing of lung cancer needle biopsy specimens: potential solutions from an interdisciplinary qualitative study. Respir Res 2023; 24:17. [PMID: 36650544 PMCID: PMC9847026 DOI: 10.1186/s12931-023-02321-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Molecular testing can detect actionable genomic alterations and tumor cell surface proteins in patients with non-small cell lung cancer (NSCLC). However, utilization remains suboptimal, representing missed treatment opportunities. This study aimed to identify challenges and potential solutions to obtaining percutaneous lung needle biopsy specimens for successful molecular testing in patients with advanced NSCLC. METHODS This interdisciplinary qualitative study included ten radiologists and four pathologists from academic and community settings across the United States who routinely perform and analyze percutaneous lung needle biopsies. Participants underwent semi-structured one-on-one interviews (Phase 1). Interview questionnaires were constructed based on a literature review of key lines of inquiry and conducted by professional market researchers using the theoretical domains framework. Primary barriers to molecular testing were identified using thematic analysis. Subsequently, multidisciplinary focus groups were convened to identify potential solutions (Phase 2). RESULTS Four themes emerged as barriers to molecular testing and were matched to the clinical workflow: (1) biopsy request, (2) biopsy procedure, (3) specimen analysis, and (4) communication. The nineteen potential solutions included adding a "checkbox" to indicate molecular testing in the biopsy request, leveraging pre-procedural imaging to guide biopsies, conserving tissue through appropriate allocation strategies and next generation sequencing panels instead of sequential single-gene assays, instituting reflex-molecular testing upon NSCLC diagnosis, tracking and communicating biopsy outcomes at multidisciplinary tumor boards, and improving integration of radiologists and pathologists into oncology care teams. CONCLUSIONS Potential solutions exist to increase successful molecular testing of lung needle biopsy specimens in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Florian J. Fintelmann
- grid.32224.350000 0004 0386 9924Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 USA
| | - Nikki A. Martin
- grid.443873.f0000 0004 0422 4933LUNGevity Foundation, Bethesda, MD USA
| | - Ismail Tahir
- grid.32224.350000 0004 0386 9924Department of Radiology, Division of Thoracic Imaging and Intervention, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 USA
| | - Elissa M. Quinn
- grid.497611.c0000 0004 1794 1958Blueprint Medicines, Boston, MA USA
| | | | - Lija Joseph
- grid.461527.30000 0004 0383 4123Lowell General Hospital, Lowell, MA USA
| | - Boris Nikolic
- grid.439147.c0000 0004 0628 7583Wyoming Valley Radiology Associates, Wilkes-Barre General Hospital, Wilkes-Barre, PA USA
| | - Christopher Lee
- grid.50956.3f0000 0001 2152 9905Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA USA
| |
Collapse
|
23
|
Weatherald J, Boucly A, Peters A, Montani D, Prasad K, Psotka MA, Zannad F, Gomberg-Maitland M, McLaughlin V, Simonneau G, Humbert M. The evolving landscape of pulmonary arterial hypertension clinical trials. Lancet 2022; 400:1884-1898. [PMID: 36436527 DOI: 10.1016/s0140-6736(22)01601-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Although it is a rare disease, the number of available therapeutic options for treating pulmonary arterial hypertension has increased since the late 1990s, with multiple drugs developed that are shown to be effective in phase 3 randomised controlled trials. Despite considerable advancements in pulmonary arterial hypertension treatment, prognosis remains poor. Existing therapies target pulmonary endothelial dysfunction with vasodilation and anti-proliferative effects. Novel therapies that target proliferative vascular remodelling and affect important outcomes are urgently needed. There is need for additional innovations in clinical trial design so that all emerging candidate therapies can be rigorously studied. Pulmonary arterial hypertension trial design has shifted from short-term submaximal exercise capacity as a primary endpoint, to larger clinical event-driven trial outcomes. Event-driven pulmonary arterial hypertension trials could face feasibility and efficiency issues in the future because increasing sample sizes and longer follow-up durations are needed, which would be problematic in such a rare disease. Enrichment strategies, innovative and alternative trial designs, and novel trial endpoints are potential solutions that could improve the efficiency of future pulmonary arterial hypertension trials while maintaining robustness and clinically meaningful evidence.
Collapse
Affiliation(s)
- Jason Weatherald
- Department of Medicine, Division of Pulmonary Medicine, University of Alberta, Edmonton, AB, Canada
| | - Athénaïs Boucly
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Anthony Peters
- Duke University Medical Center, Duke Clinical Research Institute, Durham, NC, USA
| | - David Montani
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Krishna Prasad
- Medicines and Healthcare products Regulatory Agency, London, UK
| | - Mitchell A Psotka
- Inova Heart and Vascular Institute, Falls Church, VA, USA; United States Food and Drug Administration, Silver Spring, MD, USA
| | - Faiez Zannad
- Centre d'Investigations Cliniques Plurithématique, Cardiovascular and Renal Clinical Trialists, Université de Lorraine, Nancy, France
| | - Mardi Gomberg-Maitland
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vallerie McLaughlin
- Department of Internal Medicine, Division of Cardiology, Frankel Cardiovascular Center, University of Michigan Medical School, Ann Arbor, MI , USA
| | - Gérald Simonneau
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Marc Humbert
- Faculty of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France; INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France; Department of Respiratory and Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
24
|
Ouma LO, Wason JMS, Zheng H, Wilson N, Grayling M. Design and analysis of umbrella trials: Where do we stand? Front Med (Lausanne) 2022; 9:1037439. [PMID: 36313987 PMCID: PMC9596938 DOI: 10.3389/fmed.2022.1037439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background The efficiencies that master protocol designs can bring to modern drug development have seen their increased utilization in oncology. Growing interest has also resulted in their consideration in non-oncology settings. Umbrella trials are one class of master protocol design that evaluates multiple targeted therapies in a single disease setting. Despite the existence of several reviews of master protocols, the statistical considerations of umbrella trials have received more limited attention. Methods We conduct a systematic review of the literature on umbrella trials, examining both the statistical methods that are available for their design and analysis, and also their use in practice. We pay particular attention to considerations for umbrella designs applied outside of oncology. Findings We identified 38 umbrella trials. To date, most umbrella trials have been conducted in early phase settings (73.7%, 28/38) and in oncology (92.1%, 35/38). The quality of statistical information available about conducted umbrella trials to date is poor; for example, it was impossible to ascertain how sample size was determined in the majority of trials (55.3%, 21/38). The literature on statistical methods for umbrella trials is currently sparse. Conclusions Umbrella trials have potentially great utility to expedite drug development, including outside of oncology. However, to enable lessons to be effectively learned from early use of such designs, there is a need for higher-quality reporting of umbrella trials. Furthermore, if the potential of umbrella trials is to be realized, further methodological research is required.
