1
|
Ritu, Chandra P, Das A. Immune checkpoint targeting antibodies hold promise for combinatorial cancer therapeutics. Clin Exp Med 2023; 23:4297-4322. [PMID: 37804358 DOI: 10.1007/s10238-023-01201-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Through improving the immune system's ability to recognize and combat tumor cells as well as its receptivity to changes in the tumor microenvironment, immunotherapy has emerged as a highly successful addition to the treatment of cancer. However, tumor heterogeneity poses a significant challenge in cancer therapy as it can undermine the anti-tumor immune response through the manipulation of the extracellular matrix. To address these challenges and improve targeted therapies and combination treatments, the food and drug administration has approved several immunomodulatory antibodies to suppress immunological checkpoints. Combinatorial therapies necessitate the identification of multiple targets that regulate the intricate communication between immune cells, cytokines, chemokines, and cellular responses within the tumor microenvironment. The purpose of this study is to provide a comprehensive overview of the ongoing clinical trials involving immunomodulatory antibodies in various cancer types. It explores the potential of these antibodies to modulate the immune system and enhance anti-tumor responses. Additionally, it discusses the perspectives and prospects of immunomodulatory therapeutics in cancer treatment. Although immunotherapy shows great promise in cancer treatment, it is not exempt from side effects that can arise due to hyperactivity of the immune system. Therefore, understanding the intricate balance between immune activation and regulation is crucial for minimizing these adverse effects and optimizing treatment outcomes. This study aims to contribute to the growing body of knowledge surrounding immunomodulatory antibodies and their potential as effective therapeutic options in cancer treatment, ultimately paving the way for improved patient outcomes and deepening our perception of the intricate interactivity between the immune system and tumors.
Collapse
Affiliation(s)
- Ritu
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Prakash Chandra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, New Delhi, 110042, India.
| |
Collapse
|
2
|
Shan F, Cillo AR, Cardello C, Yuan DY, Kunning SR, Cui J, Lampenfeld C, Williams AM, McDonough AP, Pennathur A, Luketich JD, Kirkwood JM, Ferris RL, Bruno TC, Workman CJ, Benos PV, Vignali DAA. Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells. Sci Immunol 2023; 8:eadf6717. [PMID: 37713508 PMCID: PMC11045170 DOI: 10.1126/sciimmunol.adf6717] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 08/21/2023] [Indexed: 09/17/2023]
Abstract
Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.
Collapse
Affiliation(s)
- Feng Shan
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Integrative Systems Biology Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Carly Cardello
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daniel Y. Yuan
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheryl R. Kunning
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Caleb Lampenfeld
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Asia M. Williams
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Alexandra P. McDonough
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Arjun Pennathur
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John M. Kirkwood
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert L. Ferris
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Creg J. Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Panayiotis V. Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Dario A. A. Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Javid H, Attarian F, Saadatmand T, Rezagholinejad N, Mehri A, Amiri H, Karimi-Shahri M. The therapeutic potential of immunotherapy in the treatment of breast cancer: Rational strategies and recent progress. J Cell Biochem 2023; 124:477-494. [PMID: 36966454 DOI: 10.1002/jcb.30402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/27/2023]
Abstract
The second leading cause of cancer death in women worldwide is breast cancer (BC), and despite significant advances in BC therapies, a significant proportion of patients develop metastasis and disease recurrence. Currently used treatments, like radiotherapy, chemotherapy, and hormone replacement therapy, result in poor responses and high recurrence rates. Alternative therapies are therefore needed for this type of cancer. Cancer patients may benefit from immunotherapy, a novel treatment strategy in cancer treatment. Even though immunotherapy has been successful in many cases, some patients do not respond to the treatment or those who do respond relapse or progress. The purpose of this review is to discuss several different immunotherapy approaches approved for the treatment of BC, as well as different strategies for immunotherapy for the treatment of BC.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Toktam Saadatmand
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Endoscopic and Minimally Invasive Surgery Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
4
|
Postel-Vinay S, Lam VK, Ros W, Bauer TM, Hansen AR, Cho DC, Stephen Hodi F, Schellens JHM, Litton JK, Aspeslagh S, Autio KA, Opdam FL, McKean M, Somaiah N, Champiat S, Altan M, Spreafico A, Rahma O, Paul EM, Ahlers CM, Zhou H, Struemper H, Gorman SA, Watmuff M, Yablonski KM, Yanamandra N, Chisamore MJ, Schmidt EV, Hoos A, Marabelle A, Weber JS, Heymach JV. First-in-human phase I study of the OX40 agonist GSK3174998 with or without pembrolizumab in patients with selected advanced solid tumors (ENGAGE-1). J Immunother Cancer 2023; 11:jitc-2022-005301. [PMID: 36927527 PMCID: PMC10030671 DOI: 10.1136/jitc-2022-005301] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The phase I first-in-human study ENGAGE-1 evaluated the humanized IgG1 OX40 agonistic monoclonal antibody GSK3174998 alone (Part 1 (P1)) or in combination with pembrolizumab (Part 2 (P2)) in patients with advanced solid tumors. METHODS GSK3174998 (0.003-10 mg/kg) ± pembrolizumab (200 mg) was administered intravenously every 3 weeks using a continuous reassessment method for dose escalation. Primary objectives were safety and tolerability; secondary objectives included pharmacokinetics, immunogenicity, pharmacodynamics, and clinical activity. RESULTS 138 patients were enrolled (45 (P1) and 96 (P2, including 3 crossovers)). Treatment-related adverse events occurred in 51% (P1) and 64% (P2) of patients, fatigue being the most common (11% and 24%, respectively). No dose-toxicity relationship was observed, and maximum-tolerated dose was not reached. Dose-limiting toxicities (P2) included Grade 3 (G3) pleural effusion and G1 myocarditis with G3 increased troponin. GSK3174998 ≥0.3 mg/kg demonstrated pharmacokinetic linearity and >80% receptor occupancy on circulating T cells; 0.3 mg/kg was selected for further evaluation. Limited clinical activity was observed for GSK3174998 (P1: disease control rate (DCR) ≥24 weeks 9%) and was not greater than that expected for pembrolizumab alone (P2: overall response rate 8%, DCR ≥24 weeks 28%). Multiplexed immunofluorescence data from paired biopsies suggested that increased infiltration of natural killer (NK)/natural killer T (NKT) cells and decreased regulatory T cells (Tregs) in the tumor microenvironment may contribute to clinical responses: CD16+CD56-CD134+ NK /NKT cells and CD3+CD4+FOXP3+CD134+ Tregs exhibited the largest magnitude of change on treatment, whereas CD3+CD8+granzyme B+PD-1+CD134+ cytotoxic T cells were the least variable. Tumor gene expression profiling revealed an upregulation of inflammatory responses, T-cell proliferation, and NK cell function on treatment with some inflammatory cytokines upregulated in peripheral blood. However, target engagement, evidenced by pharmacologic activity in peripheral blood and tumor tissue, did not correlate with clinical efficacy. The low number of responses precluded identifying a robust biomarker signature predictive of response. CONCLUSIONS GSK3174998±pembrolizumab was well tolerated over the dose range tested and demonstrated target engagement. Limited clinical activity does not support further development of GSK3174998±pembrolizumab in advanced cancers. TRIAL REGISTRATION NUMBER NCT02528357.
Collapse
Affiliation(s)
- Sophie Postel-Vinay
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Vincent K Lam
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Willeke Ros
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Todd M Bauer
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Daniel C Cho
- New York Medical College, Valhalla, New York, USA
| | - F Stephen Hodi
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan H M Schellens
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jennifer K Litton
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sandrine Aspeslagh
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Karen A Autio
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Frans L Opdam
- Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Neeta Somaiah
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Mehmet Altan
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Spreafico
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Osama Rahma
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Elaine M Paul
- GlaxoSmithKline, Research Triangle Park, North Carolina, USA
| | | | - Helen Zhou
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | | | | - Axel Hoos
- GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - John V Heymach
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Wang F, Yang M, Luo W, Zhou Q. Characteristics of tumor microenvironment and novel immunotherapeutic strategies for non-small cell lung cancer. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:243-262. [PMID: 39036549 PMCID: PMC11256730 DOI: 10.1016/j.jncc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/08/2022] Open
Abstract
Immune checkpoint inhibitor-based immunotherapy has revolutionized the treatment approach of non-small cell lung cancer (NSCLC). Monoclonal antibodies against programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) are widely used in clinical practice, but other antibodies that can circumvent innate and acquired resistance are bound to undergo preclinical and clinical studies. However, tumor cells can develop and facilitate the tolerogenic nature of the tumor microenvironment (TME), resulting in tumor progression. Therefore, the immune escape mechanisms exploited by growing lung cancer involve a fine interplay between all actors in the TME. A better understanding of the molecular biology of lung cancer and the cellular/molecular mechanisms involved in the crosstalk between lung cancer cells and immune cells in the TME could identify novel therapeutic weapons in the old war against lung cancer. This article discusses the role of TME in the progression of lung cancer and pinpoints possible advances and challenges of immunotherapy for NSCLC.
Collapse
Affiliation(s)
- Fen Wang
- Department of Oncology, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen-Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingyi Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weichi Luo
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Davis EJ, Martin-Liberal J, Kristeleit R, Cho DC, Blagden SP, Berthold D, Cardin DB, Vieito M, Miller RE, Hari Dass P, Orcurto A, Spencer K, Janik JE, Clark J, Condamine T, Pulini J, Chen X, Mehnert JM. First-in-human phase I/II, open-label study of the anti-OX40 agonist INCAGN01949 in patients with advanced solid tumors. J Immunother Cancer 2022; 10:jitc-2021-004235. [PMID: 36316061 PMCID: PMC9628691 DOI: 10.1136/jitc-2021-004235] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND OX40 is a costimulatory receptor upregulated on antigen-activated T cells and constitutively expressed on regulatory T cells (Tregs). INCAGN01949, a fully human immunoglobulin G1κ anti-OX40 agonist monoclonal antibody, was designed to promote tumor-specific immunity by effector T-cell activation and Fcγ receptor-mediated Treg depletion. This first-in-human study was conducted to determine the safety, tolerability, and preliminary efficacy of INCAGN01949. METHODS Phase I/II, open-label, non-randomized, dose-escalation and dose-expansion study conducted in patients with advanced or metastatic solid tumors. Patients received INCAGN01949 monotherapy (7-1400 mg) in 14-day cycles while deriving benefit. Safety measures, clinical activity, pharmacokinetics, and pharmacodynamic effects were assessed and summarized with descriptive statistics. RESULTS Eighty-seven patients were enrolled; most common tumor types were colorectal (17.2%), ovarian (8.0%), and non-small cell lung (6.9%) cancers. Patients received a median three (range 1-9) prior therapies, including immunotherapy in 24 patients (27.6%). Maximum tolerated dose was not reached; one patient (1.1%) receiving 350 mg dose reported dose-limiting toxicity of grade 3 colitis. Treatment-related adverse events were reported in 45 patients (51.7%), with fatigue (16 (18.4%)), rash (6 (6.9%)), and diarrhea (6 (6.9%)) being most frequent. One patient (1.1%) with metastatic gallbladder cancer achieved a partial response (duration of 6.3 months), and 23 patients (26.4%) achieved stable disease (lasting >6 months in one patient). OX40 receptor occupancy was maintained over 90% among all patients receiving doses of ≥200 mg, while no treatment-emergent antidrug antibodies were detected across all dose levels. Pharmacodynamic results demonstrated that treatment with INCAGN01949 did not enhance proliferation or activation of T cells in peripheral blood or reduce circulating Tregs, and analyses of tumor biopsies did not demonstrate any consistent increase in effector T-cell infiltration or function, or decrease in infiltrating Tregs. CONCLUSION No safety concerns were observed with INCAGN01949 monotherapy in patients with metastatic or advanced solid tumors. However, tumor responses and pharmacodynamic effects on T cells in peripheral blood and post-therapy tumor biopsies were limited. Studies evaluating INCAGN01949 in combination with other therapies are needed to further evaluate the potential of OX40 agonism as a therapeutic approach in patients with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT02923349.
Collapse
Affiliation(s)
| | | | | | - Daniel C Cho
- Perlmutter Cancer Center, NYU Langone Health, NYU Grossman School of Medicine, New York, New York, USA
| | | | - Dominik Berthold
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Dana B Cardin
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Vieito
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Prashanth Hari Dass
- Early Phase Clinical Trials Unit, Churchill Hospital, University of Oxford, Oxford, UK
| | - Angela Orcurto
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | | | | | - Jason Clark
- Incyte Corporation, Wilmington, Delaware, USA
| | | | | | - Xuejun Chen
- Incyte Corporation, Wilmington, Delaware, USA
| | | |
Collapse
|
7
|
Liu L, Wu Y, Ye K, Cai M, Zhuang G, Wang J. Antibody-Targeted TNFRSF Activation for Cancer Immunotherapy: The Role of FcγRIIB Cross-Linking. Front Pharmacol 2022; 13:924197. [PMID: 35865955 PMCID: PMC9295861 DOI: 10.3389/fphar.2022.924197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Co-stimulation signaling in various types of immune cells modulates immune responses in physiology and disease. Tumor necrosis factor receptor superfamily (TNFRSF) members such as CD40, OX40 and CD137/4-1BB are expressed on myeloid cells and/or lymphocytes, and they regulate antigen presentation and adaptive immune activities. TNFRSF agonistic antibodies have been evaluated extensively in preclinical models, and the robust antitumor immune responses and efficacy have encouraged continued clinical investigations for the last two decades. However, balancing the toxicities and efficacy of TNFRSF agonistic antibodies remains a major challenge in the clinical development. Insights into the co-stimulation signaling biology, antibody structural roles and their functionality in immuno-oncology are guiding new advancement of this field. Leveraging the interactions between antibodies and the inhibitory Fc receptor FcγRIIB to optimize co-stimulation agonistic activities dependent on FcγRIIB cross-linking selectively in tumor microenvironment represents the current frontier, which also includes cross-linking through tumor antigen binding with bispecific antibodies. In this review, we will summarize the immunological roles of TNFRSF members and current clinical studies of TNFRSF agonistic antibodies. We will also cover the contribution of different IgG structure domains to these agonistic activities, with a focus on the role of FcγRIIB in TNFRSF cross-linking and clustering bridged by agonistic antibodies. We will review and discuss several Fc-engineering approaches to optimize Fc binding ability to FcγRIIB in the context of proper Fab and the epitope, including a cross-linking antibody (xLinkAb) model and its application in developing TNFRSF agonistic antibodies with improved efficacy and safety for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Yi Wu
- Lyvgen Biopharma, Shanghai, China
| | - Kaiyan Ye
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meichun Cai
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
8
|
Goldman JW, Piha-Paul SA, Curti B, Pedersen KS, Bauer TM, Groenland SL, Carvajal RD, Chhaya V, Kirby G, McGlinchey K, Hammond SA, Streicher KL, Townsley D, Chae YK, Voortman J, Marabelle A, Powderly J. Safety and tolerability of MEDI0562, an OX40 agonist monoclonal antibody, in combination with durvalumab or tremelimumab in adult patients with advanced solid tumors. Clin Cancer Res 2022; 28:3709-3719. [PMID: 35699623 DOI: 10.1158/1078-0432.ccr-21-3016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Combination therapies targeting immunological checkpoints have shown promise in treating multiple tumor types. We report safety and tolerability of MEDI0562, a humanized IgG1K OX40 monoclonal antibody, in combination with durvalumab (anti-PD-L1), or tremelimumab (anti-CTLA-4), in adult patients with previously treated advanced solid tumors. EXPERIMENTAL DESIGN In this phase 1, multicenter, open-label study, patients received escalating doses of MEDI0562 (2.25, 7.5, or 22.5 mg) every two weeks (Q2W) in combination with durvalumab (1500 mg) or tremelimumab (75 or 225 mg) Q4W, intravenously, until unacceptable toxicity or progressive disease. Tumor assessments were performed Q8W. The primary objective was to evaluate safety and tolerability. RESULTS Among the 27 and 31 patients who received MEDI0562 + durvalumab or MEDI0562 + tremelimumab, 74.1% and 67.7% reported a treatment-related adverse event (AE), and 22.2% and 19.4% experienced a treatment‑emergent AE that led to discontinuation, respectively. The maximum tolerated dose of MEDI0562 + durvalumab was 7.5 mg MEDI0562 + 1500 mg durvalumab; the maximum administered dose of MEDI0562 + tremelimumab was 22.5 mg MEDI0562 + 225 mg tremelimumab. Three patients in the MEDI0562 + durvalumab arm had a partial response. The mean percentage of Ki67+CD4+ and Ki67+CD8+ memory T cells increased by >100% following the first dose of MEDI0562 + durvalumab or tremelimumab in all dose cohorts. A decrease in OX40+FOXP3 T regulatory cells was observed in a subset of patients with available paired biopsies. CONCLUSIONS Following dose escalation, moderate toxicity was observed in both treatment arms, with no clear efficacy signals demonstrated.
Collapse
Affiliation(s)
| | - Sarina A Piha-Paul
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brendan Curti
- Providence Cancer Center and Earle A. Chiles Research Institute, Portland, OR, United States
| | | | - Todd M Bauer
- Sarah Cannon Research Institute / Tennessee Oncology, PLLC., Nashville, TN, United States
| | | | | | - Vaishali Chhaya
- AstraZeneca (United States), Gaithersburg, MD, United States
| | - Gray Kirby
- AstraZeneca (United States), Gaithersburg, MD, United States
| | - Kelly McGlinchey
- AstraZeneca (United Kingdom), Gaithersburg, Maryland, United States
| | | | | | | | - Young Kwang Chae
- Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - John Powderly
- Carolina BioOncology Institute, Huntersville, NC, United States
| |
Collapse
|
9
|
Krzyżanowska N, Wojas-Krawczyk K, Milanowski J, Krawczyk P. Future Prospects of Immunotherapy in Non-Small-Cell Lung Cancer Patients: Is There Hope in Other Immune Checkpoints Targeting Molecules? Int J Mol Sci 2022; 23:3087. [PMID: 35328510 PMCID: PMC8950480 DOI: 10.3390/ijms23063087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Currently, one of the leading treatments for non-small-cell lung cancer is immunotherapy involving immune checkpoint inhibitors. These monoclonal antibodies restore the anti-tumour immune response altered by negative immune checkpoint interactions. The most commonly used immunotherapeutics in monotherapy are anti-PD-1 and anti-PD-L1 antibodies. The effectiveness of both groups of antibodies has been proven in many clinical trials, which have translated into positive immunotherapeutic registrations for cancer patients worldwide. These antibodies are generally well tolerated, and certain patients achieve durable responses. However, given the resistance of some patients to this form of therapy, along with its other drawbacks, such as adverse events, alternatives are constantly being sought. Specifically, new drugs targeting already known molecules are being tested, and new potential targets are being explored. The aim of this paper is to provide an overview of the latest developments in this area.