Collapse
Affiliation(s)
- Luke O. Ouma
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James M. S. Wason
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Haiyan Zheng
- Medical Research Council (MRC) Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Nina Wilson
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael Grayling
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Gao G, Gajewski BJ, Wick J, Beall J, Saver JL, Meinzer C. Optimizing a Bayesian hierarchical adaptive platform trial design for stroke patients. Trials 2022; 23:754. [PMID: 36068547 PMCID: PMC9446515 DOI: 10.1186/s13063-022-06664-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Platform trials are well-known for their ability to investigate multiple arms on heterogeneous patient populations and their flexibility to add/drop treatment arms due to efficacy/lack of efficacy. Because of their complexity, it is important to develop highly optimized, transparent, and rigorous designs that are cost-efficient, offer high statistical power, maximize patient benefit, and are robust to changes over time. METHODS To address these needs, we present a Bayesian platform trial design based on a beta-binomial model for binary outcomes that uses three key strategies: (1) hierarchical modeling of subgroups within treatment arms that allows for borrowing of information across subgroups, (2) utilization of response-adaptive randomization (RAR) schemes that seek a tradeoff between statistical power and patient benefit, and (3) adjustment for potential drift over time. Motivated by a proposed clinical trial that aims to find the appropriate treatment for different subgroup populations of ischemic stroke patients, extensive simulation studies were performed to validate the approach, compare different allocation rules, and study the model operating characteristics. RESULTS AND CONCLUSIONS Our proposed approach achieved high statistical power and good patient benefit and was also robust against population drift over time. Our design provided a good balance between the strengths of both the traditional RAR scheme and fixed 1:1 allocation and may be a promising choice for dichotomous outcomes trials investigating multiple subgroups.
Collapse
Affiliation(s)
- Guangyi Gao
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Byron J Gajewski
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jo Wick
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jonathan Beall
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, University of California, Los Angeles, CA, 90095, USA
| | - Caitlyn Meinzer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
26
|
Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med 2022; 14:101. [PMID: 36045401 PMCID: PMC9428375 DOI: 10.1186/s13073-022-01102-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recent rapid biotechnological breakthroughs have led to the identification of complex and unique molecular features that drive malignancies. Precision medicine has exploited next-generation sequencing and matched targeted therapy/immunotherapy deployment to successfully transform the outlook for several fatal cancers. Tumor and liquid biopsy genomic profiling and transcriptomic, immunomic, and proteomic interrogation can now all be leveraged to optimize therapy. Multiple new trial designs, including basket and umbrella trials, master platform trials, and N-of-1 patient-centric studies, are beginning to supplant standard phase I, II, and III protocols, allowing for accelerated drug evaluation and approval and molecular-based individualized treatment. Furthermore, real-world data, as well as exploitation of digital apps and structured observational registries, and the utilization of machine learning and/or artificial intelligence, may further accelerate knowledge acquisition. Overall, clinical trials have evolved, shifting from tumor type-centered to gene-directed and histology-agnostic trials, with innovative adaptive designs and personalized combination treatment strategies tailored to individual biomarker profiles. Some, but not all, novel trials now demonstrate that matched therapy correlates with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To further improve the precision medicine paradigm, the strategy of matching drugs to patients based on molecular features should be implemented earlier in the disease course, and cancers should have comprehensive multi-omic (genomics, transcriptomics, proteomics, immunomic) tumor profiling. To overcome cancer complexity, moving from drug-centric to patient-centric individualized combination therapy is critical. This review focuses on the design, advantages, limitations, and challenges of a spectrum of clinical trial designs in the era of precision oncology.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
27
|
Preliminary Discovery of Small Molecule Inhibitors of Epidermal Growth Factor Receptor (EGFR) That Bind to the Extracellular Domain. Cancers (Basel) 2022; 14:cancers14153647. [PMID: 35954311 PMCID: PMC9367601 DOI: 10.3390/cancers14153647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
The Epidermal Growth Factor Receptor (EGFR) is a transmembrane glycoprotein belonging to the protein kinase superfamily. It is composed of an extracellular domain, a transmembrane anchoring region and a cytoplasmic region endowed with tyrosine kinase activity. Genetic mutations of EGFR kinase cause higher activity thereby stimulating downstream signaling pathways that, in turn, impact transcription and cell cycle progression. Due to the involvement of mutant EGFR in tumors and inflammatory diseases, in the past decade, several EGFR inhibitory strategies have been extensively studied, either targeting the extracellular domain (through monoclonal antibodies) or the intracellular kinase domain (through ATP-mimic small molecules). Monoclonal antibodies impair the binding to growth factor, the receptor dimerization, and its activation, whereas small molecules block the intracellular catalytic activity. Herein, we describe the development of a novel small molecule, called DSF-102, that interacts with the extracellular domain of EGFR. When tested in vitro in KRAS mutant A549 cells, it impairs EGFR activity by exerting (i) dose-dependent toxicity effects; (ii) a negative regulation of ERK, MAPK p38 and AKT; and (iii) a modulation of the intracellular trafficking and lysosomal degradation of EGFR. Interestingly, DSF-102 exerts its EGFR inhibitory activity without showing interaction with the intracellular kinase domain. Taken together, these findings suggest that DSF-102 is a promising hit compound for the development of a novel class of anti-EGFR compounds, i.e., small molecules able to interact with the extracellular domain of EGFR and useful for overcoming the KRAS-driven resistance to TKI treatment.
Collapse
|
28
|
Strzebonska K, Blukacz M, Wasylewski MT, Polak M, Gyawali B, Waligora M. Risk and benefit for umbrella trials in oncology: a systematic review and meta-analysis. BMC Med 2022; 20:219. [PMID: 35799149 PMCID: PMC9264503 DOI: 10.1186/s12916-022-02420-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Umbrella clinical trials in precision oncology are designed to tailor therapies to the specific genetic changes within a tumor. Little is known about the risk/benefit ratio for umbrella clinical trials. The aim of our systematic review with meta-analysis was to evaluate the efficacy and safety profiles in cancer umbrella trials testing targeted drugs or a combination of targeted therapy with chemotherapy. METHODS Our study was prospectively registered in PROSPERO (CRD42020171494). We searched Embase and PubMed for cancer umbrella trials testing targeted agents or a combination of targeted therapies with chemotherapy. We included solid tumor studies published between 1 January 2006 and 7 October 2019. We measured the risk using drug-related grade 3 or higher adverse events (AEs), and the benefit by objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). When possible, data were meta-analyzed. RESULTS Of the 6207 records identified, we included 31 sub-trials or arms of nine umbrella trials (N = 1637). The pooled overall ORR was 17.7% (95% confidence interval [CI] 9.5-25.9). The ORR for targeted therapies in the experimental arms was significantly lower than the ORR for a combination of targeted therapy drugs with chemotherapy: 13.3% vs 39.0%; p = 0.005. The median PFS was 2.4 months (95% CI 1.9-2.9), and the median OS was 7.1 months (95% CI 6.1-8.4). The overall drug-related death rate (drug-related grade 5 AEs rate) was 0.8% (95% CI 0.3-1.4), and the average drug-related grade 3/4 AE rate per person was 0.45 (95% CI 0.40-0.50). CONCLUSIONS Our findings suggest that, on average, one in five cancer patients in umbrella trials published between 1 January 2006 and 7 October 2019 responded to a given therapy, while one in 125 died due to drug toxicity. Our findings do not support the expectation of increased patient benefit in cancer umbrella trials. Further studies should investigate whether umbrella trial design and the precision oncology approach improve patient outcomes.