Collapse
Affiliation(s)
- Natalia Krzyżanowska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland; (K.W.-K.); (J.M.); (P.K.)
| | | | | | | |
Collapse
|
10
|
Corke L, Sacher A. New Strategies and Combinations to Improve Outcomes in Immunotherapy in Metastatic Non-Small-Cell Lung Cancer. Curr Oncol 2021; 29:38-55. [PMID: 35049678 PMCID: PMC8774728 DOI: 10.3390/curroncol29010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint inhibitors have transformed the treatment of metastatic non-small-cell lung cancer, yielding marked improvements in survival and the potential for durable clinical responses. Primary and acquired resistance to current immune checkpoint inhibitors constitute a key challenge despite the remarkable responses observed in a subset of patients. Multiple novel combination immunotherapy and adoptive cell therapy strategies are presently being developed to address treatment resistance. The success of these strategies hinges upon rational clinical trial design as well as careful consideration of the immunologic mechanisms within the variable tumor immune microenvironment (TIME) which underpin resistance to immunotherapy. Further research is needed to facilitate a deeper understanding of these complex mechanisms within the TIME, which may ultimately provide the key to restoring and enhancing an effective anti-tumor immune response. This review aims to provide an introduction to some of the recent and notable combination immunotherapy and cell therapy strategies used in advanced non-small-cell lung cancer (NSCLC), and the rationale for their use based on current understanding of the anti-tumor immune response and mechanisms of resistance within the TIME.
Collapse
Affiliation(s)
- Lucy Corke
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada;
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
11
|
Abstract
Melanoma is the most lethal skin cancer that originates from the malignant transformation of melanocytes. Although melanoma has long been regarded as a cancerous malignancy with few therapeutic options, increased biological understanding and unprecedented innovations in therapies targeting mutated driver genes and immune checkpoints have substantially improved the prognosis of patients. However, the low response rate and inevitable occurrence of resistance to currently available targeted therapies have posed the obstacle in the path of melanoma management to obtain further amelioration. Therefore, it is necessary to understand the mechanisms underlying melanoma pathogenesis more comprehensively, which might lead to more substantial progress in therapeutic approaches and expand clinical options for melanoma therapy. In this review, we firstly make a brief introduction to melanoma epidemiology, clinical subtypes, risk factors, and current therapies. Then, the signal pathways orchestrating melanoma pathogenesis, including genetic mutations, key transcriptional regulators, epigenetic dysregulations, metabolic reprogramming, crucial metastasis-related signals, tumor-promoting inflammatory pathways, and pro-angiogenic factors, have been systemically reviewed and discussed. Subsequently, we outline current progresses in therapies targeting mutated driver genes and immune checkpoints, as well as the mechanisms underlying the treatment resistance. Finally, the prospects and challenges in the development of melanoma therapy, especially immunotherapy and related ongoing clinical trials, are summarized and discussed.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, 710032, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Smith PL, Piadel K, Dalgleish AG. Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines (Basel) 2021; 9:1392. [PMID: 34960140 PMCID: PMC8708201 DOI: 10.3390/vaccines9121392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccination and immunotherapy revolutionised the treatment of cancer, a result of decades of research into the immune system in health and disease. However, despite recent breakthroughs in treating otherwise terminal cancer, only a minority of patients respond to cancer immunotherapy and some cancers are largely refractive to immunotherapy treatment. This is due to numerous issues intrinsic to the tumour, its microenvironment, or the immune system. CD4+ and CD8+ αβ T-cells emerged as the primary effector cells of the anti-tumour immune response but their function in cancer patients is often compromised. This review details the mechanisms by which T-cell responses are hindered in the setting of cancer and refractive to immunotherapy, and details many of the approaches under investigation to direct T-cell function and improve the efficacy of cancer vaccination and immunotherapy.
Collapse
Affiliation(s)
- Peter Lawrence Smith
- Institute of Infection and Immunity, St. Georges University of London, London SW17 0RE, UK; (K.P.); (A.G.D.)
| | | | | |
Collapse
|
13
|
Roles of OX40 and OX40 Ligand in Mycosis Fungoides and Sézary Syndrome. Int J Mol Sci 2021; 22:ijms222212576. [PMID: 34830466 PMCID: PMC8617822 DOI: 10.3390/ijms222212576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
Mycosis fungoides (MF) and Sézary syndrome (SS), the most common types of cutaneous T-cell lymphoma (CTCL), are characterized by proliferation of mature CD4+ T-helper cells. Patients with advanced-stage MF and SS have poor prognosis, with 5-year survival rates of 52%. Although a variety of systemic therapies are currently available, there are no curative options for such patients except for stem cell transplantation, and thus the treatment of advanced MF and SS still remains challenging. Therefore, elucidation of the pathophysiology of MF/SS and development of medical treatments are desired. In this study, we focused on a molecule called OX40. We examined OX40 and OX40L expression and function using clinical samples of MF and SS and CTCL cell lines. OX40 and OX40L were co-expressed on tumor cells of MF and SS. OX40 and OX40L expression was increased and correlated with disease severity markers in MF/SS patients. Anti-OX40 antibody and anti-OX40L antibody suppressed the proliferation of CTCL cell lines both in vitro and in vivo. These results suggest that OX40–OX40L interactions could contribute to the proliferation of MF/SS tumor cells and that the disruption of OX40–OX40L interactions could become a new therapeutic strategy for the treatment of MF/SS.
Collapse
|
14
|
Porciuncula A, Morgado M, Gupta R, Syrigos K, Meehan R, Zacharek SJ, Frederick JP, Schalper KA. Spatial Mapping and Immunomodulatory Role of the OX40/OX40L Pathway in Human Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 27:6174-6183. [PMID: 34518312 DOI: 10.1158/1078-0432.ccr-21-0987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/12/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the tissue distribution and clinical significance of OX40 and OX40L in human non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Using multiplexed quantitative immunofluorescence, we conducted simultaneous and localized measurements of OX40 and OX40L proteins, major T-cell subsets, and conventional type 1 dendritic cells (cDC1) in 614 primary NSCLCs from three independent cohorts represented in tissue microarrays. We also measured OX40L protein in samples from a phase I clinical trial of intratumor administration of a lipid nanoparticle encapsulated mRNA encoding OX40L (mRNA-2416) in human solid tumors. Finally, we studied the OX40 pathway in 212 uterine/ovarian serous carcinomas. RESULTS OX40 protein was expressed in approximately 90% of NSCLCs, and OX40L was detected in approximately 10% of cases. Increased expression of OX40 was associated with higher CD4+ and CD8+ T lymphocytes, as well as cDC1s. Elevated expression of OX40L was consistently associated with increased CD4+ tumor-infiltrating lymphocytes and longer overall survival. No association was found between OX40 or OX40L levels and oncogenic driver mutations in EGFR and KRAS in lung adenocarcinomas. Delivering OX40L mRNA using intratumor mRNA-2416 injection mediated increased local OX40L protein levels that was most prominent in a patient with ovarian serous carcinoma. Detectable OX40L protein levels were observed in 15% of primary uterine/ovarian serous malignancies and associated with longer survival. CONCLUSIONS The OX40 pathway is expressed in a fraction of NSCLCs and is associated with a favorable immune contexture. Although OX40L is uncommonly expressed in NSCLC and serous malignancies, it is associated with better prognosis and can be introduced using exogenous mRNA.
Collapse
Affiliation(s)
- Angelo Porciuncula
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Micaela Morgado
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Richa Gupta
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Kostas Syrigos
- Oncology Unit, Department of Medicine, Athens University, Athens, Greece
| | | | | | | | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
15
|
Oh SY, Kim S, Keam B, Kim TM, Kim DW, Heo DS. Soluble PD-L1 is a predictive and prognostic biomarker in advanced cancer patients who receive immune checkpoint blockade treatment. Sci Rep 2021; 11:19712. [PMID: 34611279 PMCID: PMC8492653 DOI: 10.1038/s41598-021-99311-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Circulating soluble programmed death-1 ligand (sPD-L1) is measurable in the serum of cancer patients. This study aimed to investigate the significance of sPD-L1 in cancer patients receiving immune checkpoint inhibitor therapy. Blood samples were obtained before and after immune checkpoint inhibitor therapy (January 2015 to January 2019). The study cohort consisted of 128 patients who were diagnosed with non-small cell lung cancer (n = 50), melanoma (n = 31), small cell lung cancer (n = 14), urothelial carcinoma (n = 13), and other cancers (n = 20). Patients with a high level (> 11.0 pg/μL) of sPD-L1 were more likely to exhibit progressive disease compared with those with a low level (41.8% versus 20.7%, p = 0.013). High sPD-L1 was also associated with worse prognosis; the median PFS was 2.9 (95% confidence interval [CI] 2.1-3.7) months versus 6.3 (95% CI 3.0-9.6) months (p = 0.023), and the median OS was 7.4 (95% CI 6.3-8.5) months versus 13.3 (95% CI 9.2-17.4) months (p = 0.005). In the multivariate analyses, high sPD-L1 was an independent prognostic factor for both decreased PFS (HR 1.928, p = 0.038) and OS (HR 1.788, p = 0.004). sPD-L1 levels did not correlate with tissue PD-L1 expression. However, sPD-L1 levels were positively correlated with neutrophil to lymphocyte ratios and negatively correlated with both the proportion and the total number of lymphocytes. We found that high pretreatment sPD-L1 levels were associated with progressive disease and were an independent prognostic factor predicting lower PFS and OS in these patients.
Collapse
Affiliation(s)
- So Yeon Oh
- Medical Oncology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University and Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bhumsuk Keam
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae Min Kim
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University and Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Dae Seog Heo
- Biomedical Research Institute, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
16
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Hashimoto K. CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development. Cancers (Basel) 2021; 13:2288. [PMID: 34064598 PMCID: PMC8150789 DOI: 10.3390/cancers13102288] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have altered the treatment landscape significantly in several cancers, yet not enough for many cancer patients. T cell costimulatory receptors have been pursued as targets for the next generation of cancer immunotherapies, however, sufficient clinical efficacy has not yet been achieved. CD137 (TNFRSF9, 4-1BB) provides co-stimulatory signals and activates cytotoxic effects of CD8+ T cells and helps to form memory T cells. In addition, CD137 signalling can activate NK cells and dendritic cells which further supports cytotoxic T cell activation. An agonistic monoclonal antibody to CD137, urelumab, provided promising clinical efficacy signals but the responses were achieved above the maximum tolerated dose. Utomilumab is another CD137 monoclonal antibody to CD137 but is not as potent as urelumab. Recent advances in antibody engineering technologies have enabled mitigation of the hepato-toxicity that hampered clinical application of urelumab and have enabled to maintain similar potency to urelumab. Next generation CD137 targeting molecules currently in clinical trials support T cell and NK cell expansion in patient samples. CD137 targeting molecules in combination with checkpoint inhibitors or ADCC-enhancing monoclonal antibodies have been sought to improve both clinical safety and efficacy. Further investigation on patient samples will be required to provide insights to understand compensating pathways for future combination strategies involving CD137 targeting agents to optimize and maintain the T cell activation status in tumors.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Crescendo Biologics, Ltd., Meditrina Building 260, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
18
|
Huang L, Guo Y, Liu S, Wang H, Zhu J, Ou L, Xu X. Targeting regulatory T cells for immunotherapy in melanoma. MOLECULAR BIOMEDICINE 2021; 2:11. [PMID: 34806028 PMCID: PMC8591697 DOI: 10.1186/s43556-021-00038-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are essential in the maintenance of immunity, and they are also a key to immune suppressive microenvironment in solid tumors. Many studies have revealed the biology of Tregs in various human pathologies. Here we review recent understandings of the immunophenotypes and suppressive functions of Tregs in melanoma, including Treg recruitment and expansion in a tumor. Tregs are frequently accumulated in melanoma and the ratio of CD8+ T cells versus Tregs in the melanoma is predictive for patient survival. Hence, depletion of Tregs is a promising strategy for the enhancement of anti-melanoma immunity. Many recent studies are aimed to target Tregs in melanoma. Distinguishing Tregs from other immune cells and understanding the function of different subsets of Tregs may contribute to better therapeutic efficacy. Depletion of functional Tregs from the tumor microenvironment has been tested to induce clinically relevant immune responses against melanomas. However, the lack of Treg specific therapeutic antibodies or Treg specific depleting strategies is a big hurdle that is yet to be overcome. Additional studies to fine-tune currently available therapies and more agents that specifically and selectively target tumor infiltrating Tregs in melanoma are urgently needed.
Collapse
Affiliation(s)
- Lili Huang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yeye Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Shujing Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Huaishan Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Jinjin Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Lingling Ou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
19
|
Passiglia F, Reale ML, Cetoretta V, Novello S. Immune-Checkpoint Inhibitors Combinations in Metastatic NSCLC: New Options on the Horizon? Immunotargets Ther 2021; 10:9-26. [PMID: 33575224 PMCID: PMC7872895 DOI: 10.2147/itt.s253581] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 11/23/2022] Open
Abstract
The therapeutic targeting of the programmed death-1 (PD-1)/programmed death ligand-1 (PD-L1) axis marked a milestone in the treatment of non-small cell lung cancer (NSCLC), leading to unprecedented response duration and long-term survival for a relevant subgroup of patients affected by non-oncogene-addicted, metastatic disease. However, the biological heterogeneity as well as the occurrence of innate/acquired resistance are well-known phenomena which significantly affect the therapeutic response to immunotherapy. To date, we are moving towards the second phase of the "immune-revolution", characterized by the advent of new immune-checkpoint inhibitors combinations, aiming to target the main resistance pathways and ultimately increase the number of NSCLC patients who may derive long-term clinical benefit from immunotherapy. In this review, we provide an updated and comprehensive overview of the main PD-1/PD-L1 inhibitors' combination approaches under clinical investigation in non-oncogene addicted, metastatic NSCLC patients, including checkpoints (other than CTLA-4) as well as "immune-metabolism" modulators, DNA repair pathway inhibitors, antiangiogenic agents, cytokines, and a new generation of vaccines, with the final aim of identifying the most promising options on the horizon.
Collapse
Affiliation(s)
- Francesco Passiglia
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Maria Lucia Reale
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Valeria Cetoretta
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| | - Silvia Novello
- Department of Oncology, University of Turin, S. Luigi Gonzaga Hospital, Orbassano (TO), Italy
| |
Collapse
|
20
|
Abstract
Immunotherapy has revolutionized the landscape of cancer treatment and become a standard pillar of the treatment. The two main drivers, immune checkpoint inhibitors and chimeric antigen receptor T cells, contributed to this unprecedented success. However, despite the striking clinical improvements, most patients still suffer from disease progression because of the evolution of primary or acquired resistance. This mini-review summa-rizes new treatment options including novel targets and interesting combinational approaches to increase our understanding of the mechanisms of the action of and resistance to immunotherapy, to expand our knowledge of advances in biomarker and therapeutics development, and to help to find the most appropriate option or a way of overcoming the resistance for cancer patients.
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
21
|
Dey Sarkar R, Sinha S, Biswas N. Manipulation of Inflammasome: A Promising Approach Towards Immunotherapy of Lung Cancer. Int Rev Immunol 2021; 40:171-182. [PMID: 33508984 DOI: 10.1080/08830185.2021.1876044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation has emerged as a key player at different stages of cancer development. A prominent signaling pathway for acute and chronic inflammation is the activation of the caspase-1 inflammasomes. These are complexes that assemble on activation of certain nucleotide-binding domain, leucine-rich repeat containing proteins (NLRs), AIM2-like receptors (ALRs), or pyrin due to activation via PAMPs or DAMPs. Of these, five complexes-NLRP1, NLRP3, NLRC4, Pyrin, and AIM2 are of importance in the context of cancer for their activities in modulating immune responses, cell proliferation, and apoptosis. Inflammasomes have emerged as clinically relevant in multiple forms of cancer making them highly promising targets for cancer therapy. As lungs are a tissue niche that is prone to inflammation owing to its exposure to external substances, inflammasomes play a vital role in the development and pathogenesis of lung cancer. Therefore, manipulation of inflammasome by various immunomodulatory means could prove a full-proof strategy for the treatment of lung cancer. Here, in this review, we tried to explore the various strategies to target the inflammasomes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Rupak Dey Sarkar
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
22
|
Lee DH. Update of early phase clinical trials in cancer immunotherapy. BMB Rep 2021; 54:70-88. [PMID: 33407992 PMCID: PMC7851447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/26/2020] [Accepted: 12/15/2020] [Indexed: 09/20/2023] Open
Abstract
Immunotherapy has revolutionized the landscape of cancer treatment and become a standard pillar of the treatment. The two main drivers, immune checkpoint inhibitors and chimeric antigen receptor T cells, contributed to this unprecedented success. However, despite the striking clinical improvements, most patients still suffer from disease progression because of the evolution of primary or acquired resistance. This mini-review summarizes new treatment options including novel targets and interesting combinational approaches to increase our understanding of the mechanisms of the action of and resistance to immunotherapy, to expand our knowledge of advances in biomarker and therapeutics development, and to help to find the most appropriate option or a way of overcoming the resistance for cancer patients. [BMB Reports 2021; 54(1): 70-88].
Collapse
Affiliation(s)
- Dae Ho Lee
- Department of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea
| |
Collapse
|
23
|
The Landscape of Immunotherapy in Advanced NSCLC: Driving Beyond PD-1/PD-L1 Inhibitors (CTLA-4, LAG3, IDO, OX40, TIGIT, Vaccines). Curr Oncol Rep 2021; 23:126. [PMID: 34453261 PMCID: PMC8397682 DOI: 10.1007/s11912-021-01124-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In this review, we analyzed the current landscape of non-PD-(L)1 targeting immunotherapy. RECENT FINDINGS The advent of immunotherapy has completely changed the standard approach toward advanced NSCLC. Inhibitors of the PD-1/PD-L1 axis have quickly taken place as first-line treatment for NSCLC patients without targetable "driver" mutations. However, a non-negligible portion of patients derive modest benefit from immune-checkpoint inhibitors, and valid second-line alternatives are lacking, pushing researchers to analyze other molecules and pathways as potentially viable targets in the struggle against NSCLC. Starting from the better characterized CTLA-4 inhibitors, we then critically collected the actual knowledge on NSCLC vaccines as well as on other emerging molecules, many of them in their early phase of testing, to provide to the reader a comprehensive overview of the state of the art of immunotherapy in NSCLC beyond PD-1/PD-L1 inhibitors.
Collapse
|
24
|
Gutierrez M, Moreno V, Heinhuis KM, Olszanski AJ, Spreafico A, Ong M, Chu Q, Carvajal RD, Trigo J, Ochoa de Olza M, Provencio M, De Vos FY, De Braud F, Leong S, Lathers D, Wang R, Ravindran P, Feng Y, Aanur P, Melero I. OX40 Agonist BMS-986178 Alone or in Combination With Nivolumab and/or Ipilimumab in Patients With Advanced Solid Tumors. Clin Cancer Res 2020; 27:460-472. [PMID: 33148673 DOI: 10.1158/1078-0432.ccr-20-1830] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I/IIa study (NCT02737475) evaluated the safety and activity of BMS-986178, a fully human OX40 agonist IgG1 mAb, ± nivolumab and/or ipilimumab in patients with advanced solid tumors. PATIENTS AND METHODS Patients (with non-small cell lung, renal cell, bladder, other advanced cancers) received BMS-986178 (20-320 mg) ± nivolumab (240-480 mg) and/or ipilimumab (1-3 mg/kg). The primary endpoint was safety. Additional endpoints included immunogenicity, pharmacodynamics, pharmacokinetics, and antitumor activity per RECIST version 1.1. RESULTS Twenty patients received BMS-986178 monotherapy, and 145 received combination therapy in various regimens (including two patients receiving nivolumab monotherapy). With a follow-up of 1.1 to 103.6 weeks, the most common (≥5%) treatment-related adverse events (TRAEs) included fatigue, pruritus, rash, pyrexia, diarrhea, and infusion-related reactions. Overall, grade 3-4 TRAEs occurred in one of 20 patients (5%) receiving BMS-986178 monotherapy, six of 79 (8%) receiving BMS-986178 plus nivolumab, zero of two receiving nivolumab monotherapy, six of 41 (15%) receiving BMS-986178 plus ipilimumab, and three of 23 (13%) receiving BMS-986178 plus nivolumab plus ipilimumab. No deaths occurred. No dose-limiting toxicities were observed with monotherapy, and the MTD was not reached in either the monotherapy or the combination escalation cohorts. No objective responses were seen with BMS-986178 alone; objective response rates ranged from 0% to 13% across combination therapy cohorts. CONCLUSIONS In this study, BMS-986178 ± nivolumab and/or ipilimumab appeared to have a manageable safety profile, but no clear efficacy signal was observed above that expected for nivolumab and/or ipilimumab.