Collapse
Affiliation(s)
- Karolina Strzebonska
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz Blukacz
- Institute of Psychology, University of Silesia, Katowice, Poland
- Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz T. Wasylewski
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Polak
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
- Department of Epidemiology and Population Studies, Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Bishal Gyawali
- Department of Oncology and the Department of Public Health Sciences, Queen’s University, Kingston, Ontario Canada
| | - Marcin Waligora
- Research Ethics in Medicine Study Group (REMEDY), Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
29
|
Elsakka A, Petre EN, Ridouani F, Ghosn M, Bott MJ, Husta BC, Arcila ME, Alexander E, Solomon SB, Ziv E. Percutaneous Image-Guided Biopsy for a Comprehensive Hybridization Capture-Based Next-Generation Sequencing in Primary Lung Cancer: Safety, Efficacy, and Predictors of Outcome. JTO Clin Res Rep 2022; 3:100342. [PMID: 35711720 PMCID: PMC9194869 DOI: 10.1016/j.jtocrr.2022.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction To evaluate factors associated with successful comprehensive genomic sequencing of image-guided percutaneous needle biopsies in patients with lung cancer using a broad hybrid capture-based next-generation sequencing assay (CHCA). Methods We conducted a single-institution retrospective review of image-guided percutaneous transthoracic needle biopsies from January 2018 to December 2019. Samples with confirmed diagnosis of primary lung cancer and for which CHCA had been attempted were identified. Pathologic, clinical data and results of the CHCA were reviewed. Covariates associated with CHCA success were tested for using Fisher's exact test or Wilcoxon ranked sum test. Logistic regression was used to identify factors independently associated with likelihood of CHCA success. Results CHCA was requested for 479 samples and was successful for 433 (91%), with a median coverage depth of 659X. Factors independently associated with lower likelihood of CHCA success included small tumor size (OR = 0.26 [95% confidence interval (CI): 0.11-0.62, p = 0.002]), intraoperative inadequacy on cytologic assessment (OR = 0.18 [95% CI: 0.06-0.63, p = 0.005]), small caliber needles (≥20-gauge) (OR = 0.22 [95% CI: 0.10-0.45, p < 0.001]), and presence of lung parenchymal abnormalities (OR = 0.12 [95% CI: 0.05-0.25, p < 0.001]). Pneumothorax requiring chest tube insertion occurred in 6% of the procedures. No grade IV complications or procedure-related deaths were reported. Conclusions Percutaneous image-guided transthoracic needle biopsy is safe and has 91% success rate for CHCA in primary lung cancer. Intraoperative inadequacy, small caliber needle, presence of parenchymal abnormalities, and small tumor size (≤1 cm) are independently associated with likelihood of failure.
Collapse
Affiliation(s)
- Ahmed Elsakka
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Body Imaging Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elena N. Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fourat Ridouani
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mario Ghosn
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matthew J. Bott
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bryan C. Husta
- Pulmonary Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maria E. Arcila
- Molecular Diagnostics Service, Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Erica Alexander
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephen B. Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Etay Ziv
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
30
|
Chan DWK, Choi HCW, Lee VHF. Treatment-Related Adverse Events of Combination EGFR Tyrosine Kinase Inhibitor and Immune Checkpoint Inhibitor in EGFR-Mutant Advanced Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:2157. [PMID: 35565285 PMCID: PMC9102470 DOI: 10.3390/cancers14092157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: We performed a meta-analysis to examine whether combined epidermal growth factor tyrosine kinase inhibitor (EGFR-TKI) and immune checkpoint inhibitor (ICI) increases treatment-related adverse events (trAEs) in advanced non-small cell lung cancer (NSCLC). (2) Methods: Articles from MEDLINE, EMBASE, and Cochrane databases were searched. Proportions and odds ratios (ORs) of the pooled incidence of overall and organ-specific trAEs in combination EGFR-TKI and ICI were compared to TKI monotherapy. (3) Results: Eight studies fulfilled our selection criteria. Any-grade organ-specific trAEs were more common in combination EGFR-TKI and ICI than TKI monotherapy (skin: OR = 1.19, p = 0.012; gastrointestinal tract: OR = 1.04, p = 0.790; ILD: OR = 1.28, p = 0.001). Grade ≥ 3 trAEs were also more frequent in combination treatment (skin: OR = 1.13, p = 0.082; gastrointestinal tract: OR = 1.13, p = 0.076; ILD: OR = 1.16, p = 0.003). (4) Conclusions: A higher proportion of grade ≥3 skin and gastrointestinal trAEs and ILDs was observed in combination TKI and ICI compared to TKI alone. Caution has to be taken when interpreting the results owing to the small number of studies included in this meta-analysis.
Collapse
Affiliation(s)
- Daisy Wai-Ka Chan
- LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Horace Cheuk-Wai Choi
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Victor Ho-Fun Lee
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
- Department of Clinical Oncology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
31
|
Li JX, Li RZ, Ma LR, Wang P, Xu DH, Huang J, Li LQ, Tang L, Xie Y, Leung ELH, Yan PY. Targeting Mutant Kirsten Rat Sarcoma Viral Oncogene Homolog in Non-Small Cell Lung Cancer: Current Difficulties, Integrative Treatments and Future Perspectives. Front Pharmacol 2022; 13:875330. [PMID: 35517800 PMCID: PMC9065471 DOI: 10.3389/fphar.2022.875330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Abstract
In the past few decades, several gene mutations, including the anaplastic lymphoma kinase, epidermal growth factor receptor, ROS proto-oncogene 1 and rat sarcoma viral oncogene homolog (RAS), have been discovered in non-small cell lung cancer (NSCLC). Kirsten rat sarcoma viral oncogene homolog (KRAS) is the isoform most frequently altered in RAS-mutated NSCLC cases. Due to the structural and biochemical characteristics of the KRAS protein, effective approaches to treating KRAS-mutant NSCLC still remain elusive. Extensive recent research on KRAS-mutant inhibitors has made a breakthrough in identifying the covalent KRASG12C inhibitor as an effective agent for the treatment of NSCLC. This review mainly concentrated on introducing new covalent KRASG12C inhibitors like sotorasib (AMG 510) and adagrasib (MRTX 849); summarizing inhibitors targeting the KRAS-related upstream and downstream effectors in RAF/MEK/ERK pathway and PI3K/AKT/mTOR pathway; exploring the efficacy of immunotherapy and certain emerging immune-related therapeutics such as adoptive cell therapy and cancer vaccines. These inhibitors are being investigated in clinical trials and have exhibited promising effects. On the other hand, naturally extracted compounds, which have exhibited safe and effective properties in treating KRAS-mutant NSCLC through suppressing the MAPK and PI3K/AKT/mTOR signaling pathways, as well as through decreasing PD-L1 expression in preclinical studies, could be expected to enter into clinical studies. Finally, in order to confront the matter of drug resistance, the ongoing clinical trials in combination treatment strategies were summarized herein.
Collapse
Affiliation(s)
- Jia-Xin Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Lin-Rui Ma
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Dong-Han Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Jie Huang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Li-Qi Li
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| | - Ling Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou, China
- Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, China
| | - Ying Xie
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, China
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, Macau University of Science and Technology, Macao, China
| | - Pei-Yu Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, China
| |
Collapse
|
32
|
Alhalabi O, Chen J, Zhang Y, Lu Y, Wang Q, Ramachandran S, Tidwell RS, Han G, Yan X, Meng J, Wang R, Hoang AG, Wang WL, Song J, Lopez L, Andreev-Drakhlin A, Siefker-Radtke A, Zhang X, Benedict WF, Shah AY, Wang J, Msaouel P, Zhang M, Guo CC, Czerniak B, Behrens C, Soto L, Papadimitrakopoulou V, Lewis J, Rinsurongkawong W, Rinsurongkawong V, Lee J, Roth J, Swisher S, Wistuba I, Heymach J, Wang J, Campbell MT, Efstathiou E, Titus M, Logothetis CJ, Ho TH, Zhang J, Wang L, Gao J. MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers. Nat Commun 2022; 13:1797. [PMID: 35379845 PMCID: PMC8980015 DOI: 10.1038/s41467-022-29397-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/10/2022] [Indexed: 12/14/2022] Open
Abstract
Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.
Collapse
Affiliation(s)
- Omar Alhalabi
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianfeng Chen
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yuxue Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rebecca Slack Tidwell
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinmiao Yan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jieru Meng
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anh G Hoang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei-Lien Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jian Song
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lidia Lopez
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Alex Andreev-Drakhlin
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xinqiao Zhang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - William F Benedict
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Miao Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Luisa Soto
- Department of Translational molecular pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vassiliki Papadimitrakopoulou
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeff Lewis
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Waree Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vadeerat Rinsurongkawong
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Lee
- Department of Biostatistics,, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jack Roth
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ignacio Wistuba
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Matthew T Campbell
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Thai H Ho
- Division of Medical Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX, USA.
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
33
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
34
|
Abstract
This overview of the molecular pathology of lung cancer includes a review of the most salient molecular alterations of the genome, transcriptome, and the epigenome. The insights provided by the growing use of next-generation sequencing (NGS) in lung cancer will be discussed, and interrelated concepts such as intertumor heterogeneity, intratumor heterogeneity, tumor mutational burden, and the advent of liquid biopsy will be explored. Moreover, this work describes how the evolving field of molecular pathology refines the understanding of different histologic phenotypes of non-small-cell lung cancer (NSCLC) and the underlying biology of small-cell lung cancer. This review will provide an appreciation for how ongoing scientific findings and technologic advances in molecular pathology are crucial for development of biomarkers, therapeutic agents, clinical trials, and ultimately improved patient care.
Collapse
Affiliation(s)
- James J Saller
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - Theresa A Boyle
- Departments of Pathology and Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| |
Collapse
|
35
|
Tan AC, Tan DSW. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J Clin Oncol 2022; 40:611-625. [PMID: 34985916 DOI: 10.1200/jco.21.01626] [Citation(s) in RCA: 373] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lung cancer has traditionally been classified by histology. However, a greater understanding of disease biology and the identification of oncogenic driver alterations has dramatically altered the therapeutic landscape. Consequently, the new classification paradigm of non-small-cell lung cancer is further characterized by molecularly defined subsets actionable with targeted therapies and the treatment landscape is becoming increasingly complex. This review encompasses the current standards of care for targeted therapies in lung cancer with driver molecular alterations. Targeted therapies for EGFR exon 19 deletion and L858R mutations, and ALK and ROS1 rearrangements are well established. However, there is an expanding list of approved targeted therapies including for BRAF V600E, EGFR exon 20 insertion, and KRAS G12C mutations, MET exon 14 alterations, and NTRK and RET rearrangements. In addition, there are numerous other oncogenic drivers, such as HER2 exon 20 insertion mutations, for which there are emerging efficacy data for targeted therapies. The importance of diagnostic molecular testing, intracranial efficacy of novel therapies, the optimal sequencing of therapies, role for targeted therapies in early-stage disease, and future directions for precision oncology approaches to understand tumor evolution and therapeutic resistance are also discussed.
Collapse
Affiliation(s)
- Aaron C Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Daniel S W Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore.,Genome Institute of Singapore, Singapore
| |
Collapse
|
36
|
Paganoni S, Berry JD, Quintana M, Macklin E, Saville BR, Detry MA, Chase M, Sherman AV, Yu H, Drake K, Andrews J, Shefner J, Chibnik LB, Vestrucci M, Cudkowicz ME. Adaptive Platform Trials to Transform Amyotrophic Lateral Sclerosis Therapy Development. Ann Neurol 2022; 91:165-175. [PMID: 34935174 DOI: 10.1002/ana.26285] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Current therapeutic development in amyotrophic lateral sclerosis (ALS) relies on individual randomized clinical trials to test a specific investigational product in a single patient population. This approach has intrinsic limitations, including cost, time, and lack of flexibility. Adaptive platform trials represent a novel approach to investigate several interventions for a single disease in a continuous manner. Already in use in oncology, this approach is now being employed more often in neurology. Here, we describe a newly launched platform trial for ALS. The Healey ALS Platform Trial is testing multiple investigational products concurrently in people with ALS, with the goal of rapidly identifying novel treatments, biomarkers, and trial endpoints. ANN NEUROL 2022;91:165-175.
Collapse
Affiliation(s)
- Sabrina Paganoni
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Eric Macklin
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Benjamin R Saville
- Berry Consultants, Austin, TX
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Marianne Chase
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Alexander V Sherman
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Hong Yu
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kristin Drake
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | - Lori B Chibnik
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Merit E Cudkowicz
- Sean M. Healey & AMG Center for ALS and Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
Ferrara MG, Stefani A, Pilotto S, Carbone C, Vita E, Di Salvatore M, D'Argento E, Sparagna I, Monaca F, Valente G, Vitale A, Piro G, Belluomini L, Milella M, Tortora G, Bria E. The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Front Oncol 2022; 11:792385. [PMID: 35004317 PMCID: PMC8733471 DOI: 10.3389/fonc.2021.792385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | - Ettore D'Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Antonio Vitale
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
38
|
Ritu K, Kumar P, Singh A, Nupur K, Spalgias S, Mrigpuri P, Rajkumar. Untangling the KRAS mutated lung cancer subsets and its therapeutic implications. MOLECULAR BIOMEDICINE 2021; 2:40. [PMID: 34918209 PMCID: PMC8677854 DOI: 10.1186/s43556-021-00061-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Kirsten rat sarcoma virus transforming protein (KRAS) mutations (predominate in codons 12, 13, and 61) and genomically drive nearly one-third of lung carcinomas. These mutations have complex functions in tumorigenesis, and influence the tumor response to chemotherapy and tyrosine kinase inhibitors resulting in a poorer patient prognosis. Recent attempts using targeted therapies against KRAS alone have met with little success. The existence of specific subsets of lung cancer based on KRAS mutations and coexisting mutations are suggested. Their interactions need further elaboration before newer promising targeted therapies for KRAS mutant lung cancers can be used as earlier lines of therapy. We summarize the existing knowledge of KRAS mutations and their coexisting mutations that is relevant to lung cancer treatment, in this review. We elaborate on the prognostic impact of clinical and pathologic characteristics of lung cancer patients associated with KRAS mutations. We briefly review the currently available techniques for KRAS mutation detection on biopsy and cytology samples. Finally, we discuss the new therapeutic strategies for targeting KRAS-mutant non-small cell lung cancer (NSCLC). These may herald a new era in the treatment of KRASG12Cmutated NSCLC as well as be helpful to develop demographic subsets to predict targeted therapies and prognosis of lung cancer patients.