Collapse
Affiliation(s)
- Martin Gutierrez
- John Theurer Cancer Center at Hackensack University Medical Center, Hackensack, New Jersey.
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Kimberley M Heinhuis
- The Netherlands Cancer Institute, Antoni Van Leeuwenhoek, Amsterdam, the Netherlands
| | | | - Anna Spreafico
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Michael Ong
- The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Quincy Chu
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | - José Trigo
- Hospital Universitario Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | | | | | - Filip Yves De Vos
- University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Stephen Leong
- University of Colorado Cancer Center, Aurora, Colorado
| | | | - Rui Wang
- Bristol Myers Squibb, Princeton, New Jersey
| | | | - Yan Feng
- Bristol Myers Squibb, Princeton, New Jersey
| | | | - Ignacio Melero
- Clínica Universidad De Navarra, Pamplona, Spain. *was an employee of Bristol Myers Squibb at the time the studies were performed
| |
Collapse
|
25
|
He S, Xu J, Wu J. The emerging role of co-stimulatory molecules and their agonistic mAb-based combination therapies in melanoma. Int Immunopharmacol 2020; 89:107097. [PMID: 33091814 DOI: 10.1016/j.intimp.2020.107097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Although anti-PD-1/L1 and anti-CTLA-4 antibodies, the validated immune checkpoint blockades, can elicit durable long-lasting antitumor immunity and improve the clinical outcomes of melanoma treatment, there are still a fraction of patients who did not receive therapeutic benefits as expected. In addition to findings of blocking the co-inhibitory pathways, the preclinical and clinical evidence suggests that triggering the co-stimulatory pathways through agonists such as CD137, OX40, CD40, GITR and CD27 may be a rational next step for melanoma therapy. In this review, we discuss the progress of studies on these co-stimulatory molecules in terms of their promising therapeutic effects and underlying antitumor mechanisms, and provide a review of the possible combinations that orchestrate the interplay of co-stimulatory agonistic mAbs and other therapies for treating melanoma, including inhibitory immune checkpoint mAbs, adoptive T cell therapy, chemotherapy and radiotherapy. We also briefly present the limitations and challenges involved in these co-stimulatory agonistic mAb-based combination strategies for melanoma patients.
Collapse
Affiliation(s)
- Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
26
|
Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell agonists in cancer immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000966. [PMID: 33020242 PMCID: PMC7537335 DOI: 10.1136/jitc-2020-000966] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Cancer cells can evade immune surveillance in the body. However, immune checkpoint inhibitors can interrupt this evasion and enhance the antitumor activity of T cells. Other mechanisms for promoting antitumor T-cell function are the targeting of costimulatory molecules expressed on the surface of T cells, such as 4-1BB, OX40, inducible T-cell costimulator and glucocorticoid-induced tumor necrosis factor receptor. In addition, CD40 targets the modulation of the activation of antigen-presenting cells, which ultimately leads to T-cell activation. Agonists of these costimulatory molecules have demonstrated promising results in preclinical and early-phase trials and are now being tested in ongoing clinical trials. In addition, researchers are conducting trials of combinations of such immune modulators with checkpoint blockade, radiotherapy and cytotoxic chemotherapeutic drugs in patients with advanced tumors. This review gives a comprehensive picture of the current knowledge of T-cell agonists based on their use in recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Yeonjoo Choi
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yaoyao Shi
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cara L Haymaker
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Aung Naing
- Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Joud Hajjar
- Section of Immunology, Department of Allergy & Rheumatology, Baylor College of Medicine, Texas and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
27
|
Campos Carrascosa L, van Beek AA, de Ruiter V, Doukas M, Wei J, Fisher TS, Ching K, Yang W, van Loon K, Boor PPC, Rakké YS, Noordam L, Doornebosch P, Grünhagen D, Verhoef K, Polak WG, IJzermans JNM, Ni I, Yeung YA, Salek-Ardakani S, Sprengers D, Kwekkeboom J. FcγRIIB engagement drives agonistic activity of Fc-engineered αOX40 antibody to stimulate human tumor-infiltrating T cells. J Immunother Cancer 2020; 8:jitc-2020-000816. [PMID: 32900860 PMCID: PMC7478034 DOI: 10.1136/jitc-2020-000816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND OX40 (CD134) is a costimulatory molecule of the tumor necrosis factor receptor superfamily that is currently being investigated as a target for cancer immunotherapy. However, despite promising results in murine tumor models, the clinical efficacy of agonistic αOX40 antibodies in the treatment of patients with cancer has fallen short of the high expectation in earlier-stage trials. METHODS Using lymphocytes from resected tumor, tumor-free (TF) tissue and peripheral blood mononuclear cells (PBMC) of 96 patients with hepatocellular and colorectal cancers, we determined OX40 expression and the in vitro T-cell agonistic activity of OX40-targeting compounds. RNA-Seq was used to evaluate OX40-mediated transcriptional changes in CD4+ and CD8+ human tumor-infiltrating lymphocytes (TILs). RESULTS Here, we show that OX40 was overexpressed on tumor-infiltrating CD4+ T cells compared with blood and TF tissue-derived T cells. In contrast to a clinical candidate αOX40 antibody, treatment with an Fc-engineered αOX40 antibody (αOX40_v12) with selectively enhanced FcγRIIB affinity, stimulated in vitro CD4+ and CD8+ TIL expansion, as well as cytokine and chemokine secretions. The activity of αOX40_v12 was dependent on FcγRIIB engagement and intrinsic CD3/CD28 signals. The transcriptional landscape of CD4+ and CD8+ TILs shifted toward a prosurvival, inflammatory and chemotactic profile on treatment with αOX40_v12. CONCLUSIONS OX40 is overexpressed on CD4+ TILs and thus represents a promising target for immunotherapy. Targeting OX40 with currently used agonistic antibodies may be inefficient due to lack of OX40 multimerization. Thus, Fc engineering is a powerful tool in enhancing the agonistic activity of αOX40 antibody and may shape the future design of antibody-mediated αOX40 immunotherapy.
Collapse
Affiliation(s)
- Lucia Campos Carrascosa
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Adriaan A van Beek
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Valeska de Ruiter
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Michail Doukas
- Pathology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Jie Wei
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Timothy S Fisher
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Keith Ching
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Wenjing Yang
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Karlijn van Loon
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Patrick P C Boor
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Yannick S Rakké
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Lisanne Noordam
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | | | - Dirk Grünhagen
- Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Kees Verhoef
- Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Wojciech G Polak
- Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Jan N M IJzermans
- Surgery, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Irene Ni
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | - Yik Andy Yeung
- Pfizer Cancer Immunology Discovery, Pfizer Inc, San Diego, California, USA
| | | | - Dave Sprengers
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Jaap Kwekkeboom
- Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
28
|
Glisson BS, Leidner RS, Ferris RL, Powderly J, Rizvi NA, Keam B, Schneider R, Goel S, Ohr JP, Burton J, Zheng Y, Eck S, Gribbin M, Streicher K, Townsley DM, Patel SP. Safety and Clinical Activity of MEDI0562, a Humanized OX40 Agonist Monoclonal Antibody, in Adult Patients with Advanced Solid Tumors. Clin Cancer Res 2020; 26:5358-5367. [PMID: 32816951 DOI: 10.1158/1078-0432.ccr-19-3070] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has demonstrated clinical benefits across multiple solid tumor types; however, resistance and relapse often occur. New immunomodulatory targets, which are highly expressed in activated immune cells, are needed. MEDI0562, an agonistic humanized mAb, specifically binds to the costimulatory molecule OX40. This first-in-human study evaluated MEDI0562 in adults with advanced solid tumors. PATIENTS AND METHODS In this phase I, multicenter, open-label, single-arm, dose-escalation (3+3 design) study, patients received 0.03, 0.1, 0.3, 1.0, 3.0, or 10 mg/kg MEDI0562 through intravenous infusion every 2 weeks, until confirmed disease progression or unacceptable toxicity. The primary objective evaluated safety and tolerability. Secondary endpoints included antitumor activity, pharmacokinetics, immunogenicity, and pharmacodynamics. RESULTS In total, 55 patients received ≥1 dose of MEDI0562 and were included in the analysis. The most common tumor type was squamous cell carcinoma of the head and neck (47%). Median duration of treatment was 10 weeks (range, 2-48 weeks). Treatment-related adverse events (TRAEs) occurred in 67% of patients, most commonly fatigue (31%) and infusion-related reactions (14%). Grade 3 TRAEs occurred in 14% of patients with no apparent dose relationship; no TRAEs resulted in death. Two patients had immune-related partial responses per protocol and 44% had stable disease. MEDI0562 induced increased Ki67+ CD4+ and CD8+ memory T-cell proliferation in the periphery and decreased intratumoral OX40+ FOXP3+ cells. CONCLUSIONS MEDI0562 was safely administered at doses up to 10 mg/kg in heavily pretreated patients. On-target pharmacodynamic effects were suggested in this setting. Further evaluation with immune checkpoint inhibitors is ongoing.
Collapse
Affiliation(s)
- Bonnie S Glisson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Rom S Leidner
- EACRI - Providence Cancer Center, Portland, Oregon, USA
| | | | - John Powderly
- Carolina BioOncology Institute, Huntersville, North Carolina, USA
| | - Naiyer A Rizvi
- Columbia University Medical Center, New York, New York, USA
| | - Bhumsuk Keam
- Seoul National University Hospital, Seoul, South Korea
| | - Reva Schneider
- Mary Crowley Cancer Research - Medical City Dallas, Dallas, Texas, USA
| | - Sanjay Goel
- Montefiore Einstein Cancer Center, Bronx, New York, USA
| | - James P Ohr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Steven Eck
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | |
Collapse
|
29
|
Zhuo M, Chi Y, Wang Z. The adverse events associated with combination immunotherapy in cancers: Challenges and chances. Asia Pac J Clin Oncol 2020; 16:e154-e159. [PMID: 32786161 DOI: 10.1111/ajco.13365] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022]
Abstract
With the development of cancer immunotherapy, the combination strategy is becoming prevalent. Multiple relevant clinical trials are ongoing in this field. However, immune-related adverse events (irAEs) occurred more frequently, showing a different pattern from single-agent therapy. It is necessary for clinicians to learn about the characteristics of AEs from combination immunotherapy, and master the skills to deal with them. In this article, we reviewed presently published data about AEs from combination immunotherapy of cancers. We believe a full-scale view about this new treatment strategy will facilitate oncologists to better understand tumor immune response. With cutting edge knowledge, an experienced team can minimize these AEs and help patients to achieve high-quality long-term survival.
Collapse
Affiliation(s)
- Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yujia Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziping Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
30
|
Discovery of New Immune Checkpoints: Family Grows Up. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:61-82. [PMID: 32185707 DOI: 10.1007/978-981-15-3266-5_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The first generation of immune checkpoint inhibitors (ICIs) including anti-CTLA-4 and anti-PD-1/anti-PD-L1 has achieved profound and great success. Till 2019 Q1, there are nine ICIs landing the oncology market: Ipilimumab (anti-CTLA-4, Bristol-Myers Squibb), Nivolumab (anti-PD-1, Bristol-Myers Squibb), Pembrolizumab (anti-PD-1, Merck), Atezolizumab (anti-PD-L1, Roche/Genentech), Durvalumab (anti-PD-L1, Astra Zeneca), Tremelimumab (anti-CTLA-4, Astra Zeneca), Cemiplimab (anti-PD-1, Sanofi/Regeneron), Toripalimab (anti-PD-1, Junshi), and Sintilimab (anti-PD-1, Innovent), which have covered the majority of hematologic and solid malignancies' indication. Beyond the considerable benefits for the patients, frustrated boundary still exists: limited response rate in monotherapy in late-stage population, poor effectiveness in neoplasms with immune desert and immune excluded types, and immune-related toxicities, some are life-threatened and with higher incidence in I-O combination regiment. Moreover, clinicians observed some cases switching to progression after achieving partial or complete response, indicating treatment failure or drug resistance. So people begin looking for the next generation of immune checkpoint members.
Collapse
|
31
|
Alves Costa Silva C, Facchinetti F, Routy B, Derosa L. New pathways in immune stimulation: targeting OX40. ESMO Open 2020; 5:e000573. [PMID: 32392177 PMCID: PMC7046367 DOI: 10.1136/esmoopen-2019-000573] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint blockers (ICB) reinvigorate the immune system by removing the molecular brakes responsible for the scarce activity of immune phenotypes against malignant cells. After having proven their remarkable role as monotherapy, combinations of anti-Programmed cell death 1 (PD-1)/Programmed death-ligand 1 (PD-L1) agents with cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibodies, chemotherapy and/or anti-angiogenic compounds provide unprecedented results and durable responses across a variety of tumour types. Nevertheless, the main drawbacks of ICB are represented by primary and acquired resistance, translating into disease progression, as well as by immune-related toxicities. In this sense, novel strategies to foster the immune system through its direct stimulation are being tested in order to provide additional clinical improvements in patients with cancer. In this scenario, the co-stimulatory molecule OX40 (CD134) belongs to the next generation of immune therapeutic targets. Preliminary results of early clinical trials evaluating OX40 stimulation by means of different agents are encouraging. Here we review the rationale of OX40 targeting, highlighting the combination of OX40-directed therapies with different anticancer agents as a potential strategy to foster the immune system against malignant phenotypes.
Collapse
Affiliation(s)
| | | | | | - Lisa Derosa
- INSERM U1015, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
32
|
High OX-40 expression in the tumor immune infiltrate is a favorable prognostic factor of overall survival in non-small cell lung cancer. J Immunother Cancer 2019; 7:351. [PMID: 31843013 PMCID: PMC6915970 DOI: 10.1186/s40425-019-0827-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/21/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction OX-40 co-stimulatory signaling plays a role in mounting anti-tumor immune responses and clinical trials targeting this pathway are ongoing. However, the association of with OX-40 protein expression with clinical outcomes and pathological features in non-small cell lung cancer (NSCLC) are largely unknown. Methods Surgically-resected stage I-III NSCLC specimens (N = 100) were stained by immunohistochemistry (IHC) for the following immune markers: OX-40, PD-L1, PD-1, CD3, CD4, CD8, CD45RO, CD57, CD68, FOXP3, granzyme B, and ICOS. Immune-related markers mRNA expression were also assessed. We evaluated the association of OX-40 levels with major clinicopathologic variables, including molecular driver mutations. Results OX-40 IHC expression was observed in all tested tumors, predominantly localized in the membrane of the tumor immune infiltrate, and was not associated with a specific clinicopathologic or molecular subtype. High OX-40 expression levels measured by IHC median score were associated with better overall survival (OS) (p = 0.002), independent of CD3/CD8, PD-L1, and ICOS expression. High OX-40 IHC score was associated with increased expression of immune-related genes such as CD3, IFN-gamma, ICOS, CD8, CXCL9, CXCL10, CCL5, granzyme K. Conclusions High OX-40 IHC expression in the tumor immune infiltrate is associated with favorable prognosis and increased levels of immune-related genes including IFN-gamma in patients with surgically resected stage I-III NSCLC. Its prognostic utility is independent of PD-L1 and other common markers of immune activation. High OX-40 expression potentially identifies a unique subgroup of NSCLC that may benefit from co-stimulation with OX-40 agonist antibodies and potentially enhance the efficacy of existing immune checkpoint therapies.
Collapse
|
33
|
Tracers for non-invasive radionuclide imaging of immune checkpoint expression in cancer. EJNMMI Radiopharm Chem 2019; 4:29. [PMID: 31696402 PMCID: PMC6834817 DOI: 10.1186/s41181-019-0078-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022] Open
Abstract
Abstract Immunotherapy with checkpoint inhibitors demonstrates impressive improvements in the treatment of several types of cancer. Unfortunately, not all patients respond to therapy while severe immune-related adverse effects are prevalent. Currently, patient stratification is based on immunotherapy marker expression through immunohistochemical analysis on biopsied material. However, expression can be heterogeneous within and between tumor lesions, amplifying the sampling limitations of biopsies. Analysis of immunotherapy target expression by non-invasive quantitative molecular imaging with PET or SPECT may overcome this issue. In this review, an overview of tracers that have been developed for preclinical and clinical imaging of key immunotherapy targets, such as programmed cell death-1, programmed cell death ligand-1, IDO1 and cytotoxic T lymphocyte-associated antigen-4 is presented. We discuss important aspects to consider when developing such tracers and outline the future perspectives of molecular imaging of immunotherapy markers. Graphical abstract Current techniques in immune checkpoint imaging and its potential for future applications ![]()
Collapse
|
34
|
Pembrolizumab for anaplastic thyroid cancer: a case study. Cancer Immunol Immunother 2019; 68:1921-1934. [PMID: 31637475 DOI: 10.1007/s00262-019-02416-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Blockade of the PD-1/PD-L1 pathway with targeted monoclonal antibodies has demonstrated encouraging anti-tumour activity in multiple cancer types. We present the case of a patient with BRAF-negative stage IVC anaplastic thyroid cancer (ATC) treated with the anti-PD-1 monoclonal antibody, pembrolizumab, following radiographic progression on chemoradiation. Blood samples were collected prior to and at four time points during treatment with pembrolizumab. Mass cytometry was used to determine expression of relevant biomarkers by peripheral blood mononuclear cells. Faecal samples were collected at baseline and 4 weeks following treatment initiation; taxonomic profiling using 16S ribosomal RNA (rRNA) gene sequencing was performed. Following treatment, a marked expansion in CD20+ B cell, CD16+ CD56lo NK cell and CD45RO+ CCR7+ central memory CD4+ T-cell populations was observed in the peripheral blood. Proportions of cells expressing the co-receptors TIGIT, OX40 and CD86 also increased during treatment. A high abundance of bacteria of the order Bacteroidales, specifically from the Bacteroidaceae and Rikenellaceae families, was identified in the faecal microbiota. Moreover, the patient's microbiome was enriched in Clostridiales order members Ruminococcaceae, Veillonellaceae and Lachnospiraceae. Alpha diversity of the gut microbiome was significantly higher following initiation of checkpoint therapy as assessed by the Shannon and Simpson index. Our results suggest that treatment with pembrolizumab promotes expansion of T-, B- and NK cell populations in the peripheral blood at the time of tumour regression and have the potential to be implemented as predictive biomarkers in the context of checkpoint blockade therapy. Larger studies to confirm these findings are warranted.