Collapse
|
39
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung Cancer Models Reveal Severe Acute Respiratory Syndrome Coronavirus 2-Induced Epithelial-to-Mesenchymal Transition Contributes to Coronavirus Disease 2019 Pathophysiology. J Thorac Oncol 2021; 16:1821-1839. [PMID: 34274504 PMCID: PMC8282443 DOI: 10.1016/j.jtho.2021.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which enters host cells through the cell surface proteins ACE2 and TMPRSS2. METHODS Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. RESULTS We find that ACE2 expression is restricted to a select population of epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium induces metabolic and transcriptional changes consistent with epithelial-to-mesenchymal transition (EMT), including up-regulation of ZEB1 and AXL, resulting in an increased EMT score. In addition, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT through the transforming growth factor-β, ZEB1 overexpression, and onset of EGFR tyrosine kinase inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL inhibition and ZEB1 reduction, as with bemcentinib, offer a potential strategy to reverse this effect. CONCLUSIONS These observations highlight the use of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses and offer important insights into the potential mechanisms underlying the morbidity and mortality of coronavirus disease 2019 in healthy patients and patients with cancer alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carminia Maria Della Corte
- Oncology Division, Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
DeNicola GM, Shackelford DB. Metabolic Phenotypes, Dependencies, and Adaptation in Lung Cancer. Cold Spring Harb Perspect Med 2021; 11:a037838. [PMID: 34127512 PMCID: PMC8559540 DOI: 10.1101/cshperspect.a037838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Lung cancer is a heterogeneous disease that is subdivided into histopathological subtypes with distinct behaviors. Each subtype is characterized by distinct features and molecular alterations that influence tumor metabolism. Alterations in tumor metabolism can be exploited by imaging modalities that use metabolite tracers for the detection and characterization of tumors. Microenvironmental factors, including nutrient and oxygen availability and the presence of stromal cells, are a critical influence on tumor metabolism. Recent technological advances facilitate the direct evaluation of metabolic alterations in patient tumors in this complex microenvironment. In addition, molecular alterations directly influence tumor cell metabolism and metabolic dependencies that influence response to therapy. Current therapeutic approaches to target tumor metabolism are currently being developed and translated into the clinic for patient therapy.
Collapse
Affiliation(s)
- Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | - David B Shackelford
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
| |
Collapse
|
41
|
Personalization of medical treatments in oncology: time for rethinking the disease concept to improve individual outcomes. EPMA J 2021; 12:545-558. [PMID: 34642594 PMCID: PMC8495186 DOI: 10.1007/s13167-021-00254-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
The agenda of pharmacology discovery in the field of personalized oncology was dictated by the search of molecular targets assumed to deterministically drive tumor development. In this perspective, genes play a fundamental "causal" role while cells simply act as causal proxies, i.e., an intermediate between the molecular input and the organismal output. However, the ceaseless genomic change occurring across time within the same primary and metastatic tumor has broken the hope of a personalized treatment based only upon genomic fingerprint. Indeed, current models are unable in capturing the unfathomable complexity behind the outbreak of a disease, as they discard the contribution of non-genetic factors, environment constraints, and the interplay among different tiers of organization. Herein, we posit that a comprehensive personalized model should view at the disease as a "historical" process, in which different spatially and timely distributed factors interact with each other across multiple levels of organization, which collectively interact with a dynamic gene-expression pattern. Given that a disease is a dynamic, non-linear process - and not a static-stable condition - treatments should be tailored according to the "timing-frame" of each condition. This approach can help in detecting those critical transitions through which the system can access different attractors leading ultimately to diverse outcomes - from a pre-disease state to an overt illness or, alternatively, to recovery. Identification of such tipping points can substantiate the predictive and the preventive ambition of the Predictive, Preventive and Personalized Medicine (PPPM/3PM). However, an unusual effort is required to conjugate multi-omics approaches, data collection, and network analysis reconstruction (eventually involving innovative Artificial Intelligent tools) to recognize the critical phases and the relevant targets, which could help in patient stratification and therapy personalization.
Collapse
|
42
|
Torres GF, Bonilla CE, Buitrago G, Arrieta O, Malapelle U, Rolfo C, Cardona AF. How clinically useful is comprehensive genomic profiling for patients with non-small cell lung cancer? A systematic review. Crit Rev Oncol Hematol 2021; 166:103459. [PMID: 34461270 DOI: 10.1016/j.critrevonc.2021.103459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 12/18/2022] Open
Abstract
Given the lack of a gold standard, the clinical usefulness of Comprehensive Genomic Profiling (CGP) has not been established. This systematic review aimed to evaluate evidence about the clinical benefit of CGP for patients with Non-small cell lung carcinoma (NSCLC). All controlled studies that evaluated the ability of CGP to detect actionable targets (ATs) reported increases in the number of samples with ATs. The frequency of ATs detected in uncontrolled case series ranged from 0.7 % for RET mutations to 45 % for EGFR mutations. The studies that evaluated therapies targeted to EGFR, ALK, ROS-1, MET, and RET mutations documented significant improvement in clinical outcomes. This review suggests that CGP tests may be clinically helpful for treating patients with NSCLC. Although current evidence is associated with a high risk of bias, the significant impact of NSCLC on individuals and society may justify the routine use of CGP testing for this disease.