Collapse
|
35
|
Ingles Garces AH, Au L, Mason R, Thomas J, Larkin J. Building on the anti-PD1/PD-L1 backbone: combination immunotherapy for cancer. Expert Opin Investig Drugs 2019; 28:695-708. [DOI: 10.1080/13543784.2019.1649657] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Lewis Au
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Robert Mason
- The Royal Marsden NHS Foundation Trust, London, UK
| | | | - James Larkin
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
36
|
Peng W, Williams LJ, Xu C, Melendez B, McKenzie JA, Chen Y, Jackson HL, Voo KS, Mbofung RM, Leahey SE, Wang J, Lizee G, Tawbi HA, Davies MA, Hoos A, Smothers J, Srinivasan R, Paul EM, Yanamandra N, Hwu P. Anti-OX40 Antibody Directly Enhances The Function of Tumor-Reactive CD8 + T Cells and Synergizes with PI3Kβ Inhibition in PTEN Loss Melanoma. Clin Cancer Res 2019; 25:6406-6416. [PMID: 31371342 DOI: 10.1158/1078-0432.ccr-19-1259] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/10/2019] [Accepted: 07/26/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE OX40 agonist-based combinations are emerging as a novel avenue to improve the effectiveness of cancer immunotherapy. To better guide its clinical development, we characterized the role of the OX40 pathway in tumor-reactive immune cells. We also evaluated combining OX40 agonists with targeted therapy to combat resistance to cancer immunotherapy.Experimental Design: We utilized patient-derived tumor-infiltrating lymphocytes (TILs) and multiple preclinical models to determine the direct effect of anti-OX40 agonistic antibodies on tumor-reactive CD8+ T cells. We also evaluated the antitumor activity of an anti-OX40 antibody plus PI3Kβ inhibition in a transgenic murine melanoma model (Braf mutant, PTEN null), which spontaneously develops immunotherapy-resistant melanomas. RESULTS We observed elevated expression of OX40 in tumor-reactive CD8+ TILs upon encountering tumors; activation of OX40 signaling enhanced their cytotoxic function. OX40 agonist antibody improved the antitumor activity of CD8+ T cells and the generation of tumor-specific T-cell memory in vivo. Furthermore, combining anti-OX40 with GSK2636771, a PI3Kβ-selective inhibitor, delayed tumor growth and extended the survival of mice with PTEN-null melanomas. This combination treatment did not increase the number of TILs, but it instead significantly enhanced proliferation of CD8+ TILs and elevated the serum levels of CCL4, CXCL10, and IFNγ, which are mainly produced by memory and/or effector T cells. CONCLUSIONS These results highlight a critical role of OX40 activation in potentiating the effector function of tumor-reactive CD8+ T cells and suggest further evaluation of OX40 agonist-based combinations in patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Weiyi Peng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Leila J Williams
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chunyu Xu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Brenda Melendez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jodi A McKenzie
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuan Chen
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather L Jackson
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Kui S Voo
- Department of Oncology Research for Biologics and Immunotherapy Translation Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rina M Mbofung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sara Elizabeth Leahey
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Axel Hoos
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - James Smothers
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Roopa Srinivasan
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Elaine M Paul
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Niranjan Yanamandra
- Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, Collegeville, Pennsylvania.
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
37
|
Hulett TW, Fox BA, Messenheimer DJ, Marwitz S, Moudgil T, Afentoulis ME, Wegman KW, Ballesteros-Merino C, Jensen SM. Future Research Goals in Immunotherapy. Surg Oncol Clin N Am 2019; 28:505-518. [DOI: 10.1016/j.soc.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Perez-Santos M, Anaya-Ruiz M, Herrera-Camacho I, Millán-Pérez Peña L. Cancer combinatorial immunotherapy using anti-OX40 agonist and anti-PD-L1 antagonist: a patent evaluation of US2018256711A1. Expert Opin Ther Pat 2019; 29:481-485. [DOI: 10.1080/13543776.2019.1634690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Martin Perez-Santos
- Oficina de Comercialización de Tecnología, Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla, CP, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Puebla, CP, Mexico
| | - Irma Herrera-Camacho
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, CP, Mexico
| | - Lourdes Millán-Pérez Peña
- Laboratorio de Bioquímica y Biología Molecular, Centro de Química del Instituto de Ciencias (ICUAP), Edificio 103F, Ciudad Universitaria, Benemérita Universidad Autónoma de Puebla, Puebla, CP, Mexico
| |
Collapse
|
39
|
Hsu MM, Balar AV. PD-1/PD-L1 Combinations in Advanced Urothelial Cancer: Rationale and Current Clinical Trials. Clin Genitourin Cancer 2019; 17:e618-e626. [PMID: 31005473 DOI: 10.1016/j.clgc.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/14/2019] [Accepted: 03/17/2019] [Indexed: 12/27/2022]
Abstract
Chemotherapy is no longer the only viable option for patients with locally advanced or metastatic urothelial carcinoma. Immunotherapy, as checkpoint inhibition, has received United States Food and Drug Administration approval in the preceding several years, both in the second-line and first-line for cisplatin-ineligible patients. Those who respond often do so durably; however, response rates in the first line are 23% to 24%, and are lower in the second line. With a focus on urothelial carcinoma, this review discusses the tumor microenvironment and its negative influence on anti-tumor immunity, as well as measures to counteract immune suppression or evasion. The review then describes a range of current clinical trials implementing these measures in the form of programmed death-combination therapy, specifically in advanced bladder and urothelial cancers.
Collapse
Affiliation(s)
- Miles M Hsu
- New York University School of Medicine, New York, NY.
| | - Arjun V Balar
- New York University Perlmutter Cancer Center, New York, NY
| |
Collapse
|
40
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The advent of immunotherapy significantly improved clinical outcomes in cancer patients, although immune checkpoint blockade (ICB) still lack of efficacy in a consistent proportion of treated patients. The purpose of this article is to review the most innovative and clinically promising ICB-based combinations designed to improve the efficacy of cancer immunotherapy. RECENT FINDINGS First-line combinatorial treatment with ipilimumab and nivolumab has recently shown to be superior to the standard of care in a subset of metastatic nonsmall cell lung cancer (NSCLC) and renal cell carcinoma (RCC). The combination of programmed cell death protein 1 (PD-1)/PD-L1 blockade with antiangiogenics has demonstrated a consistent clinical efficacy, especially for the combination of bevacizumab and atezolizumab as first-line therapy in metastatic RCC. The sequential combination of definitive chemoradiotherapy followed by durvalumab maintenance in advanced, unresectable NSCLC became the new standard of care, while the addition of pembrolizumab to first-line chemotherapy in metastatic NSCLC significantly improves overall survival. Despite promising results for the combination of ICBs with v-raf murine sarcoma viral oncogene homolog B/MAPK/ERK kinase inhibitors or epidermal growth factor receptor inhibitors, especially in melanoma and NSCLC, safety concerns slowed down the development of such strategies. SUMMARY Immunotherapy-based combinations are becoming the standard of care for cancer treatment, in particularly for advanced melanoma, NSCLC and RCC.
Collapse
|
42
|
Margolis N, Markovits E, Markel G. Reprogramming lymphocytes for the treatment of melanoma: From biology to therapy. Adv Drug Deliv Rev 2019; 141:104-124. [PMID: 31276707 DOI: 10.1016/j.addr.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
This decade has introduced drastic changes in melanoma therapy, predominantly due to the materialization of the long promise of immunotherapy. Cytotoxic T cells are the chief component of the immune system, which are targeted by different strategies aimed to increase their capacity against melanoma cells. To this end, reprogramming of T cells occurs by T cell centered manipulation, targeting the immunosuppressive tumor microenvironment or altering the whole patient. These are enabled by delivery of small molecules, functional monoclonal antibodies, different subunit vaccines, as well as living lymphocytes, native or genetically engineered. Current FDA-approved therapies are focused on direct T cell manipulation, such as immune checkpoint inhibitors blocking CTLA-4 and/or PD-1, which paves the way for an effective immunotherapy backbone available for combination with other modalities. Here we review the biology and clinical developments that enable melanoma immunotherapy today and in the future.
Collapse
|
43
|
Mandalà M, Rutkowski P. Rational combination of cancer immunotherapy in melanoma. Virchows Arch 2018; 474:433-447. [PMID: 30552520 DOI: 10.1007/s00428-018-2506-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022]
Abstract
The recent advances in cancer immunotherapy with unprecedented success in therapy of advanced melanoma represent a turning point in the landscape of melanoma treatment. Given the complexity of activation of immunological system and the physiologic multifactorial homeostatic mechanisms controlling immune responses, combinatorial strategies are eagerly needed in melanoma therapy. Nevertheless, rational selection of immunotherapy combinations should be more biomarker-guided, including not only the cancer immunogram, PD-L1 expression, interferon gene expression signature, mutational burden, and tumor infiltration by CD8+ T cells but also intratumoral T cell exhaustion and microbiota composition. In this review, we summarize the rationale to develop combination treatment strategies in melanoma and discuss biological background that could help to design new combinations in order to improve patients' outcome.
Collapse
Affiliation(s)
- Mario Mandalà
- Unit of Medical Oncology, Department of Oncology and Haematology, Papa Giovanni XXIII Cancer Center Hospital, Piazza OMS 1, 24100, Bergamo, Italy.
| | - Piotr Rutkowski
- Maria Sklodowska-Curie Institute, Oncology Center, Warsaw, Poland
| |
Collapse
|
44
|
Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest 2018; 128:3209-3218. [PMID: 30067248 DOI: 10.1172/jci120775] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current immune checkpoint-modulating agents have demonstrated clinical efficacy in certain tumor types, particularly those with a high burden of tumor-specific neoantigens, high tumor-mutational burden, and abundant tumor-infiltrating T cells. However, these tumors often stop responding, with signs of T cells exhaustion, decreased T cell effector function, and upregulated inhibitory checkpoints. To enhance antitumor immunity and rescue exhausted T cells, newer inhibitory and stimulatory checkpoint modulators are being tested as monotherapy or in combination with approved checkpoint inhibitors. In contrast, tumors with low tumor-mutational burden, low neoantigen burden, and a paucity of T cells are immunologically "cold," and therefore first require the addition of agents to facilitate the induction of T cells into tumors. Cold tumors also often recruit immunosuppressive cell subsets, including regulatory T cells, myeloid-derived suppressor cells, and macrophages, and secrete immunosuppressive soluble cytokines, chemokines, and metabolites. To unleash an optimal antitumor immune response, combinatorial therapeutics that combine immune checkpoints with other modalities, such as vaccines, are being developed. From current preclinical data, it appears that combinatorial strategies will provide robust and durable responses in patients with immunologically cold cancers.