Collapse
Affiliation(s)
| | - Carlos Eduardo Bonilla
- Clinical Oncology Department, Instituto Nacional de Cancerología - INC, Bogotá, Colombia
| | - Giancarlo Buitrago
- Instituto de Investigaciones Clínicas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit, National Cancer Institute (INCan), México City, Mexico
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Center, Mount Sinai Hospital System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Andrés F Cardona
- Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia; Molecular Oncology and Biology Systems Research Group (Fox-G/ONCOLGroup), Universidad el Bosque, Bogotá, Colombia; Clinical and Traslational Oncology Group, Clínica del Country, Bogotá, Colombia
| |
Collapse
|
43
|
Roskoski R. Blockade of mutant RAS oncogenic signaling with a special emphasis on KRAS. Pharmacol Res 2021; 172:105806. [PMID: 34450320 DOI: 10.1016/j.phrs.2021.105806] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022]
Abstract
RAS proteins (HRAS, KRAS, NRAS) participate in many physiological signal transduction processes related to cell growth, division, and survival. The RAS proteins are small (188/189 amino acid residues) and they function as GTPases. These proteins toggle between inactive and functional forms; the conversion of inactive RAS-GDP to active RAS-GTP as mediated by guanine nucleotide exchange factors (GEFs) turns the switch on and the intrinsic RAS-GTPase activity stimulated by the GTPase activating proteins (GAPs) turns the switch off. RAS is upstream to the RAS-RAF-MEK-ERK and the PI3-kinase-AKT signaling modules. Importantly, the overall incidence of RAS mutations in all cancers is about 19% and RAS mutants have been a pharmacological target for more than three decades. About 84% of all RAS mutations involve KRAS. Except for the GTP/GDP binding site, the RAS proteins lack other deep surface pockets thereby hindering efforts to identify high-affinity antagonists; thus, they have been considered to be undruggable. KRAS mutations frequently occur in lung, colorectal, and pancreatic cancers, the three most deadly cancers in the United States. Studies within the last decade demonstrated that the covalent modification of KRAS C12, which accounts for about 10% of all RAS mutations, led to the discovery of an adjacent pocket (called the switch II pocket) that accommodated a portion of the drug. This led to the development of sotorasib as a second-line treatment of KRASG12C-mutant non-small cell lung cancer. Considerable effort also has been expended to develop MAP kinase and PI3-kinase pathway inhibitors as indirect RAS antagonists.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
44
|
Abstract
KRAS mutations are the most frequent gain-of-function alterations in patients with lung adenocarcinoma (LADC) in the Western world. Although they have been identified decades ago, prior efforts to target KRAS signaling with single-agent therapeutic approaches such as farnesyl transferase inhibitors, prenylation inhibition, impairment of KRAS downstream signaling, and synthetic lethality screens have been unsuccessful. Moreover, the role of KRAS oncogene in LADC is still not fully understood, and its prognostic and predictive impact with regards to the standard of care therapy remains controversial. Of note, KRAS-related studies that included general non-small cell lung cancer (NSCLC) population instead of LADC patients should be very carefully evaluated. Recently, however, comprehensive genomic profiling and wide-spectrum analysis of other co-occurring genetic alterations have identified unique therapeutic vulnerabilities. Novel targeted agents such as the covalent KRAS G12C inhibitors or the recently proposed combinatory approaches are some examples which may allow a tailored treatment for LADC patients harboring KRAS mutations. This review summarizes the current knowledge about the therapeutic approaches of KRAS-mutated LADC and provides an update on the most recent advances in KRAS-targeted anti-cancer strategies, with a focus on potential clinical implications.
Collapse
|
45
|
Bertucci F, Gonçalves A, Guille A, Adelaïde J, Garnier S, Carbuccia N, Billon E, Finetti P, Sfumato P, Monneur A, Pécheux C, Khran M, Brunelle S, Mescam L, Thomassin-Piana J, Poizat F, Charafe-Jauffret E, Turrini O, Lambaudie E, Provansal M, Extra JM, Madroszyk A, Gilabert M, Sabatier R, Vicier C, Mamessier E, Chabannon C, Pakradouni J, Viens P, André F, Gravis G, Popovici C, Birnbaum D, Chaffanet M. Prospective high-throughput genome profiling of advanced cancers: results of the PERMED-01 clinical trial. Genome Med 2021; 13:87. [PMID: 34006291 PMCID: PMC8132379 DOI: 10.1186/s13073-021-00897-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The benefit of precision medicine based on relatively limited gene sets and often-archived samples remains unproven. PERMED-01 (NCT02342158) was a prospective monocentric clinical trial assessing, in adults with advanced solid cancer, the feasibility and impact of extensive molecular profiling applied to newly biopsied tumor sample and based on targeted NGS (t-NGS) of the largest gene panel to date and whole-genome array-comparative genomic hybridization (aCGH) with assessment of single-gene alterations and clinically relevant genomic scores. METHODS Eligible patients with refractory cancer had one tumor lesion accessible to biopsy. Extracted tumor DNA was profiled by t-NGS and aCGH. We assessed alterations of 802 "candidate cancer" genes and global genomic scores, such as homologous recombination deficiency (HRD) score and tumor mutational burden. The primary endpoint was the number of patients with actionable genetic alterations (AGAs). Secondary endpoints herein reported included a description of patients with AGA who received a "matched therapy" and their clinical outcome, and a comparison of AGA identification with t-NGS and aCGH versus whole-exome sequencing (WES). RESULTS Between November 2014 and September 2019, we enrolled 550 patients heavily pretreated. An exploitable complete molecular profile was obtained in 441/550 patients (80%). At least one AGA, defined in real time by our molecular tumor board, was found in 393/550 patients (71%, two-sided 90%CI 68-75%). Only 94/550 patients (17%, 95%CI 14-21) received an "AGA-matched therapy" on progression. The most frequent AGAs leading to "matched therapy" included PIK3CA mutations, KRAS mutations/amplifications, PTEN deletions/mutations, ERBB2 amplifications/mutations, and BRCA1/2 mutations. Such "matched therapy" improved by at least 1.3-fold the progression-free survival on matched therapy (PFS2) compared to PFS on prior therapy (PFS1) in 36% of cases, representing 6% of the enrolled patients. Within patients with AGA treated on progression, the use of "matched therapy" was the sole variable associated with an improved PFS2/PFS1 ratio. Objective responses were observed in 19% of patients treated with "matched therapy," and 6-month overall survival (OS) was 62% (95%CI 52-73). In a subset of 112 metastatic breast cancers, WES did not provide benefit in term of AGA identification when compared with t-NGS/aCGH. CONCLUSIONS Extensive molecular profiling of a newly biopsied tumor sample identified AGA in most of cases, leading to delivery of a "matched therapy" in 17% of screened patients, of which 36% derived clinical benefit. WES did not seem to improve these results. TRIAL REGISTRATION ID-RCB identifier: 2014-A00966-41; ClinicalTrials.gov identifier: NCT02342158 .
Collapse
Affiliation(s)
- François Bertucci
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France.
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France.
| | - Anthony Gonçalves
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Arnaud Guille
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - José Adelaïde
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Séverine Garnier
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Nadine Carbuccia
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Emilien Billon
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Patrick Sfumato
- Biostatistics Unit, Institut Paoli-Calmettes, Marseille, France
| | - Audrey Monneur
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Christophe Pécheux
- Department of Medical genetics, Hôpital Timone Enfants, AP-HM, Marseille, France
| | - Martin Khran
- Department of Medical genetics, Hôpital Timone Enfants, AP-HM, Marseille, France
- Aix-Marseille University, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
| | - Serge Brunelle
- Department of Imaging, Institut Paoli-Calmettes, Marseille, France
| | - Lenaïg Mescam
- Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | | | - Flora Poizat
- Department of Biopathology, Institut Paoli-Calmettes, Marseille, France
| | | | - Olivier Turrini
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Eric Lambaudie
- Department of Surgical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Magali Provansal
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Jean-Marc Extra
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Anne Madroszyk
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Marine Gilabert
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Renaud Sabatier
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Cécile Vicier
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Emilie Mamessier
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Christian Chabannon
- Biobank, Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Jihane Pakradouni
- Department of Clinical Research and Innovation, Institut Paoli-Calmettes, Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Fabrice André
- Department of Medical Oncology, Gustave Roussy Cancer Campus, UMR981 Inserm, Villejuif, France
- Paris Sud University, Orsay, France
| | - Gwenaelle Gravis
- Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Cornel Popovici
- Department of Oncogenetics, Institut Paoli-Calmettes, Marseille, France
| | - Daniel Birnbaum
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| | - Max Chaffanet
- Laboratory of Predictive Oncology, Department of Medical Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 232 Boulevard Sainte-Marguerite, 13009, Marseille, France
| |
Collapse
|
46
|
Diffusion kurtosis imaging: correlation analysis of quantitative model parameters with molecular features in advanced lung adenocarcinoma. Chin Med J (Engl) 2021; 133:2403-2409. [PMID: 32960838 PMCID: PMC7575189 DOI: 10.1097/cm9.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Due to development of magnetic resonance-based functional imaging, it is easier to detect micro-structural alterations of tumor tissues. The aim of this study was to conduct a preliminary evaluation of the correlation of non-Gaussian diffusion kurtosis imaging (DKI) parameters with expression of molecular markers (epidermal growth factor receptor [EGFR]; anaplastic lymphoma kinase [ALK]; Ki-67 protein) in patients with advanced lung adenocarcinoma, using routine diffusion-weighted imaging as the reference standard. Methods: Data from patients with primary lung adenocarcinoma diagnosed at Cancer Hospital, Chinese Academy of Medical Sciences (CHCAMS) from 2016 to 2019 were collected for retrospective analysis. The pathologic and magnetic resonance imaging data of 96 patients who met the inclusion criteria were included in this study. Specifically, the Kapp and Dapp parameters measured from the DKI model; apparent diffusion coefficient (ADC) value from the diffusion-weighted imaging model; and the EGFR, ALK, and Ki-67 biomarkers detected by immunohistochemistry and/or molecular biology techniques after biopsy or surgery were evaluated. The relations between quantitative parameters (ADC, Kapp, Dapp) and pathologic outcomes (EGFR, ALK, and Ki-67 expression) were analyzed by Spearman correlation test. Results: Of the 96 lung adenocarcinoma lesions (from 96 patients), the number of EGFR- and ALK-positive and high Ki-67 expressing lesions were 53, 12, and 83, respectively. The Kapp values were significantly higher among patients with EGFR-positive mutations (0.81 ± 0.12 vs. 0.66 ± 0.10, t = 6.41, P < 0.001), ALK rearrangement-negative (0.76 ± 0.12 vs. 0.60 ± 0.15, t = 4.09, P < 0.001), and high Ki-67 proliferative index (PI) (0.76 ± 0.12 vs. 0.58 ± 0.13, t = 4.88, P < 0.001). The Dapp values were significantly lower among patients with high Ki-67 PI (3.19 ± 0.69 μm2/ms vs. 4.20 ± 0.83 μm2/ms, t = 4.80, P < 0.001) and EGFR-positive mutations (3.11 ± 0.73 μm2/ms vs. 3.59 ± 0.77 μm2/ms, t = 3.12, P = 0.002). The differences in mean Dapp (3.73 ± 1.26 μm2/ms vs. 3.26 ± 0.68 μm2/ms, t = 1.96, P = 0.053) or ADC values ([1.34 ± 0.81] × 10−3 mm2/s vs. [1.33 ± 0.41] × 10−3 mm2/s, t = 0.07, P = 0.941) between the groups with or without ALK rearrangements were not statistically significant. The ADC values were significantly lower among patients with EGFR-positive mutation ([1.19 ± 0.37] × 10−3 mm2/s vs. [1.50 ± 0.53] × 10−3 mm2/s, t = 3.38, P = 0.001) and high Ki-67 PI ([1.28 ± 0.39] × 10−3 mm2/s vs. [1.67 ± 0.77] × 10−3 mm2/s, t = 2.88, P = 0.005). Kapp was strongly positively correlated with EGFR mutations (r = 0.844, P = 0.008), strongly positively correlated with Ki-67 PI (r = 0.882, P = 0.001), and strongly negatively correlated with ALK rearrangements (r = −0.772, P = 0.001). Dapp was moderately correlated with EGFR mutations (r = −0.650, P = 0.024) or Ki-67 PI (r = −0.734, P = 0.012). ADC was moderately correlated with Ki-67 PI (r = −0.679, P = 0.033). Conclusions: The Kapp value of DKI parameters was strongly correlated with different expression of EGFR, ALK, and Ki-67 in advanced lung adenocarcinoma. The results potentially indicate a surrogate measure of the status of different molecular markers assessed by non-invasive imaging tools.
Collapse
|
47
|
Xie M, Xu X, Fan Y. KRAS-Mutant Non-Small Cell Lung Cancer: An Emerging Promisingly Treatable Subgroup. Front Oncol 2021; 11:672612. [PMID: 34012925 PMCID: PMC8126715 DOI: 10.3389/fonc.2021.672612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer, the leading cause of cancer-related deaths worldwide, can be classified into small cell lung cancer and non-small cell lung cancer (NSCLC). NSCLC is the most common histological type, accounting for 85% of all lung cancers. Kirsten rat sarcoma viral oncogene (KRAS) mutations, common in NSCLC, are associated with poor prognosis, likely due to poor responses to most systemic therapies and lack of targeted drugs. The latest published clinical trial data on new small-molecule KRAS G12C inhibitors, AMG510 and MRTX849, indicate that these molecules may potentially help treat KRAS-mutant NSCLC. Simultaneously, within the immuno-therapeutic process, immune efficacy has been observed in those patients who have KRAS mutations. In this article, the pathogenesis, treatment status, progress of immunotherapy, and targeted therapy of KRAS-mutant NSCLC are reviewed.