Collapse
|
45
|
Shrimali RK, Ahmad S, Verma V, Zeng P, Ananth S, Gaur P, Gittelman RM, Yusko E, Sanders C, Robins H, Hammond SA, Janik JE, Mkrtichyan M, Gupta S, Khleif SN. Concurrent PD-1 Blockade Negates the Effects of OX40 Agonist Antibody in Combination Immunotherapy through Inducing T-cell Apoptosis. Cancer Immunol Res 2018; 5:755-766. [PMID: 28848055 DOI: 10.1158/2326-6066.cir-17-0292] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/21/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
Combination therapies that depend on checkpoint inhibitor antibodies (Abs) such as for PD-1 or its ligand (PD-L1) together with immune stimulatory agonist Abs like anti-OX40 are being tested in the clinic to achieve improved antitumor effects. Here, we studied the potential therapeutic and immune effects of one such combination: Ab to PD-1 with agonist Ab to OX40/vaccine. We tested the antitumor effects of different treatment sequencing of this combination. We report that simultaneous addition of anti-PD-1 to anti-OX40 negated the antitumor effects of OX40 Ab. Antigen-specific CD8+ T-cell infiltration into the tumor was diminished, the resultant antitumor response weakened, and survival reduced. Although we observed an increase in IFNγ-producing E7-specifc CD8+ T cells in the spleens of mice treated with the combination of PD-1 blockade with anti-OX40/vaccine, these cells underwent apoptosis both in the periphery and the tumor. These results indicate that anti-PD-1 added at the initiation of therapy exhibits a detrimental effect on the positive outcome of anti-OX40 agonist Ab. These findings have important implications on the design of combination immunotherapy for cancer, demonstrating the need to test treatment combination and sequencing before moving to the clinic. Cancer Immunol Res; 5(9); 755-66. ©2017 AACR.
Collapse
Affiliation(s)
| | - Shamim Ahmad
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Vivek Verma
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Peng Zeng
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Sudha Ananth
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Pankaj Gaur
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Erik Yusko
- Adaptive Biotechnologies, Seattle, Washington
| | | | - Harlan Robins
- Adaptive Biotechnologies, Seattle, Washington.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - John E Janik
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | | | - Seema Gupta
- Georgia Cancer Center, Augusta University, Augusta, Georgia
| | - Samir N Khleif
- Georgia Cancer Center, Augusta University, Augusta, Georgia.
| |
Collapse
|
46
|
Shitara K, Nishikawa H. Regulatory T cells: a potential target in cancer immunotherapy. Ann N Y Acad Sci 2018; 1417:104-115. [DOI: 10.1111/nyas.13625] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/11/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology; National Cancer Center Hospital East; Chiba Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/EPOC; National Cancer Center; Tokyo/Chiba Japan
- Department of Immunology; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
47
|
Oberst MD, Augé C, Morris C, Kentner S, Mulgrew K, McGlinchey K, Hair J, Hanabuchi S, Du Q, Damschroder M, Feng H, Eck S, Buss N, de Haan L, Pierce AJ, Park H, Sylwester A, Axthelm MK, Picker L, Morris NP, Weinberg A, Hammond SA. Potent Immune Modulation by MEDI6383, an Engineered Human OX40 Ligand IgG4P Fc Fusion Protein. Mol Cancer Ther 2018; 17:1024-1038. [PMID: 29545330 DOI: 10.1158/1535-7163.mct-17-0200] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/11/2017] [Accepted: 02/12/2018] [Indexed: 11/16/2022]
Abstract
Ligation of OX40 (CD134, TNFRSF4) on activated T cells by its natural ligand (OX40L, CD252, TNFSF4) enhances cellular survival, proliferation, and effector functions such as cytokine release and cellular cytotoxicity. We engineered a recombinant human OX40L IgG4P Fc fusion protein termed MEDI6383 that assembles into a hexameric structure and exerts potent agonist activity following engagement of OX40. MEDI6383 displayed solution-phase agonist activity that was enhanced when the fusion protein was clustered by Fc gamma receptors (FcγRs) on the surface of adjacent cells. The resulting costimulation of OX40 on T cells induced NFκB promoter activity in OX40-expressing T cells and induced Th1-type cytokine production, proliferation, and resistance to regulatory T cell (Treg)-mediated suppression. MEDI6383 enhanced the cytolytic activity of tumor-reactive T cells and reduced tumor growth in the context of an alloreactive human T cell:tumor cell admix model in immunocompromised mice. Consistent with the role of OX40 costimulation in the expansion of memory T cells, MEDI6383 administered to healthy nonhuman primates elicited peripheral blood CD4 and CD8 central and effector memory T-cell proliferation as well as B-cell proliferation. Together, these results suggest that OX40 agonism has the potential to enhance antitumor immunity in human malignancies. Mol Cancer Ther; 17(5); 1024-38. ©2018 AACR.
Collapse
Affiliation(s)
- Michael D Oberst
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Catherine Augé
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Chad Morris
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Stacy Kentner
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Kathy Mulgrew
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Kelly McGlinchey
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - James Hair
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Shino Hanabuchi
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Qun Du
- Department of Antibody Development and Protein Engineering, MedImmune, Gaithersburg, Maryland
| | - Melissa Damschroder
- Department of Antibody Development and Protein Engineering, MedImmune, Gaithersburg, Maryland
| | - Hui Feng
- Department of Antibody Development and Protein Engineering, MedImmune, Gaithersburg, Maryland
| | - Steven Eck
- Translational Science, MedImmune, Gaithersburg, Maryland
| | - Nicholas Buss
- Department of Toxicology, MedImmune, Gaithersburg, Maryland
| | - Lolke de Haan
- Department of Toxicology, MedImmune, Gaithersburg, Maryland
| | - Andrew J Pierce
- Innovative Medicines, Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Haesun Park
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Andrew Sylwester
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Louis Picker
- Vaccine and Gene Therapy Institute, Departments of Molecular Microbiology and Pathology, and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon
| | - Nicholas P Morris
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon.,AgonOx, Portland, Oregon
| | - Andrew Weinberg
- Earle A. Chiles Research Institute, Providence Cancer Center, Portland, Oregon.,AgonOx, Portland, Oregon
| | - Scott A Hammond
- Department of Oncology Research, MedImmune, Gaithersburg, Maryland.
| |
Collapse
|
48
|
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 2018; 11:39. [PMID: 29544515 PMCID: PMC5856308 DOI: 10.1186/s13045-018-0582-8] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoints consist of inhibitory and stimulatory pathways that maintain self-tolerance and assist with immune response. In cancer, immune checkpoint pathways are often activated to inhibit the nascent anti-tumor immune response. Immune checkpoint therapies act by blocking or stimulating these pathways and enhance the body's immunological activity against tumors. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1(PD-L1) are the most widely studied and recognized inhibitory checkpoint pathways. Drugs blocking these pathways are currently utilized for a wide variety of malignancies and have demonstrated durable clinical activities in a subset of cancer patients. This approach is rapidly extending beyond CTLA-4 and PD-1/PD-L1. New inhibitory pathways are under investigation, and drugs blocking LAG-3, TIM-3, TIGIT, VISTA, or B7/H3 are being investigated. Furthermore, agonists of stimulatory checkpoint pathways such as OX40, ICOS, GITR, 4-1BB, CD40, or molecules targeting tumor microenvironment components like IDO or TLR are under investigation. In this article, we have provided a comprehensive review of immune checkpoint pathways involved in cancer immunotherapy, and discuss their mechanisms and the therapeutic interventions currently under investigation in phase I/II clinical trials. We also reviewed the limitations, toxicities, and challenges and outline the possible future research directions.
Collapse
Affiliation(s)
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
- Present Address: Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Aixa E Soyano
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Saranya Chumsri
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
49
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
50
|
Shah NJ, Kelly WJ, Liu SV, Choquette K, Spira A. Product review on the Anti-PD-L1 antibody atezolizumab. Hum Vaccin Immunother 2017; 14:269-276. [PMID: 29194007 DOI: 10.1080/21645515.2017.1403694] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy as a therapeutic strategy has seized the narrative throughout clinical oncology over the past few years. Once considered a niche treatment for rare cancers, immunotherapy has quickly emerged as the standard of care for many common cancer types. The remarkable rise is largely due to the development of novel checkpoint inhibitors, specifically, antibodies targeting PD-1 and PD-L1. Offering promising efficacy with a favorable toxicity profile, these agents have been approved for use in several malignancies and are under investigation for many more. One of the more appealing features is the chance for meaningful, durable response - uncharacteristic for most cancer therapies. Atezolizumab is a humanized IgG1 monoclonal antibody that targets PD-L1. Atezolizumab has been approved for use in the treatment of advanced non-small cell lung cancer (NSCLC) and bladder cancer and has shown promising activity in several other types of cancer. Here, we provide a product review for atezolizumab.
Collapse
Affiliation(s)
- Neil J Shah
- a Division of Hematology Oncology , Georgetown University Medical Center, Lombardi Comprehensive Cancer Center , Washington, DC , USA
| | - William J Kelly
- a Division of Hematology Oncology , Georgetown University Medical Center, Lombardi Comprehensive Cancer Center , Washington, DC , USA
| | - Stephen V Liu
- a Division of Hematology Oncology , Georgetown University Medical Center, Lombardi Comprehensive Cancer Center , Washington, DC , USA
| | - Karin Choquette
- b Virginia Cancer Specialists Research Institute , Fairfax , VA , USA
| | - Alexander Spira
- b Virginia Cancer Specialists Research Institute , Fairfax , VA , USA
| |
Collapse
|