Collapse
Affiliation(s)
- Mingying Xie
- Department of Medical Oncology, The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoling Xu
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yun Fan
- Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Thoracic Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
48
|
Zhao T, Tian Y, Ding X, Liu L, Tan B, Yang B, Wu J, Lei T, Wang R, Ding Y. Genetic Analysis and Targeted Therapy Using Buparlisib and MK2206 in a Patient with Triple Metachronous Cancers of the Kidney, Prostate, and Squamous Cell Carcinoma of the Lung: A Case Report. Onco Targets Ther 2021; 14:2839-2845. [PMID: 33953569 PMCID: PMC8091866 DOI: 10.2147/ott.s298697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022] Open
Abstract
Multiple primary cancers (MPC) occurring in the same individual is considered rare but being increasingly recognized owing to the longer cancer survival nowadays. Despite of accumulating experience in diagnosis, effective treatment remains to be problematic in many scenarios. Genetic testing-based targeted therapy could be an invaluable option for both diagnosis and treatment of such patients. Here we present a 74-year-old male with triple primary cancers including kidney, prostate, and lung with metastatic tumor on the costal bones. The patient visited the hospital for persistent cough and hemoptysis, and a diagnosis of squamous cell carcinoma of the left lung was made by bioptic fiberoptic bronchoscopy. A previous history included renal cancer controlled by Sorafenib and prostate cancer controlled by Goserelin. Radiotherapy and platinum-based chemotherapy failed to help the patient and the tumor size increased over a period of 6 months. In order to seek better therapeutical options, we performed targeted sequencing using the cancerous tissues from his lung, kidney, and prostate cancers. Briefly, the results identified VHL, EGFR, PIK3CA, TP53, and AKT1 mutations in lung cancer, AKT1, FGFR2, and TP53 mutations in renal cancer, and FGFR2 mutations in prostate cancer. A combined medication targeting PIK3CA and AKT1 signaling was recommended and the patient was given BKM120 (PIK3CA, Phase III clinical trial) and MK2206 (AKT, phase III clinical trial). Revisit chest CTs after 4 months and 9 months showed a significant shrinkage of tumor size by 40% and 80%, respectively. Our experience demonstrated a good example that genetic analysis could be valuable to diagnose and precisely treat multiple primary cancers.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Yuqin Tian
- Department of Care Operations, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xinjia Ding
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Lin Liu
- Navy Qingdao Special Care Center, Qingdao, 266071, People's Republic of China
| | - Bowen Tan
- The Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Bin Yang
- The Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Jianlin Wu
- The Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China
| | - Ting Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Ruoyu Wang
- Department of Care Operations, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yan Ding
- The Institute for Translational Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, People's Republic of China.,Department of Pediatrics, Children's Hospital of Boston, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
49
|
Ramkumar K, Stewart CA, Cargill KR, Corte CMD, Wang Q, Shen L, Diao L, Cardnell RJ, Peng DH, Rodriguez BL, Fan YH, Heymach JV, Wang J, Gay CM, Gibbons DL, Byers LA. AXL Inhibition Induces DNA Damage and Replication Stress in Non-Small Cell Lung Cancer Cells and Promotes Sensitivity to ATR Inhibitors. Mol Cancer Res 2021; 19:485-497. [PMID: 33172976 PMCID: PMC7925356 DOI: 10.1158/1541-7786.mcr-20-0414] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
AXL, a TAM (TYRO3, AXL, and MERTK) family receptor tyrosine kinase, is increasingly being recognized as a key determinant of resistance to targeted therapies, as well as chemotherapy and radiation in non-small cell lung cancer (NSCLC) and other cancers. We further show here that high levels of AXL and epithelial-to-mesenchymal transition were frequently expressed in subsets of both treatment-naïve and treatment-relapsed NSCLC. Previously, we and others have demonstrated a role for AXL in mediating DNA damage response (DDR), as well as resistance to inhibition of WEE1, a replication stress response kinase. Here, we show that BGB324 (bemcentinib), a selective small-molecule AXL inhibitor, caused DNA damage and induced replication stress, indicated by ATR/CHK1 phosphorylation, more significantly in TP53-deficient NSCLC cell lines. Similar effects were also observed in large-cell neuroendocrine carcinoma (LCNEC) cell lines. High AXL protein levels were also associated with resistance to ATR inhibition. Combined inhibition of AXL and ATR significantly decreased cell proliferation of NSCLC and LCNEC cell lines. Mechanistically, combined inhibition of AXL and ATR significantly increased RPA32 hyperphosphorylation and DNA double-strand breaks and induced markers of mitotic catastrophe. Notably, NSCLC cell lines with low levels of SLFN11, a known predictive biomarker for platinum and PARP inhibitor sensitivity, were more sensitive to AXL/ATR cotargeting. These findings demonstrate a novel and unexpected role for AXL in replication stress tolerance, with potential therapeutic implications. IMPLICATIONS: These findings demonstrate that the combination of AXL and ATR inhibitors could be a promising therapeutic combination for NSCLC, LCNEC, and other cancers.
Collapse
Affiliation(s)
- Kavya Ramkumar
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Allison Stewart
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kasey R. Cargill
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carminia M. Della Corte
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Qi Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Shen
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lixia Diao
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert J. Cardnell
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David H. Peng
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Current affiliation: Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - B. Leticia Rodriguez
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - You-Hong Fan
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John V. Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carl M. Gay
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Don L. Gibbons
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren A. Byers
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA,Corresponding author: Lauren A. Byers, 1515 Holcombe Blvd., Unit 432, Houston, Texas, 77030. Phone: (713) 745-2982; Fax: (713) 792-1220;
| |
Collapse
|
50
|
Stewart CA, Gay CM, Ramkumar K, Cargill KR, Cardnell RJ, Nilsson MB, Heeke S, Park EM, Kundu ST, Diao L, Wang Q, Shen L, Xi Y, Zhang B, Della Corte CM, Fan Y, Kundu K, Gao B, Avila K, Pickering CR, Johnson FM, Zhang J, Kadara H, Minna JD, Gibbons DL, Wang J, Heymach JV, Byers LA. Lung cancer models reveal SARS-CoV-2-induced EMT contributes to COVID-19 pathophysiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.05.28.122291. [PMID: 32577652 PMCID: PMC7302206 DOI: 10.1101/2020.05.28.122291] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
COVID-19 is an infectious disease caused by SARS-CoV-2, which enters host cells via the cell surface proteins ACE2 and TMPRSS2. Using a variety of normal and malignant models and tissues from the aerodigestive and respiratory tracts, we investigated the expression and regulation of ACE2 and TMPRSS2. We find that ACE2 expression is restricted to a select population of highly epithelial cells. Notably, infection with SARS-CoV-2 in cancer cell lines, bronchial organoids, and patient nasal epithelium, induces metabolic and transcriptional changes consistent with epithelial to mesenchymal transition (EMT), including upregulation of ZEB1 and AXL, resulting in an increased EMT score. Additionally, a transcriptional loss of genes associated with tight junction function occurs with SARS-CoV-2 infection. The SARS-CoV-2 receptor, ACE2, is repressed by EMT via TGFbeta, ZEB1 overexpression and onset of EGFR TKI inhibitor resistance. This suggests a novel model of SARS-CoV-2 pathogenesis in which infected cells shift toward an increasingly mesenchymal state, associated with a loss of tight junction components with acute respiratory distress syndrome-protective effects. AXL-inhibition and ZEB1-reduction, as with bemcentinib, offers a potential strategy to reverse this effect. These observations highlight the utility of aerodigestive and, especially, lung cancer model systems in exploring the pathogenesis of SARS-CoV-2 and other respiratory viruses, and offer important insights into the potential mechanisms underlying the morbidity and mortality of COVID-19 in healthy patients and cancer patients alike.
Collapse
Affiliation(s)
- C Allison Stewart
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl M Gay
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kasey R Cargill
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert J Cardnell
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique B Nilsson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth M Park
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samrat T Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingnan Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carminia Maria Della Corte
- Department of Precision Medicine, Oncology Division, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Youhong Fan
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boning Gao
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Faye M Johnson
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John D Minna
- Department of Internal Medicine and Pharmacology, Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Don L Gibbons
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|